
operational logical relations and contextual

equivalence for λ2

dan frumin

last updated: May 11, 2017

Recall that we have a relational model of λ2 with the following properties.

Theorem 1 (Fundamental property of logical relations). ∆;Γ ⊢ e : τ implies
∆;Γ |= e ≈log e : τ

which we prove using the following compatibility lemmas:

Lemma 2 (Compatibility lemmas).

log var
Γ(x) = τ

∆;Γ |= x ≈log x : τ

log true
∆;Γ |= true ≈log true : bool

log false
∆;Γ |= false ≈log false : bool

log if
∆;Γ |= e0 ≈log e′0 : bool ∆;Γ |= e1 ≈log e′1 : τ ∆;Γ |= e2 ≈log e′2 : τ

∆;Γ |= if e0 then e1 else e2 ≈log if e′0 then e′1 else e′2 : τ

log app
∆;Γ |= e0 ≈log e′0 : τ → τ ′ ∆;Γ |= e1 ≈log e′1 : τ

∆;Γ |= e0 e1 ≈log e′0 e′1 : τ ′

log lam
∆; (x : σ),Γ |= e ≈log e′ : τ

∆;Γ |= λx.e ≈log λx.e′ : σ → τ

log tapp
∆;Γ |= e ≈log e′ : ∀α.τ(α) ∆ ⊢ σ

∆;Γ |= e[σ] ≈log e′[σ] : τ(σ)

log tlam
α,∆;Γ |= e ≈log e′ : τ(α)

∆; Γ |= Λα.e ≈log Λα.e′ : ∀α.τ(α)

We wish to show that when two terms are logically related, they are equiv-
alent as programs. We formalise this with the help of contextual equivalence.

1

Definition 3 (Program contexts). Program contex are given as the following
inductive definition/grammar where e, x, τ are types/grammars for expressions,
variables, and types, respectively.

C := □ | if C then e else e | if e then C else e | if e then e else C | λx : τ.C | C e | e C | Λα.C | C[τ]

If C is a program context and e is an expression, we write C[e] for the
(variable-binding) substitution of e for □ in C.

We will only consider typed contexts. We write C : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ τ ′)
if whenever ∆; Γ ⊢ e : τ , it is the case that ∆′; Γ′ ⊢ C[e] : τ ′.

Using typed program contexts we can define the notion of contextual equiv-
alence, which formalizes the notions of program equivalence.

Definition 4 (Context equivalence). We say that two (possibly open) expres-
sions are contextually equivalent (denoted as ∆;Γ ⊢ e ≈ctx e′ : τ), if they have
the same “observable behavior” under any program context; that is

∆;Γ ⊢ e ≈ctx e′ : τ

⇐⇒
∀(C : ∆; Γ ⊢ τ ⇒ ·; · ⊢ bool).(∀v.C[e] ⇓ v ⇐⇒ C[e′] ⇓ v)

Note that we only quantify over the typed context with the return type bool.
In general, we would like to quantify over all the typed contexts C : (∆; Γ ⊢ τ ⇒
·; · ⊢ τ ′) where τ ′ is a base type (e.g. integer, boolean, unit type ...), but the only
base type in our system is bool. If we allow C to be quantified over arbitrary
program contexts, then the notion of contexutal equivalence will be too fine.
Consider, for instance, a context C = λx : bool.□. This context has a type
C : (·; (x : bool) ⊢ τ ⇒ ·; · ⊢ bool → τ). If we were to allow contexts of such
type in definition 4, then the notion of contextual equivalence will collapse to
syntactic equality: ∀v.(λx : bool.□)[e] ⇓ v ⇐⇒ (λx : bool.□)[e′] ⇓ v holds iff
(λx : bool.e) = (λx : bool.e′) iff e = e′.

We want to prove the following theorem:

Theorem 5. ∆;Γ |= e ≈log e′ : τ implies ∆;Γ ⊢ e ≈ctx e′ : τ

Proving this theorem by induction on the structure of the context won’t
work. We will need an auxiliary lemma.

Lemma 6. Let C : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ τ ′) and ∆;Γ |= e ≈log e′ : τ . Then
∆′; Γ′ |= C[e] ≈log C[e′] : τ ′.

