
Logic and homotopy in the category of
assemblies

The final report for an individual project under the supervision
of prof Jaap van Oosten1

Daniil Frumin2

March 18, 2016

1Mathematics Department, Utrecht University
2difrumin@gmail.com. ILLC, University of Amsterdam

mailto:dan@covariant.me


Contents

1 Introduction 2

2 Categorical realizability logic 5
2.1 Hyperdoctrines . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Category of assemblies . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Limits and colimits in Asm . . . . . . . . . . . . . . . 10
2.2.2 Alternative presentation . . . . . . . . . . . . . . . . . 12

2.3 Logic in Asm . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Subobjects in Asm . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Quantification . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Implication and negation . . . . . . . . . . . . . . . . . 17
2.3.4 Disjunction . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Equality and ¬¬-separation . . . . . . . . . . . . . . . 21
2.3.6 Arithmetic and realizability in Asm . . . . . . . . . . . 21

2.4 Effective topos . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Homotopy theory in the category of assemblies 28
3.1 Path object categories . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Intervals and path objects . . . . . . . . . . . . . . . . 30
3.1.2 Internal groupoid . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Nice constant paths and nice path contraction . . . . . 36

3.2 Homotopies and “extended” path contractions . . . . . . . . . 39
3.3 Factorisation system . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Discrete reflection . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



Chapter 1

Introduction

The notion of realizability first appeared in Kleene’s [6]. Original Kleene’s
realizability interpretation (now known as number realizability, provided a
formalized version of the BHK interpretation, a way of extracting algorithmic
content of constructive proofs. For instance, from a proof of the statement
∃x.Q(x) one would want to extract a witness for the existential quantifier, a
number n, s.t. Q(n) holds; or from a proof of a statement ∀x.∃y.P (x, y) one
would want to extract a computable function f , such that P (m, f(m)) for
all numbers m.

The Kleene realizability relation nr links together numbers and formulas
of first-order intuitionistic number theory, and is defined by induction on the
formula.

• n nr (p = q) if ⊢ p = q;

• n nr (A ∧B) if p1n nr A and p2n nr B;

• n nr (A ∨B) if p1n = 0 and p2n nr A or p1n = 1 and p2n nr B;

• n nr (A ⇒ B) if for all m, s.t. m nr A, partial recursive function {n}
is defined at m and {n}m nr B;

• n nr ∀x.A(x) if for all m ∈ N, partial recursive function {n} is defined
at m and {n}m nr A(m̄);

• n nr ∃x.A(x) if p2n nr A(p1n).

2



where {–}– denotes Kleene application, p1 and p2 denote primitive recur-
sive (p.r.) projection functions , and m̄ is the representation of number m
inside the formal system.

One can prove, by induction on proofs in HA, that the number realiz-
ability interpretation is sound, that is, if a (closed) formula φ is derivable in
HA, then there is a number n, s.t. n nr φ. Viewing number realizability as
a formalization of the BHK principle, we can say that the realizability rela-
tion gives us a notion of formal semantics for intuitionistic number theory;
however, the resulting logic is different from the logic of HA. For instance,
the Church thesis

∀x.∃y.P (x, y) ⇒ ∃e.∀x.P (x, {e}x) (1.1)

is realizable (the realizer for the antecedent gives the witness for ∃e);
however, it is not provable in HA. For instance, take P (x, y) to say that
y = 0 ⇒ the x-th Turing machine terminates on the input x and y ̸= 0 ⇒
that the x-th Turing machine does not terminate on the input x. If CT was
provable in HA, it would also be provable in PA. We know, that classically,
each Turing machine either terminates or not, however, the p.r. function {e}
would give us a way of deciding whether a given machine x terminates on
x or not – which is contradictory with elementary recursion theory (which
holds in HA). The reader who wishes to learn more about Kleene’s number
realizability is referred to [12],[13, Volume 2], and [10].

The study of realizability from a categorical perspective, arguably, began
with the publication [5]. The so-called effective topos can be viewed as an
intuitionistic or constructive universe. In this document we mainly focus on a
specific subcategory of the effective topos – the category of assemblies, which
is suitable for first-order reasoning.

The document is structured as follows. The next chapter is devoted to
categorical logic inside the category of assemblies. First, we discuss notion
of a hyperdoctrine – a way of interpreting logic in a category, which was first
introduced by Lawvere in his seminal work [3]. Then, in section 2.2 we con-
struct the category of assemblies and realizable maps between them. After
that, in section 2.3 we describe the hyperdoctrine structure on the category
of assemblies, roughly following the notes [11]. We prove the completeness
theorem, saying that a formula of arithmetic is valid in the category of as-
semblies iff it is realizable in the sense of Kleene. The author did not have
any novel contributions to the material recalled in the first chapter.

3



The second (and the last) chapter deals with a notion of homotopy in
the category of assemblies and a view of assemblies as topological spaces.
We build on the notion of homotopy in the effective topos [7]. The main
differences between the presentation in [7] and in this text are

1. We restrict ourselves to the category of assemblies;

2. We make explicit and wider use of the unifying theory of path object
categories [1]. In addition, we generalize some statements to arbitrary
path object categories.

In section 3.1 we recall the definition of a (nice) path object category and
show that the category of assemblies posses the required structure, ensuring
that the results developed later in the text apply. Then, in section 3.2 we
describe a notion of homotopy and construct the “extended” path contrac-
tion natural transformation, working in an arbitrary path object category.
In section 3.3 we give the definition of a Hurewicz fibration in terms of a
Hurewicz connection, and characterize Hurewicz fibrations by the homotopy
lifting property. We finish the section by presenting a (strong deformation
retract, Hurewicz fibration) functorial factorisation. Finally, the last section
is devoted to the description of discrete objects, which are viewed as discrete
spaces.

Before we begin, let us recall standard recursion-theoretic notation. Given
natural numbers n,m we write {n}(m) or n ·m for Kleene application. As
usual, application is left-associative. We use the notation ⟨−,−⟩ for primitive
recursive pairing, and p1, p2 for primitive recursive projections. We write
recursively encoded sequences like ⟨a, b, c⟩. Usually we reserve Greek letters
for numbers representing recursive functions, and we make liberal use of λ-
notation.

