operational logical relations and contextual equivalence for $\lambda 2$

dan frumin
last updated: May 11, 2017

Recall that we have a relational model of $\lambda 2$ with the following properties.
Theorem 1 (Fundamental property of logical relations). $\Delta ; \Gamma \vdash e: \tau$ implies $\Delta ; \Gamma \models e \approx_{l o g} e: \tau$
which we prove using the following compatibility lemmas:
Lemma 2 (Compatibility lemmas).

$$
\log _{-} \operatorname{var} \frac{\Gamma(x)=\tau}{\Delta ; \Gamma \models x \approx_{l o g} x: \tau}
$$

$$
\begin{aligned}
& \text { log_true }^{\Delta ; \Gamma \models \text { true } \approx_{\text {log }} \text { true : bool }} \\
& \text { log_false } \frac{\Delta ; \Gamma \models \text { false } \approx_{l o g} \text { false : bool }}{} \\
& l_{\text {log_if }} \frac{\Delta ; \Gamma \models e_{0} \approx_{l o g} e_{0}^{\prime}: \text { bool } \quad \Delta ; \Gamma \models e_{1} \approx_{l o g} e_{1}^{\prime}: \tau \quad \Delta ; \Gamma \models e_{2} \approx_{l o g} e_{2}^{\prime}: \tau}{\Delta ; \Gamma \models \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \approx_{l o g} \text { if } e_{0}^{\prime} \text { then } e_{1}^{\prime} \text { else } e_{2}^{\prime}: \tau} \\
& l_{\text {og_app }} \frac{\Delta ; \Gamma \models e_{0} \approx_{l o g} e_{0}^{\prime}: \tau \rightarrow \tau^{\prime} \quad \Delta ; \Gamma \models e_{1} \approx_{l o g} e_{1}^{\prime}: \tau}{\Delta ; \Gamma \models e_{0} e_{1} \approx_{l o g} e_{0}^{\prime} e_{1}^{\prime}: \tau^{\prime}} \\
& \log _{-l} \operatorname{lam} \frac{\Delta ;(x: \sigma), \Gamma \models e \approx_{l o g} e^{\prime}: \tau}{\Delta ; \Gamma \models \lambda x . e \approx_{l o g} \lambda x . e^{\prime}: \sigma \rightarrow \tau} \\
& l o g_{-t a p p} \frac{\Delta ; \Gamma \models e \approx_{l o g} e^{\prime}: \forall \alpha . \tau(\alpha) \quad \Delta \vdash \sigma}{\Delta ; \Gamma \models e[\sigma] \approx_{l o g} e^{\prime}[\sigma]: \tau(\sigma)} \\
& \log _{-} \text {tlam } \frac{\alpha, \Delta ; \Gamma \models e \approx_{l o g} e^{\prime}: \tau(\alpha)}{\Delta ; \Gamma \models \Lambda \alpha . e \approx_{l o g} \Lambda \alpha . e^{\prime}: \forall \alpha . \tau(\alpha)}
\end{aligned}
$$

We wish to show that when two terms are logically related, they are equivalent as programs. We formalise this with the help of contextual equivalence.

Definition 3 (Program contexts). Program contex are given as the following inductive definition/grammar where e, x, τ are types/grammars for expressions, variables, and types, respectively.
$\mathcal{C}:=\square \mid$ if \mathcal{C} then e else $e \mid$ if e then \mathcal{C} else $e \mid$ if e then e else $\mathcal{C}|\lambda x: \tau \cdot \mathcal{C}| \mathcal{C} e|e \mathcal{C}| \Lambda \alpha \cdot \mathcal{C} \mid \mathcal{C}[\tau]$
If \mathcal{C} is a program context and e is an expression, we write $\mathcal{C}[e]$ for the (variable-binding) substitution of e for \square in \mathcal{C}.

We will only consider typed contexts. We write $\mathcal{C}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash \tau^{\prime}\right)$ if whenever $\Delta ; \Gamma \vdash e: \tau$, it is the case that $\Delta^{\prime} ; \Gamma^{\prime} \vdash \mathcal{C}[e]: \tau^{\prime}$.

Using typed program contexts we can define the notion of contextual equivalence, which formalizes the notions of program equivalence.

