
Content-based encoding

of mathematical and code libraries

Josef Urban
Institute for Computing and Information Sciences

Radboud University, Nijmegen

August 27, 2011



Overview

◮ Introduction: Formal math libraries and wikis

◮ Motivation: naming problems and their implications

◮ Content-based naming methods

◮ Proposed usage in math libraries

◮ Limitations and extensions

◮ Feedback is appreciated!



Introduction: Formal math libraries and wikis

◮ Mathematics can be expressed fully formally

◮ This allows detailed computer understanding

◮ Similar to code libraries

◮ Proof verification (analogous to code compilation) is then
possible

◮ Strong computer assistance possible: automated reasoning,
semantic search

◮ Large formal libraries arise, similar to code libraries: Mizar,
Coq, Isabelle, HOL

◮ Some problems very similar to software libraries management

◮ Actually, we do not know a crisp boundary between code and
formal math (Prolog is clearly both)



Motivation: naming problems and their implications

◮ Bolzano-Weierstrass theorem or just Weierstrass theorem?

◮ Solomonoff vs. Kolmogorov vs. Chaitin complexity vs.
algorithmic entropy?

◮ In a formal library: relation composition(R,S) or
compose(R,S) or R*S ?

◮ many more (additive vs multiplicative groups, operations on
all kinds of numbers ... )



Motivation: naming problems and their implications

◮ Renaming: Weierstrass gets renamed to Bolzano-Weierstrass

◮ Moving: CoRN.algebra.Basics.iterateN becomes
CoRN.utilities.iterateN .

◮ Merging: Chaitin complexity and Kolmogorov complexity are
found to be the same thing

◮ All these operations cause syntactic change of the depending
proofs and theorems



Motivation: naming problems and their implications

◮ However, the changes are purely syntactic, there is no
semantic difference

◮ How do we align two different concepts spaces with each
other?

◮ How do we use various searching and automated reasoning
tools modulo the different syntactic concept hierarchies?

◮ One use-case: a new user comes with his own vocabulary and
does not know the concepts in a large library



Current naming methods

◮ serial numbering of theorems in textbooks and in Mizar:
CARD 1:def 1

◮ module-based paths in Coq: CoRN.algebra.Basics.iterateN or
CoRN.utilities.iterateN

◮ possibly somewhat more descriptive names:
commutativity of plus

◮ name mangling: types of arguments added explicitly to the
name

◮ none of these are strictly depending on the semantics
(contents) of the items



Content-based naming methods

◮ Gödel numbering

◮ Recursive term sharing

◮ Recursive cryptographic hashing



Content-based naming methods: Gödel numbering

◮ basic logic objects are assigned natural numbers

◮ complicated objects are modelled from less complicated as
sequences

◮ a one-to-one encoding of finite sequences to numbers

◮ thus, every mathematical object is uniquelly assigned (a very
large) number based purely on its contents

◮ this gives us (theoretically) purely content-based indentifiers

◮ however, this does not seem to be practically usable, the
numbers will be very large



Content-based naming methods: Recursive term sharing

◮ automated/interactive theorem provers (ATPs), Prolog

◮ exhaustive sharing of terms is used to achieve space/time
efficiency

◮ example: f(g(a)), g(g(a)) is represented as:

◮ a -> *0, g(*0) -> *1, f(*1) -> *2, g(*1) -> *3

◮ difference to Gödel numbering: objects are numbered serially
as they come

◮ this makes this scheme fragile

◮ in some sense, not perfectly content-based, depending also on
ordering



Content-based naming methods: Recursive cryptographic

hashing

◮ Gödel numbering results in impractically large identifiers

◮ Recursive term sharing too fragile

◮ Is there something usable?

◮ Minimal perfect hashing? Not really feasible for math objects

◮ Cryptographic hashing! SHA1 SHA256 used in git

◮ Conflicts are extremely unlikely

◮ SHA1 results in 40-character identifiers - this is feasible!



Content-based naming of formal mathematics

◮ The initial library items get an SHA1 value (e.g. their SHA1
value as strings, etc.) that does not change between the
library versions

◮ A suitable semantic form (XML) is defined for terms,
formulas, etc.

◮ The SHA1 of the semantic form (tree, DAG of items - SHA1
values) is used as the content-based identifier

◮ This is very similar to the way how git recursively computes
fie/directory names



Proposed use

◮ See how much naming-based duplication is inside the libraries

◮ Multiplicative vs. additive versions of algebraic structures

◮ Tracking the items’ histories during wiki-like refactoring:

◮ Where were items moved, how were they renamed (semantic
diff)

◮ Name-independent automated reasoning/search tools over the
libraries:

◮ Should be useful particularly for new users that do not know
the canonical concept names



Limitations and extensions

◮ Wikipedia article typically keeps its name for long time, even
though its content changes

◮ This gives rise to an equivalence class of SHA1 hashes

◮ Such equivalence classes need to be propagated using some
kind of congruence closure algorithm

◮ Semiformal libraries: take SHA1 only of the formal content
(skip the comments)

◮ Interesting issue is normalization:

◮ Alternative versions of associative-commutative operations
should be normalized into the same semantic form before the
SHA1 is computed