We use rec(−;−;−) for primitive recursion, i.e. rec(0; a; b) = 0 and
rec(x+ 1; a; b) = b · x · (rec(x; a; b)).

4



Chapter 2

Categorical realizability logic

In this chapter we discuss the categorical logic arising in the category of
assemblies. First, we recall the theory of hyperdoctrines as developed by
Lawvere [3, 4] and Seely [9]. Then we describe the category Asm of assem-
blies, as presented in [11] and [8], including explicit formulation of certain
limits and colimits. Finally we reconstruct in detail the interpretation of
first-order logic and Asm and showing that it is sound and complete with
regard to Kleene’s number realizability interpretation.

2.1 Hyperdoctrines

Consider a typed/many-sorted first-order theory. The judgments in the the-
ory are of the form

x : A, y : B, . . . , z : C ⊢ t(x, y, . . . , z) : D

meaning that under a context x : A, y : B, . . . , z : C the term t has a type
D, and

x : A, y : B, . . . z : C ⊢ φ(x, y, . . . , z) ≤ ψ(x, y, . . . , z)

meaning that under a context x : A, y : B, . . . , z : C the formula φ entails
the formula ψ.

We use a shorthand Γ ⊢ ϕ to mean Γ ⊢ ⊤ ≤ ϕ.
To motive a definition of a hyperdoctrine, let us first consider set-theoretic

interpretation of first-order logic, that is interpretation in the category Set of

5



sets. If we view sorts as sets, then a conext x1 : A1, . . . , xn : An determines a
set A1×· · ·×An. Then, a specific formula φ(x1, . . . , xn) determines a subsetJφK of A1 × · · · × An, namely the subset of those elements that satisfy φ.
Conversely, we can think of each subset as a generalized formula. To put it
another way, a formula φ is interpreted as an element of a Boolean algebra
P(A1×· · ·×An). Given two formulas φ and ψ over the same context, we can
form their conjunction φ∧ψ, which corresponds to the meet operation on the
powerset algebra (intersection of subsets). Similarly, other Boolean algebra
operations correspond to disjunction, implication, negation. We illustrate
the correspondence in a table below.

φ ∧ ψ ∼ JφK ∩ JψK
φ ∨ ψ ∼ JφK ∪ JψK

¬φ ∼ (A1 × · · · × An) \ JφK
The next aspect that we want to consider are terms. Categorically, a term

t(x1, . . . , xn) of type B under a context x1 : A1, . . . , xn : An is interpreted
as a morphism JtK : A1 × · · · × An → B, where the object A1 × · · · × An

corresponds to the context x1 : A1, . . . , xn : An.
Once we have settled with terms, we can extend the categorical inter-

pretation to substitution. A substitution δ : xi 7→ ti(y1, . . . , ym) of variables
x1, . . . , xn, with xi : Ai and yi : Bi can be seen as “generalized term” in

the context y1 : B1, . . . , ym : Bm, or a morphism B1 × · · · × Bm
(t1,...,tn)−−−−−→

A1 × · · · × An. Given a term s(x1, . . . , xn) of sorts C with free variables of
sorts A1, . . . , An, we can substitute for each xi a term ti, resulting in a term

s(x1, . . . , xm)[δ] = s(t1, . . . , tn)

in the context B1, . . . , Bm, which is defined as a composition

B1 × · · · ×Bm A1 × · · · × An Cδ s

However, the substitution of terms for variables in a formula is defined
differently. Suppose that ϕ(x1, . . . , xn) is a formula in the context A1× · · ·×
An. Then the substituted formula ϕ(x1, . . . , xn)[δ] = ϕ(t1, . . . , tn) is defined
as a pullback of the inclusion JϕK ↪→ A1 × · · · × An along the substitution
map δ : B1 × · · · ×Bm → A1 × · · · × An.

6



Jϕ[δ]K JϕK
B1 × · · · ×Bm A1 × · · · × An

δ

An explicit calculation in Set would give us Jϕ[δ]K = δ∗(JϕK) as a subset
of (B1 × · · · × Bm)× JϕK, specifically
Jϕ[δ]K = {(y1, . . . , ym, x1, . . . , xn) ∈ (B1×· · ·×Bm)×JϕK | δ(y1, . . . , ym) = (x1, . . . , xn)}

Which is isomorphic to the set

{(y1, . . . , ym) ∈ B1 × · · · × Bm | δ(y1, . . . , ym) ∈ JϕK}
= {(y1, . . . , ym) ∈ B1 × · · · ×Bm | (t1, . . . , tn) ∈ JϕK}

because each xi is determined by δ and (y1, . . . , ym).
A particular case of substitution is weakening, corresponding to a proof

rule

Γ ⊢ ϕ
Γ, x : X ⊢ ϕ

saying that every formula in a context Γ can be interpreted as a formula
in a context (Γ, x : X). The substitution that corresponds to this is

JΓK ×X JΓKπ1

Quantification. The proof rules for the existential and universal quantifi-
cation are shown below.

Γ ⊢ ∃x : X.φ(x, y) ≤ ψ(y)

Γ, x : X ⊢ φ(x, y) ≤ ψ(y)[π1]

Γ ⊢ φ(y) ≤ ∀x.ψ(x, y)
Γ, x : X ⊢ φ(y)[π1] ≤ ψ(x, y)

7



This suggest that we interpret existential quantification as the left adjoint
to π∗

1, and the universal quantification as the right adjoint to π∗
2. Generally,

we require such adjoints for any morphism/substitution.

∃f ⊣ f ∗ = [f ] ⊣ ∀f

By ∃x : X or ∃x:X we mean ∃π1 , where π1 : X × A→ A.
This brings us to a general definition of a hyperdoctrine1

Definition 1 (Hyperdoctrine [4]). A hyperdoctrine is a category C, that
has finite products, and for which the subobject construction yields a functor
Sub : Cop → Heyt into the category of Heyting algebras. Furthermore, we
require that each Sub(f), viewed as a map of posets, has a left and a right
adjoint:

∃f ⊣ Sub(f) ⊣ ∀f

Remark 2. We would like to make the following remarks.