Definition 4 (Context equivalence). We say that two (possibly open) expressions are contextually equivalent (denoted as $\Delta ; \Gamma \vdash e \approx_{c t x} e^{\prime}: \tau$), if they have the same "observable behavior" under any program context; that is

$$
\begin{aligned}
& \Delta ; \Gamma \vdash e \approx_{c t x} e^{\prime}: \tau \\
& \quad \Longleftrightarrow \\
& \forall(\mathcal{C}: \Delta ; \Gamma \vdash \tau \Rightarrow \cdot ; \vdash \text { bool }) .\left(\forall v \cdot \mathcal{C}[e] \Downarrow v \Longleftrightarrow \mathcal{C}\left[e^{\prime}\right] \Downarrow v\right)
\end{aligned}
$$

Note that we only quantify over the typed context with the return type bool. In general, we would like to quantify over all the typed contexts $\mathcal{C}:(\Delta ; \Gamma \vdash \tau \Rightarrow$ $\cdot ; \cdot \vdash \tau^{\prime}$) where τ^{\prime} is a base type (e.g. integer, boolean, unit type ...), but the only base type in our system is bool. If we allow \mathcal{C} to be quantified over arbitrary program contexts, then the notion of contexutal equivalence will be too fine. Consider, for instance, a context $\mathcal{C}=\lambda x$: bool. \square. This context has a type $\mathcal{C}:(\cdot ;(x:$ bool $) \vdash \tau \Rightarrow \cdot ; \cdot \vdash$ bool $\rightarrow \tau)$. If we were to allow contexts of such type in definition \mathbb{Z}, then the notion of contextual equivalence will collapse to syntactic equality: $\forall v$. $(\lambda x$: bool. $\square)[e] \Downarrow v \Longleftrightarrow(\lambda x$: bool. $\square)\left[e^{\prime}\right] \Downarrow v$ holds iff $(\lambda x$: bool. $e)=\left(\lambda x\right.$: bool. $\left.e^{\prime}\right)$ iff $e=e^{\prime}$.

We want to prove the following theorem:
Theorem 5. $\Delta ; \Gamma \models e \approx_{l o g} e^{\prime}: \tau$ implies $\Delta ; \Gamma \vdash e \approx_{c t x} e^{\prime}: \tau$
Proving this theorem by induction on the structure of the context won't work. We will need an auxiliary lemma.

Lemma 6. Let $\mathcal{C}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash \tau^{\prime}\right)$ and $\Delta ; \Gamma \vDash e \approx_{l o g} e^{\prime}: \tau$. Then $\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}[e] \approx_{\text {log }} \mathcal{C}\left[e^{\prime}\right]: \tau^{\prime}$.

To see that Lemma implies theorem [let $\Delta ; \Gamma \models e \approx_{\log } e^{\prime}: \tau$ and let \mathcal{C} : ($\Delta ; \Gamma \vdash \tau \Rightarrow \cdot ; \cdot \vdash$ bool). From lemma [6] you get $\cdot ; \cdot \vDash \mathcal{C}[e] \approx_{\log } \mathcal{C}\left[e^{\prime}\right]$: bool. By picking empty substitutions, one can deduce that both $\mathcal{C}[e]$ and $\mathcal{C}\left[e^{\prime}\right]$ terminate to the same value.

Proof of Lemma 回. We prove this by structural induction on $\mathcal{C}:(\Delta ; \Gamma \vdash \tau \Rightarrow$ $\left.\Delta^{\prime} ; \Gamma^{\prime} \vdash \tau^{\prime}\right)$.

Case (1): $\mathcal{C}=\square$. This is trivial.
Case (2): $\mathcal{C}=$ if \mathcal{C}^{\prime} then p else p^{\prime}. Since $\mathcal{C}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash \tau^{\prime}\right)$, it must be the case that $\mathcal{C}^{\prime}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash\right.$ bool $)$ and $\Delta^{\prime} ; \Gamma^{\prime} \vdash p, p^{\prime}: \tau^{\prime}$. By the induction hypothesis we have $\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]$: bool. Then we use the fundamental property of logical relations for p and p^{\prime}, and the compatibility lemma log_if:

Case (3): $\mathcal{C}=$ if cthenC \mathcal{C}^{\prime} elsep. It then must be the case that $\Delta^{\prime} ; \Gamma^{\prime} \vdash c$: bool, and $\Delta^{\prime} ; \Gamma^{\prime} \vdash p: \tau^{\prime}$, and $\mathcal{C}^{\prime}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime}, \Gamma^{\prime} \vdash \tau^{\prime}\right)$. By the induction hypothesis we have $\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}[e] \approx_{l o g} \mathcal{C}\left[e^{\prime}\right]: \tau^{\prime}$. We get the desired result by using the log_if compatibility lemma and the fundamental property.