To see that Lemma 6 implies theorem 5, let ∆; Γ |= e ≈log e′ : τ and let C :
(∆; Γ ⊢ τ ⇒ ·; · ⊢ bool). From lemma 6 you get ·; · |= C[e] ≈log C[e′] : bool. By
picking empty substitutions, one can deduce that both C[e] and C[e′] terminate
to the same value.

2

Proof of Lemma 6. We prove this by structural induction on C : (∆; Γ ⊢ τ ⇒
∆′; Γ′ ⊢ τ ′).

Case (1): C = □. This is trivial.
Case (2): C = if C′ then p else p′. Since C : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ τ ′), it must

be the case that C′ : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ bool) and ∆′; Γ′ ⊢ p, p′ : τ ′. By
the induction hypothesis we have ∆′; Γ′ |= C′[e] ≈log C′[e′] : bool. Then we use
the fundamental property of logical relations for p and p′, and the compatibility
lemma log if:

log if
∆′; Γ′ |= C′[e] ≈log C′[e′] : bool

fund
∆′; Γ′ |= p ≈log p : τ ′

fund
∆′; Γ′ |= p′ ≈log p′ : τ ′

∆′; Γ′ |= if C′[e] then p else p′ ≈log if C′[e′] then p else p′ : τ

Case (3): C = if cthenC′elsep. It then must be the case that ∆′; Γ′ ⊢ c : bool,
and ∆′; Γ′ ⊢ p : τ ′, and C′ : (∆; Γ ⊢ τ ⇒ ∆′,Γ′ ⊢ τ ′). By the induction
hypothesis we have ∆′; Γ′ |= C[e] ≈log C[e′] : τ ′. We get the desired result by
using the log if compatibility lemma and the fundamental property.

Case (4): C = if c then p else C′. Similar to case (3).
Case (5): C = λx : σ.C′. Because C : (∆; Γ ⊢ τ ⇒ ∆;Γ ⊢ τ ′), it must be the

case that τ ′ = σ → σ′ and C′ : (∆; Γ ⊢ τ ⇒ ∆′; (x : σ),Γ′ ⊢ σ′). Then, by the
induction hypothesis, ∆′; (x : σ),Γ′ |= C′[e] ≈log C′[e′] : σ′. We get the desired
result by the compatibility lemma.

log lam
∆′; (x : σ),Γ′ |= C′[e] ≈log C′[e′] : σ′

∆′; Γ′ |= λx.C′[e] ≈log λx.C[e′] : σ → σ′ = τ ′

Case (6): C = C′ t. In that case C′ : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ σ → τ ′)
and ∆′; Γ′ ⊢ t : σ for some type σ. By the induction hypothesis we have
∆′; Γ′ |= C′[e] ≈log C′[e′] : σ → τ ′. Then we use the comptibility lemma

log app
∆′; Γ′ |= C′[e] ≈log C′[e′] : σ → τ ′ ∆′; Γ′ |= t ≈log t : σ

∆′; Γ′ |= C′[e] t ≈log C′[e′] t : τ ′

Case (7): C = t C′. Similar to Case (6).
Case (8): C = Λα.C′. Then τ ′ = ∀α.σ for some type σ and C′ : (∆; Γ ⊢

α,∆′; Γ′ ⊢ σ). By the induction hypothesis it is the case α,∆′; Γ′ |= C′[e] ≈log

C′[e′] : σ. We obtain the necessary result by the compatibility lemma

log tlam
α,∆′; Γ′ |= C′[e] ≈log C[e′] : σ

∆′; Γ′ |= Λα.C′[e] ≈log Λα.C′[e′] : ∀α.σ = τ ′

Case (9): C = C′[σ]. Then τ ′ = ϕ(σ) and C′ : (∆; Γ ⊢ τ ⇒ ∆′; Γ′ ⊢ ∀α.ϕ(α)).
By the induction hypothesis ∆′,Γ′ |= C′[e] ≈log C′[e′] : ∀α.ϕ(α)). We obtain the
result by applying the log tapp compatibility lemma.

3