1. We use the category C for interpreting both contexts and sorts; sup-
pose we have a list A1, . . . , An of sorts. Each Ai we interpret as JAIK
an object of C, then the contexts are built iteratively from types, using
products in C. Sometimes it is meaningful to combine sorts (to build,
e.g. sum-types, product-types, function-types), and for that we also use
categorical/universal constructions (co-products, products, exponentia-
tion) in C.

2. We stress again the the functions ∃f and ∀f are not required to be
Heyting algebra morphisms; merely maps of posets.

2.1.1 Equality

The equality relation is actually definable in an arbitrary hyperdoctrine.
Let A be an object of the category of contexts, and let δ = ⟨idA, idA⟩ :

A→ A×A be a diagonal morphism, obtained as the universal arrow arising
from the following diagram:

1The definition below is actually slightly limited, and know in the literature as a first-
order subobject hyperdoctrine, Heyting category [8] or a logos[9].

8



A A× A A

A

π1 π2

idA
δA

idA

Then ∃δ(⊤A) : Sub(A×A), a relation on A×A. We also denote ∃δ(⊤A)
by EqA or EqA(x, y). From the adjunction property we get the proof rule
describing the equality relation:

A× A ⊢ EqA ≤ R

A ⊢ ⊤A ≤ R[δA]

i.e.

x : A, y : A ⊢ EqA(x, y) ≤ R(x, y)

x : A ⊢ R(x, x)

Thus every reflexive relation is implied by equality, and equality implies
only reflexive relations.

Properties of the equality

Reflexivity. From the unit η : 1A ⇒ δ∗A ◦∃δA we obtain a canonical deriva-
tion ⊤A ≤ δ∗A(EqA), i.e. a derivation x : A ⊢ EqA(x, x); thus the equality
relation is reflexive.

Symmetry. Let sA,B = ⟨π2, π1⟩ : A × B → B × A be a “swapping” mor-
phism. Note that by the universal property of the product, sA,A ◦ δA = δA.
Then

x : A ⊢ ⊤A ≤ δ∗(EqA) = (s ◦ δ)∗(EqA)
Functoriality of (–)∗

x : A ⊢ ⊤A ≤ δ∗(s∗(EqA))

x : A, y : A ⊢ ∃δ⊤A ≤ s∗(EqA)

x : A, y : A ⊢ EqA(x, y) ≤ EqA(x, y)[s] = EqA(y, x)

9



Transitivity.

x : A, y : A, z : A ⊢ EqA(x, y) ∧ EqA(y, z) ≤ EqA(x, z)

x : A, y : A, z : A ⊢ EqA(x, y) ≤ EqA(y, z) → EqA(x, z)

x : A, y : A ⊢ ⊤A ≤ EqA(x, z) → EqA(x, z)

the last line being true in in arbitrary Heyting algebra.

2.2 Category of assemblies

Definition 3. An assembly is a pair (X,E) where X is an underlying carrier
set, and E is the realizability relation, a function X → P(N), s.t. E(x) is
non-empty for every x.

Intuitively, if x ∈ X, then E(X) is a set of reasons for the “existence” of
x. Conventionally, we write EX for the realizability relation associated with
an assembly X. We also write a ⊩X x for a ∈ EX(x). For an assembly X we
write |X| for its underlying set.

A morphism of assemblies (X,EX) and (Y, YE) is a function f : X → Y ,
such that there is a p.r. function {n} that tracks (or realizes) f :

a ∈ EX(x) =⇒ {n}(a) ∈ EY (f(x))

The assemblies form a category Asm of assemblies, with the identity
morphism being tracked by the identity p.r. function, and the composition
of morphism being tracked by composition of p.r. functions. Note that the
morphism contains only the fact of the existence of the tracker/realizer, but
not the tracker/realizer itself. In particular, a morphism is defined fully by
its underlying function of sets.

2.2.1 Limits and colimits in Asm

In this subsection, we describe some common limit and colimit constructions
in Asm.

Initial object. The initial object 0 is an assembly with the empty underly-
ing set and an empty realizability relation. For each assembly X, the initial
map ⊥ : 0 → X is an empty function, tracked by any number.

10



Products.
X X × Y Y

π1 π2

A product of the assemblies X and Y is an object X × Y with the un-
derlying set |X| × |Y | and the realizability relation

a ⊩X×Y (x, y) ⇐⇒ p1a ⊩X x ∧ p2a ⊩Y y

The projections π1 and π2 are tracked by p1 and p2.

Pullbacks. A pullback A×BC can be described in terms of a sub-assembly
of the product.

A×B C C

A B

π1

π2

g

f

The underlying set of A ×B C is {(a, c) ∈ A × C | f(a) = g(a)}; the
realizability relation is given by e ⊩A×BC (a, c) ⇐⇒ e ⊩A×C (a, c).

Equalizers.

E X Ye
f

g

|E| = {x ∈ X | f(x) = g(x)} and e is tracked by the identity p.r.
function.

Exponentiation in Asm. If X and Y are assemblies, then Y X is an as-
sembly with a carrier set HomAsm(X,Y ), with the realizability relation

a ⊩Y X f ⇐⇒ a tracks f

The evaluation map ev : Y X × X → Y is tracked by λx.(p1x) · (p2x).
To see that ev is universal, suppose that u : Z × X → Y is a morphism of
assemblies, tracked by u. Then there is a unique map r making the diagram
below commute.

Z ×X Y X ×X

Y

r×idY

u
ev

11



The map r is defined as

r(z) = λx.u(z, x)

and is tracked by

λa.λb.u · ⟨a, b⟩

2.2.2 Alternative presentation

Alternatively, we can drop the non-emptiness/“existence” condition on as-
semblies, and obtain the following definition.

Definition 4. An assembly∗ is a pair (X,E) where X is an underlying set,
and E : X → P(N) is a realizability relation, such that E(x) is allowed to be
empty.

A morphism between two assemblies∗ (X,EX) → (Y,EY ) is a function
{x ∈ X | EX(x) ̸= ∅} → Y that is tracked, in the sense of definition 3. This
definition gives rise to the category Asm∗, which is equivalent to Asm.

We will use this presentation later in the text, when talking about sub-
objects in Asm (Asm∗).