Case (4): $\mathcal{C}=$ if c then p else \mathcal{C}^{\prime}. Similar to case (3).
Case (5): $\mathcal{C}=\lambda x: \sigma \cdot \mathcal{C}^{\prime}$. Because $\mathcal{C}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta ; \Gamma \vdash \tau^{\prime}\right)$, it must be the case that $\tau^{\prime}=\sigma \rightarrow \sigma^{\prime}$ and $\mathcal{C}^{\prime}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ;(x: \sigma), \Gamma^{\prime} \vdash \sigma^{\prime}\right)$. Then, by the induction hypothesis, $\Delta^{\prime} ;(x: \sigma), \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]: \sigma^{\prime}$. We get the desired result by the compatibility lemma.

$$
\log \operatorname{lam} \frac{\Delta^{\prime} ;(x: \sigma), \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]: \sigma^{\prime}}{\Delta^{\prime} ; \Gamma^{\prime} \models \lambda x \cdot \mathcal{C}^{\prime}[e] \approx_{l o g} \lambda x \cdot \mathcal{C}\left[e^{\prime}\right]: \sigma \rightarrow \sigma^{\prime}=\tau^{\prime}}
$$

Case (6): $\mathcal{C}=\mathcal{C}^{\prime} t$. In that case $\mathcal{C}^{\prime}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash \sigma \rightarrow \tau^{\prime}\right)$ and $\Delta^{\prime} ; \Gamma^{\prime} \vdash t: \sigma$ for some type σ. By the induction hypothesis we have $\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]: \sigma \rightarrow \tau^{\prime}$. Then we use the comptibility lemma

$$
\log _{-a p p} \frac{\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]: \sigma \rightarrow \tau^{\prime} \quad \Delta^{\prime} ; \Gamma^{\prime} \models t \approx_{l o g} t: \sigma}{\Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] t \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right] t: \tau^{\prime}}
$$

Case (7): $\mathcal{C}=t \mathcal{C}^{\prime}$. Similar to Case (6).
Case (8): $\mathcal{C}=\Lambda \alpha \cdot \mathcal{C}^{\prime}$. Then $\tau^{\prime}=\forall \alpha . \sigma$ for some type σ and $\mathcal{C}^{\prime}:(\Delta ; \Gamma \vdash$ $\left.\alpha, \Delta^{\prime} ; \Gamma^{\prime} \vdash \sigma\right)$. By the induction hypothesis it is the case $\alpha, \Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g}$ $\mathcal{C}^{\prime}\left[e^{\prime}\right]: \sigma$. We obtain the necessary result by the compatibility lemma

$$
\log _{-} \operatorname{tlam} \frac{\alpha, \Delta^{\prime} ; \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}\left[e^{\prime}\right]: \sigma}{\Delta^{\prime} ; \Gamma^{\prime} \models \Lambda \alpha \cdot \mathcal{C}^{\prime}[e] \approx_{l o g} \Lambda \alpha \cdot \mathcal{C}^{\prime}\left[e^{\prime}\right]: \forall \alpha \cdot \sigma=\tau^{\prime}}
$$

Case (9): $\mathcal{C}=\mathcal{C}^{\prime}[\sigma]$. Then $\tau^{\prime}=\phi(\sigma)$ and $\mathcal{C}^{\prime}:\left(\Delta ; \Gamma \vdash \tau \Rightarrow \Delta^{\prime} ; \Gamma^{\prime} \vdash \forall \alpha . \phi(\alpha)\right)$. By the induction hypothesis $\left.\Delta^{\prime}, \Gamma^{\prime} \models \mathcal{C}^{\prime}[e] \approx_{l o g} \mathcal{C}^{\prime}\left[e^{\prime}\right]: \forall \alpha . \phi(\alpha)\right)$. We obtain the result by applying the log_tapp compatibility lemma.

