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Recall that we have a relational model of A2 with the following properties.

Theorem 1 (Fundamental property of logical relations). A;T' F e : 7 implies
AlEerpge: T

which we prove using the following compatibility lemmas:
Lemma 2 (Compatibility lemmas).
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We wish to show that when two terms are logically related, they are equiv-
alent as programs. We formalise this with the help of contextual equivalence.



Definition 3 (Program contexts). Program contex are given as the following
inductive definition/grammar where e, z, T are types/grammars for expressions,
variables, and types, respectively.

C:=0]ifCtheneelsee|ifethenCelsee |if etheneelseC| Az :7.C|Ce|eC | Aa.C|C[T]

If C is a program context and e is an expression, we write Cle| for the
(variable-binding) substitution of e for O in C.

We will only consider typed contexts. We write C : (A; T+ 7= ATV F 17)
if whenever A;T' e : 7, it is the case that A’;T" F Cle] : 7.

Using typed program contexts we can define the notion of contextual equiv-
alence, which formalizes the notions of program equivalence.

Definition 4 (Context equivalence). We say that two (possibly open) expres-
sions are contextually equivalent (denoted as A;T & e ~epy € 1 7), if they have
the same “observable behavior” under any program context; that is
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Note that we only quantify over the typed context with the return type bool.
In general, we would like to quantify over all the typed contexts C : (A; T+ 7 =
;- 7') where 7' is a base type (e.g. integer, boolean, unit type ...), but the only
base type in our system is bool. If we allow C to be quantified over arbitrary
program contexts, then the notion of contexutal equivalence will be too fine.
Consider, for instance, a context C = Ax : bool.J. This context has a type
C: (;;(x : bool) b7 = - F bool — 7). If we were to allow contexts of such
type in definition @, then the notion of contextual equivalence will collapse to
syntactic equality: Vo.(Az : bool.0)[e] |} v <= (Ax : bool.0)[¢/] | v holds iff
(Az : bool.e) = (Az : bool.e’) iff e = ¢’

We want to prove the following theorem:

Theorem 5. A;T' |=e ~joq € 1 7 implies A;T' e ey € 07

Proving this theorem by induction on the structure of the context won’t
work. We will need an auxiliary lemma.

Lemma 6. Let C : (A;T 7 = ATV 7)) and AT = e mypg € 2 7. Then
AT = Cle] =yoq Cle'] - 7.

To see that Lemma B implies theorem B, let A;T' = e &~y € : 7 and let C :
(AT F 7=+ F bool). From lemma B you get ;- = Cle] =04 C[€'] : bool. By
picking empty substitutions, one can deduce that both C[e] and Cle’] terminate
to the same value.



Proof of Lemma @. We prove this by structural induction on C : (A;T F 7 =
AT 7).

Case (1): C = 0. This is trivial.

Case (2): C =if C' thenpelse p’. Since C : (A;T' 7= ATV F 7/), it must
be the case that C' : (A;T F 7 = ATV F bool) and ATV F p,p’ : 7. By
the induction hypothesis we have A’;T” = C'[e] ~04 C'[€/] : bool. Then we use
the fundamental property of logical relations for p and p’, and the compatibility
lemma log_if:
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AT = C'le] mipg C'[€'] : bool AT =pmpgp: 1’ AT Ep' =ipg p' -

tog-it AT [=if C'[e] then p else p’ x4 if C'[€/] then pelse p’ : 7

Case (3): C = if cthenC'elsep. Tt then must be the case that A’;T” + ¢ : bool,
and ATV Fp: 7, and ¢ : (A;T 7 = ATV F 7). By the induction
hypothesis we have A;TV |= Cle] ~ioq Cle] : 7. We get the desired result by
using the log_if compatibility lemma and the fundamental property.

Case (4): C = if c then p else C’. Similar to case (3).

Case (5): C =Xz :0.C". Because C: (A; T+ 7= A;T F 7'), it must be the
case that 7/ =0 — ¢’ and C' : (A;T 7 = A';(x:0),I” F ¢’). Then, by the
induction hypothesis, A’; (z : 0),I" = C'[e] miog C'[€] : 0’. We get the desired
result by the compatibility lemma.
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Case (6): C = C' t. In that case ' : (AT 7 = ALY F o — 7))
and A;IY F t : o for some type o. By the induction hypothesis we have
AT = C'le] miog C'[€] : 0 — 7' Then we use the comptibility lemma

AT E=Cle] mipg C'le] to =1 AT Etrpgt:o
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Case (7): C =t C’. Similar to Case (6).

Case (8): C = Aa.C’. Then 7" = Va.o for some type o and C' : (A;T +
a, A";T' o). By the induction hypothesis it is the case o, A'; I |= C'[e] =04
C'le'] : o. We obtain the necessary result by the compatibility lemma

a, AT = C'e] mipg Cle'] 1 o
AT = Aal'le] mipg AaL'e'] :Va.o =71
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Case (9): C =C'[o]. Then 7/ = ¢(0) and C' : (A; T F 7= ATV Va.g(a)).
By the induction hypothesis A, IV = C'le] ~joq C'[€/] : Va.¢(a)). We obtain the
result by applying the log_tapp compatibility lemma. O