2.3 Logic in Asm

2.3.1 Subobjects in Asm

Definition 5. Let X be an object of Asm. We say that a subobject M ↪→ X
is in canonical form if

1. M ⊆ X

2. ⟨a, b⟩ ⊩M x ⇐⇒ a ∈Mx and b ⊩X x for some set Mx ⊆ N

The inclusion M ↪→ X is tracked by p2.

The terminology in the last definition is warranted by the following the-
orem:

Theorem 6. Every subobject is isomorphic to a subobject in canonical form.

12



Proof. Let n : N ↪→ X be a subobject of X, tracked by a term n. We define
a subobject M as a carrier set {x ∈ X | ∃y.n(y) = x} with the realizability
relation

⟨a, b⟩ ⊩M x ⇐⇒ b ⊩X x ∧ ∃y ∈ N(a ⊩N y ∧ n(y) = x)

Then f : N → M is given by f(y) = n(y) and is tracked by λa.⟨a, na⟩.
The inverse g :M → N is defined by g(x) = n−1(x) and is tracked by p1.

This proposition will allow us to work only with subobjects in canonical
form, which will make our life easier in some cases.

First of all, we describe the semi-lattice structure on Sub(X). We will
show that Sub(X) is in fact a Heyting algebra in the next section, after we
cover quantification.

The top element is given by a subobject id : X → X; bottom element
is the initial morphism ⊥ : 0 → X. Meets are given by pullbacks in the
following way. Let m : M → X,m′ : M ′ → X. Then their meet is given by
a morphism m ∧m′ : m∗(M ′) → X, obtained as the composition of m∗(m′)
with m as shown on the diagram below

m∗(M ′) M ′

M X

m∗(m′) m∧m′ m′

m

Because a pullback of a monomorphism is a monomorphism, the map
m◦m∗(m′) is a monomorphism, hence, determines a subobject of X. Clearly,
m∧m′ factors through both m and m′. Thus, m∧m′ ≤ m,m′; to show that
m ∧m′ is the greatest lower bound it suffices to consider another subobject
n : N → X that factors through m and m′, e.g. n = m′ ◦ k = m ◦ h.

N

m∗(M ′) M ′

M X

h

k

m∗(m′) m∧m′ m′

m

13



By the universal property of pullbacks, there is a morphism N → m∗(M ′)
making the diagram commute; hence, n factors through m ∧m′.

In the rest of this section we continue with the description of subobject
in Asm, before moving to arithmetic and completeness theorem. First of all,
we give explicit definitions for quantifiers in Asm, and verify the adjunction
between existential quantification and substitution, and between substitu-
tion and universal quantification. After that we define Heyting implication
in every Sub(X) through universal quantification, and verify that it is right
adjoint to conjunction. In sections 2.3.4 and 2.3.5 we give concrete specifi-
cations for disjunction and equality in Asm; we also show that assemblies
are ¬¬-separated. Finally, in section 2.3.6 we prove the completeness result,
which says that a first-order formula of natural numbers is valid in Asm iff
it is Kleene realizable.

In the rest of this section, each concretely-presented definition of a subob-
ject should be taken as a definition of an assembly in the sense of definition 4.
This convention is adopted for the reasons of simplicity of the presentation.
To obtain a regular assembly from an assembly*, remove all the elements
from the carrier set that are not realizable.

2.3.2 Quantification

We define quantification as an adjoint to substitution

∃f ⊣ f ∗ ⊣ ∀f

for a morphism f : Y → X. Below we give an explicit definition of ∀f .
Suppose that N is a subobject of Y in a “canonical” form, i.e. N ⊆ Y

and

⟨a, b⟩ ⊩N y ⇐⇒ a ∈ Ny, b ⊩Y y

Then ∀f (N) is defined as follows.

Definition 7. The carrier set of ∀f (N) is

{x ∈ X | ∀y ∈ Y (f(y) = x→ y ∈ N)}

and the realizability relation is given by

14



⟨e, d⟩ ⊩∀f (N) x ⇐⇒

{
d ⊩X x

∀y[f(y) = x→ (∀a.(a ⊩Y y → ea ⊩N y))]

i.e. e ∈
∩

f(y)=x(∥y∥Y =⇒ ∥y∥N). Then the inclusion ∀f (N) → X is
tracked by p2.

Proposition 8. Given f : Y → X, ∀f is a right adjoint of f ∗.

Proof. Suppose we are given subobjectsM ∈ Sub(X) and N ∈ Sub(Y ), both
in canonical form.

Given g : f ∗(M) → N (in Sub(Y )), construct h : M → ∀f (N). As a
reminder, we reproduce the definition of f ∗:

f ∗(M) = {(y, x) | x ∈M, f(y) = x}

⟨a, b⟩ ⊩f∗(M) (y, x) ⇐⇒ a ⊩Y y and b ⊩M x

And the arrow f ∗(M) → Y is given by the first projection. Since π1 factors
through N → Y via g, we obtain an equation fully characterizing g from the
canonical form of N

n(g(z)) = g(z) = π1(z)

i.e. g(y, x) = y.
We define h : M → ∀f (N) by h(x) = x. Assume that x ∈ M , then for

all y ∈ f−1(x), (y, x) ∈ f ∗(M). Hence, for all y ∈ f−1(x), g(y, x) = y ∈ N .
But that means exactly that x ∈ ∀f (N). Thus h is well-defined on the level
of sets.

What could be a possible term tracking h? Suppose b ⊩M x, and a ⊩Y y
for some y ∈ f−1(x). Then ⟨a, b⟩ ⊩f∗(M) (y, x). Hence, g⟨a, b⟩ ⊩N g(y, x) =
y. Thus

λa.g⟨a, b′⟩ ∈
∩

y∈f−1(x)

(∥y∥Y =⇒ ∥y∥N)

It follow that λx.⟨λa.g⟨a, x⟩, p2x⟩ tracks h.
In the other direction, suppose we are given h :M → ∀f (N), and we want

to construct g : f ∗(M) → N . Once again, because M is in the canonical

15



form and the inclusion of M into X factors through ∀f (N), the function h is
fully characterized by h(x) = x.

We define g(y, x) = y. If (y, x) ∈ f ∗(M), then f(y) = x and x ∈ M .
Hence h(x) = x ∈ ∀f (N), which means that ∀y′ ∈ f−1(x).y′ ∈ N . In
particular, y ∈ N .

What could be the realizer for g? Suppose a ⊩f∗(M) (y, x), then p1a ⊩Y y
and p2a ⊩M x.

Hence h(p2a) ⊩∀f (N) h(x) = x, i.e.

{
p2(h(p2a)) ⊩X x

p1(h(p2a)) is a term e s.t. ∀y′ ∈ f−1(x), b ⊩Y y′ → eb ⊩N y′

Specifically, f(y) = x and p1a ⊩Y y, thus e(p1a) ⊩N y. It follows that g
is tracked by

λa.p1(h(p2a))(p1a)

A similar construction yields the definition of a left adjoint to substitu-
tion. Suppose, once again, that f : Y → X is a morphism of assemblies and
N is a subobject of Y .

Definition 9. The object ∃f (N) is defined to be a carrier set

{x ∈ X | ∃y ∈ Y (f(y) = x ∧ y ∈ N)}

with the realizability relation

⟨e, d⟩ ⊩∃f (N) x ⇐⇒

{
d ⊩X x

e ⊩N y for some y ∈ N , s.t. f(y) = x

The inclusion ∃f (N) ↪→ X is tracked by p2.

Proposition 10. ∃f is a left adjoint to f ∗

Proof. Given g : M → f ∗(N) (which is tracked by a p.r. g), we construct
h : ∃f (M) → N .

16



M f ∗(N) N ∃f (M)

Y X

g

m
π1 n

h

f

We define h(x) = x. If x ∈ ∃f (M), then there is y ∈ M, f(y) = x. Then
g(y) ∈ f ∗(N) is a pair (y′, x′) such that f(y′) = x′ and x′ ∈ N . But by the
commutativity of the diagram above,

y = π1(g(y))

Hence y′ = y and x′ = x. This shows that h is well-defined.
If ⟨e, d⟩ ⊩∃f (M) x, then e ⊩M y for some y ∈ M , s.t. f(y) = x. Then

g · e ⊩f∗(N) g(y). But then π2(g(y)) = x (by the same argument as above),
and, hence p2(g · e) ⊩N x.

For the other direction suppose we are given h : ∃f (M) → N . If we
assume that all subobjects are given canonically, then h is just an identity
function, tracked by some p.r. h.

We then define

g(y) = (y, f(y))

By definition, f(y) ∈ ∃f (M), so h(f(y)) = f(y) ∈ N and therefore g is
well-defined.

If ⟨a, b⟩ ⊩M y, then b ⊩Y y and we need to find a realizer for f(y) in N .
Since f is tracked by some f , we get f · b ⊩X f(y). Then ⟨⟨a, b⟩, f · b⟩ ⊩∃f (M)

f(y), and hence h · ⟨⟨a, b⟩, f · b⟩ ⊩N f(y). In summary, g is tracked by

λx.⟨p2x, h · ⟨x, f(p2x)⟩⟩

2.3.3 Implication and negation

The Heyting implication mo ⇒ m1 can be derived from quantification and
substitution. Specifically, we put

m0 ⇒ m1 = ∀m0m
∗
0(m1)

Below we will prove that this definition satisfies the adjunction property.

17



Lemma 11. Let c,m0,m1 be subobjects of X. Then

c ≤ m0 ⇒ m1

c ∧m0 ≤ m1

Proof. (⇒). Suppose c ≤ m0 ⇒ m1. Then,

c ≤ m0 ⇒ m1 = ∀m0m
∗
0(m1)

Adjunction (m0)
∗ ⊢ ∀m0

m∗
0(c) ≤ m∗

0(m1)

i.e. m∗
0(c) factors through m

∗
0(m1):

m∗
0(C) m∗

0(M1)

M0

l

m∗
0(c)

m∗
0(m1)

But then m0 ∧ c = m0 ◦m∗
0(c) = m0 ◦m∗

0(m1) ◦ l = m0 ∧m1 ◦ l, hence
m0 ∧ c ≤ m0 ∧m1 ≤ m1.

(⇐). Suppose c ∧m0 ≤ m1, i.e. m0 ◦m∗
0(c) ≤ m1. Then

m0 ◦m∗
0(c) ≤ m1 m0 ◦m∗

0(c) ≤ m0

m0 ◦m∗
0(c) ≤ m0 ∧m1 = m0 ◦m∗

0(m1)

i.e. m0 ◦m∗
0(c) = m0 ◦m∗

0(m1) ◦ l for some l; since m0 is a mono, we get

m∗
0(c) = m∗

0(m1) ◦ l =⇒ m∗
0(c) ≤ m∗

0(m1) =⇒ c ≤ m0 ⇒ m1

Since we’ve established the explicit interpretation of quantifiers, we can
write out the definitions of implication and negation explicitly. Ifm :M → X
and n : N → X are subobjects of X (in a canonical form), then

M ⇒ N := ∀m(m
∗(N))

= {x ∈ X | ∀x′ ∈M(m(x′) = x =⇒ x′ ∈ ∥m∗(N)∥)}
= {x ∈ X | x ∈M =⇒ x ∈ ∥m∗(N)∥}

18



where ∥m∗(N)∥ is the canonical form of the subobject m∗(N). To remind
ourselves,

m∗(N) = {(x, y) ∈M ×N | m(x) = n(y)} = {(x, x) | x ∈M ∩N}

with the realizability relation

b ⊩m∗(N) (x, y) ⇐⇒ p1b ⊩M x and p2b ⊩N x

This subobject is isomorphic to a subobject in a canonical form (M ∩
N,⊩M∩N), where ⟨a, b⟩ ⊩M∩N x iff a ⊩M x, b ⊩N x.

Thus

M ⇒ N = {x ∈ X | x ∈M =⇒ x ∈ N}

The realizability relation on that subobject is defined as

⟨e, d⟩ ⊩M⇒N x ⇐⇒

{
d ⊩X x

∀x′ ∈M(m(x′) = x→ ∀a(a ⊩M x′ =⇒ ea ⊩m∗(N) x
′))

i.e.

⟨e, d⟩ ⊩M⇒N x ⇐⇒

{
d ⊩X x

(x ∈M & a ⊩M x) =⇒ ea ⊩m∗(N) x

Given the realizability relation on the canonical form of m∗(N) it suffices
that the first element of the realizer, e in the definition above, satisfy the
following property:

(x ∈M & a ⊩M x) =⇒ ea ⊩N x

Thus linking the classical notion of a realizer for an implication.
Negation, of course, is a specific form of implication, ¬M := M ⇒ ⊥.

Concretely, ¬M = {x ∈ X | x ∈M =⇒ x ∈ ∅} =M c.

⟨e, d⟩ ⊩¬M x ⇐⇒

{
d ⊩X x

(x ∈M ∧ a ⊩M x) =⇒ ea ⊩∅ x

19



As one can note, the second clause in the equation is true trivially – the
antecedent requires for x to be M , but realizability relation is defined only
forM c. Thus the negation eliminates almost all the realizability information.

With this insight, let us look at the doubly negated subobjects. The
carrier set ¬¬M is M ; however the realizability relation is defined as

⟨e, d⟩ ⊩¬¬M x ⇐⇒

{
d ⊩X x

(x ∈ ¬M ∧ a ⊩¬M x) =⇒ ea ⊩∅ x
⇐⇒ d ⊩X x

Thus doubly-negating a subobject effectively removes the realizability
information.

2.3.4 Disjunction

The disjunction/join of two subobjects M,N ↪→ X is given by

M ∨N =M ∪N

⟨a, b⟩ ⊩M∨N x ⇐⇒


b ⊩X x

x ∈M ∧ p1a = 0 ∧ p2a ⊩M x

x ∈ N ∧ p1a = 1 ∧ p2a ⊩N x

As usual, the inclusion M ∨N ↪→ X is tracked by p2.
First of all, note that M,N ≤ M ∨N are inclusions that are tracked by

λ⟨c, d⟩.⟨⟨i, c⟩, d⟩, with i = 0, 1. Secondly, suppose that M,N ≤ P are given
by morphisms f : M → P and g : N → P . Then we can define a morphism
h :M ∨N → P as

h(x) =

{
f(x) if x ∈M

g(x) if x ∈ N

Note that f and g must agree on M ∩ N , so h is well defined. Suppose
that f and g are tracked by f and g respectively; then h is tracked by

λ⟨a, b⟩.if p1a = 0 then f(p2a); else g(p2a)

We leave it to the reader to check that this function is primitive-recursive.
Therefore, M ∨N is indeed the join of M and N .

20



2.3.5 Equality and ¬¬-separation
Recall from section 2.1.1, that the equality relation for a sort A is defined as
EqA := ∃δA(⊤). Concretely,

EqA(x, y) ⇐⇒ ∃x′.δA(x′) = (x′, x′) = (x, y) ⇐⇒ x = y

and

a ⊩EqA (x, x) ⇐⇒ p2a ⊩A x ∧ p1a ⊩A×A (x, x)

Clearly, it is isomorphic to an object with the same carrier set, for which
the realizability relation is a ⊩EqA (x, x) ⇐⇒ a ⊩A x.

In fact, it is also the case that EqA is isomorphic to A ↪→ A × A. Iso-
morphism is witnessed my maps x 7→ (x, x) and (x, x) 7→ x, both tracked by
λa.a.

Now that we know how to interpret first-order logic in assemblies, we can
prove that the following statement holds in any assembly X:

∀x : X, y : X(¬¬(x = y) ⇒ x = y)

This amounts to proving x : X, y : Y ⊢ ¬¬(x = y) ⇒ x = y. Note that

J¬¬(x = y) ⇒ (x = y)K ={(x, y) ∈ X ×X | (x, y) ∈ JK ⇒ (x, y) ∈ Jx = yK}
={(x, y) ∈ X ×X | x = y ⇒ x = y}
=X ×X

The morphism X × X → J¬¬(x = y) ⇒ (x = y)K is thus given by
(x, y) 7→ (x, y) and is tracked by λa.⟨λc.p1a, a⟩. Therefore we have

x : X, y : X ⊢ ⊤ ≤ ¬¬(x = y) ⇒ (x = y)

This property is called ¬¬-separation, and we will return to it in sec-
tion 2.4.

2.3.6 Arithmetic and realizability in Asm

One important assembly that we consider is the object N = N with the
realizability relation n ⊩N n.

21



Proposition 12. Together with the maps 0 : ⊤ → N (0(∗) = 0) and S :
N → N (S(n) = n+ 1), N is the natural numbers object in Asm.

Proof. Suppose we have a diagram of the form

1 N N

A A

0

q

s

a

where q is tracked by q, and a is tracked by a. We have to find an arrow
u : N → A making the diagram above commute. Define

u(0) = q(∗)
u(x+ 1) = a(u(x))

Given a number n ∈ N (which realizes n ∈ N), we have rec(n; q·n;λx, y.a·
y) ⊩A u(n).

We can “restore” the realizability relation, by looking at the subobjects
of Nk in Asm, where N is the natural number object given by the underlying
set N and the realizability predicate EN(x) = {x}.

If φ(x1, . . . , xk) is a formula of arithmetic, then it corresponds to a sub-
object JφK ↪→ Nk. By 6, JφK has the canonical form (A,EA) with A ⊆ Nk.

The next theorem establishes a link between Kleene’s realizability inter-
pretation and the notion of realizability in Asm.

Theorem 13. For any formula φ(x1, . . . , xk) of arithmetic, there are prim-
itive recursive functions α and β such that for all numbers m1, . . . ,mk (ab-
breviated m⃗):

1. If n ⊩JφK ⟨m1, . . . ,mk⟩, then α(n)⟨m⃗⟩ nr φ(m⃗);

2. If n nr φ(m⃗), then β(n)⟨m⃗⟩ ⊩JφK m⃗.

Proof. We prove the statement by simultaneous induction on the structure
of φ.

Case φ = ⊥. Trivial, as nothing realizes bottom, neither in the number
realizability sense, nor in the categorical sense.

22



Case φ = (s = t). Note that a ⊩φ m⃗ iff Js(m⃗)K = Jt(m⃗)K and a = ⟨m⃗⟩.
Thus put α(a)⟨m⃗⟩ = a and β(a)⟨m⃗⟩ = ⟨m⃗⟩.

Case φ = A ∧B. Then ⟨a, b⟩ ⊩A∧B ⟨m⃗⟩ implies
b ⊩N ⟨m⃗⟩ i.e., b = ⟨m⃗⟩

p1a ⊩A ⟨m1, . . . ,mk⟩
IH
=⇒ α1(p1a)⟨m⃗⟩ nr A(m⃗)

p2a ⊩B ⟨m1, . . . ,mk⟩
IH
=⇒ α2(p1a)⟨m⃗⟩ nr B(m⃗)

Then ⟨α1(p1a), α2(p2a)⟩ nr (A ∧B)(m⃗). Conversely, suppose

⟨c, d⟩ nr (A ∧B)(m⃗) = A(m⃗) ∧B(m⃗)

Then, by inductive hypothesis, there are p.r. β1, β2 such that β1(c)⟨m⃗⟩ ⊩A

⟨m⃗⟩, β2(d)⟨m⃗⟩ ⊩B ⟨m⃗⟩. Thus, ⟨⟨β1(c)⟨m⃗⟩, β2(d)⟨m⃗⟩⟩, ⟨m⃗⟩⟩ ⊩A∧B ⟨m⃗⟩.
It is easy to obtain the required p.r. functions α and β from the con-

structions above.
Case φ = A ∨B. Similarly.
Case φ = A⇒ B. Then suppose

⟨e, d⟩ ⊩A⇒B ⟨m1, . . . ,mk⟩ ⇐⇒

{
d ⊩Nk ⟨m1, . . . ,mk⟩ i.e. d = ⟨m1, . . . ,mk⟩
⟨m⃗⟩ ∈ A ∧ a ⊩A ⟨m⃗⟩ =⇒ ea ⊩B ⟨m⃗⟩

Suppose that c nr A(m⃗), then, by inductive hypothesis, β1(c) ⊩A ⟨m⃗⟩.
Then e(β1(c)) ⊩B ⟨m⃗⟩, and once again, by inductive hypothesis, α2(e(β1(c))) nr B(m⃗).

On the other hand, suppose b nr (A⇒ B)(m⃗), and ⟨m⃗⟩ ∈ A & a ⊩A ⟨m⃗⟩.
Then b(α1(a)) nr B(m⃗) and β2(b(α1(a))) ⊩B ⟨m⃗⟩.

Case φ = ∀y : N.A(x, x1, . . . , xk). Suppose that

⟨e, d⟩ ⊩∀x.A ⟨m1, . . . ,mk⟩ ⇐⇒

{
d = ⟨m1, . . . ,mk⟩
∀n,∀a.a ⊩Nk+1 ⟨n,m1, . . . ,mk⟩ ⇒ ea ⊩A ⟨n,m1, . . . ,mk⟩

Note that a ⊩Nk+1 ⟨n,m1, . . . ,mk⟩ ⇐⇒ a = ⟨n,m1 . . . ,mk⟩. By
inductive hypothesis, α(e⟨n, m⃗⟩) nr A(n, m⃗). Hence λx.α(e⟨x, m⃗⟩) nr ∀x :
N.A(x, m⃗).

For the other direction, suppose that l nr ∀x : N.A(x, m⃗). Then for all n,
β(l · n) ⊩A ⟨n, m⃗⟩. Hence

23



⟨λa.β(l · p1a), ⟨m⃗⟩⟩ ⊩∀x.A ⟨m⃗⟩
Case φ = ∃y : N.A(x, x1, . . . , xk). Similarly.

2.4 Effective topos

As we have seen, we can interpret first-order many-sorted logic in the category
of assemblies; however we cannot fully interpret higher-order logic in Asm
as it is not a topos. To obtain a topos from Asm we must freely adjoin all
quotients, by what is called an ex/reg completion. Specifically, the effective
topos Eff is defined as following (see e.g. [8] for a more detailed explanation).

The objects of Eff are pairs (X,∼), where ∼ is a function X × X →
P(N), usually written as x, y 7→ [x ∼ y], such that there are p.r. functions s
and tr satisfying

1. If a ∈ [x ∼ y], then s(a) ∈ [y ∼ x];

2. If a ∈ [x ∼ y] and b ∈ [y ∼ z], then tr(a, b) ∈ [x ∼ z].

Given two objects (X,∼X) and (Y,∼Y ) of the effective topos, a map
between them as a relation F : X × Y → P(N), satisfying the following
conditions:

(REL) Given n ∈ [x ∼X x′],m ∈ [y ∼Y y′] and p ∈ F (x, y), one can recursively
and uniformly find an element ϕ(n,m, p) ∈ F (x′, y′)

(ST) Given n ∈ F (x, y) one can recursively find ψ1(n) ∈ [x ∼X x] and
ψ2(n) ∈ [y ∼Y y]

(SV) Given n ∈ F (x, y) and m ∈ F (x, y′), one can recursively find χ(n,m) ∈
[y ∼Y y′]

(TOT) Given n ∈ [x ∼X x], one can recursively find ρ(n) ∈
∪

y∈Y F (x, y)

A morphism between assemblies is a set-level function with a requirement
of existence of a p.r. function that sends realizers to realizers. In the effective
topos in addition to the “existence” realizers we have realizers for the non-
trivial equalities [x ∼ y]. Some morphisms between the objects of Eff are
induced by having a set-level function together with p.r. functions tracking
both “existence” realizers and equivalence realizers.

24



Definition 14 (Set-level induced morphism). Given two objects (X,∼) and
(Y,≈) of Eff , a set-level function f : X → Y that satisfies the following
requirements:

1. There is a p.r. φ, s.t. a ∈ EX(x) =⇒ φ(a) ∈ EY (f(x));

2. There is a p.r. ψ, s.t. a ∈ [x ∼ y] =⇒ ψ(a) ∈ [f(x) ≈ f(y)];

induces a morphism F : (X,∼) → (Y,≈) given by

F (x, y) =
∪
x′∈X

{⟨a, b⟩ | a ∈ [x ∼ x′], b ∈ [f(x′) ≈ y]}

We leave it to the reader to verify that F is indeed a morphism in Eff .

Lemma 15. Every object (X,∼) of Eff is isomorphic to an object (X ′,∼)
such that EX′(x) is non-empty for every x ∈ X ′.

Proof. Put X ′ = {x ∈ X | EX(x) ̸= ∅}. The realizability relation on X ′ is
then a restriction of ∼ to X ′.

The morphism F : (X ′,∼) → (X,∼) is just the inclusion. Specifically,
the relation F is induced by the inclusion x 7→ x:

F (x, y) =
∪

x′∈X′

{⟨a, b⟩ | a ∈ [x ∼ x′], b ∈ [x′ ∼ y]}

The inverse of F is a morphism morphism G : (X,∼) → (X ′,∼) defined
as

G(x, y) = [x ∼ y]

We will show that F ◦G ≃ idX and G ◦ F ≃ idX′ .
By definition,

(F ◦G)(x, z) = {⟨a, b, c⟩ | ∃y ∈ X ′, a ∈ EX′(y), b ∈ F (x, y), c ∈ G(y, z)}

which is equivalent to

{⟨a, ⟨b1, b2⟩, c⟩ | ∃y ∈ X ′, a ∈ EX′(y), ⟨b1, b2⟩ ∈ F (x, y), c ∈ [y ∼ z]}

25



In addition,

⟨b1, b2⟩ ∈ F (x, y) ⇐⇒

{
b1 ∈ [x ∼ x′] for some x′ ∈ X ′

b2 ∈ [x′ ∼ y]

Thus, ⟨a, ⟨b1, b2⟩, c⟩ ∈ (F ◦ G)(x, z) =⇒ tr(tr(b1, b2), c) ∈ [x ∼ z] =
idX(x, z). On the other hand, if a ∈ [x ∼ z], then tr(a, s(a)) ∈ [x ∼ x],
tr(s(a), a) ∈ [z ∼ z]. Hence,

b = ⟨tr(a, s(a)), a⟩ ∈ F (x, z)

and

⟨tr(s(a), a), b, tr(s(a), a)⟩ ∈ (F ◦G)(x, z)
Therefore, F ◦G ≃ idX . Similarly, we can show that G ◦ F ≃ idX′ .

Definition 16. An object (X,∼) of the effective topos is ¬¬-separated if
there is a p.r. function ϕ, such that if x, y ∈ X, a ∈ EX(x), b ∈ EX(y) and
[x ∼ y] is nonempty, then ϕab ∈ [x ∼ y].

Clearly, assemblies are ¬¬-separated. In fact, the converse holds as well:

Lemma 17. If (X,∼) is ¬¬-separated, then (X,∼) is isomorphic to the
assembly (X/R,E) where

• R = {(x, y) | [x ∼ y] ̸= ∅}

• E([x]) =
∪

x′∈[x][x
′ ∼ x′]

Proof. We may suppose that all elements of X “exist” (see lemma 15). Then
we define f : X → X/R by f(x) = [x] = {y | [x ∼ y] ̸= ∅}. Then if a ∈
EX(x) =⇒ a ∈ EX/R([x]) and a ∈ [x ∼ x′] =⇒ t(a, s(a)) ∈ EX/R([x]) =
Ex/R([x

′]). This function f induces a morphism F : (X,∼) → (X/R,E) in
Eff.

The morphism going in the other direction G : (X/R,E) → (X,∼) is
given by

G([x], y) =

{
∅ if [y ∼ x] = ∅
[y ∼ y] otherwise

We can see that G is a well-defined morphism:

26



(ST) If a ∈ G([x], y), then [x ∼ y] is non-empty and thus a ∈ EX/R([x]) and
a ∈ [y ∼ y].

(REL) If a ∈ G([x], y) and b ∈ E([x]) and c ∈ [y ∼ y′], then p1⟨b, a⟩ ∈ G([x], y)
and t(s(c), c) ∈ G([x], y′).

(TL) If a ∈ E([x]), then a ∈ [x′ ∼ x′] for some x′ s.t. [x ∼ x′] is non-empty;
thus a ∈ G([x], x′).

(SV) Let a ∈ G([x], y) = [y ∼ y] and b ∈ G([x], y′) = [y′ ∼ y′], then, because
X is ¬¬-separated, there is a p.r. function ϕ such that ϕab ∈ [y ∼ y′]
if [y ∼ y′] is non-empty. However, because a ∈ G([x], y) implies that
[x ∼ y] is non-empty, and b ∈ G([x], y′) implies [x ∼ y′] is non-empty,
we know that [y ∼ y′] is non-empty.

27



Chapter 3

Homotopy theory in the
category of assemblies

The goal of this chapter is to show how it is possible to view assemblies as
spaces, and understand certain constructions in topological terms.

First of all, in this chapter we establish the structure of path object cate-
gory [1, 2] on the category of assemblies. The developments in that section
follow the description of homotopical notions in the effective topos, which
were first discovered and described in [7]. In the next section we describe the
notions of a path, a path space, and a notion of path contraction onto the
path’s endpoint.

In the consecutive section, we describe, purely in terms of path object
categories, notions of homotopy and strong deformation retract (following [1,
2]); we also derive a slightly more “advanced” path contraction, which was
previously given in [7] specific to the effective topos.

In section 3.3 we generalize a notion of a Hurewicz fibration as given in
[7] to an arbitrary nice path object category, and show, following [1] that
there is a functorial factorization system in a path object category, in which
every map is factored as a strong deformation retract followed by a Hurewicz
fibration.

Finally, in section 3.4 we describe modest sets as discrete “spaces” and
spell out the fact that discrete objects form a reflexive subcategory in Asm.
The material is that subsection follows [7, 8].

28



3.1 Path object categories

Path object categories, originally defined in [1] and further refined in [2], are
settings for doing basic homotopy theory and for producing split models of
Martin-Löf type theory. In this section we recall the axioms of a path object
category and show that the category of assemblies is an instance of a path
object category.

Definition 18 ((Nice) path object category [2]). Given a finitely complete
category C, a nice path object category is a tuple (C, P, s, t, c, τ, ∗) such that

• P : C → C is a pullback-preserving functor, called the path object func-
tor

• s, t : P ⇒ id

• c : id ⇒ P

• τ : P ⇒ P

• ∗ : PX ×X PX → PX, natural in X

where the PX ×X PX is the pullback

PX ×X PX PX

PX X

π1

π2

sX

tX

1. For all X, X PX PX ×X PXcX
sX

tX
∗ is an internal category,

with τ being identity-on-objects involution of the internal category. Specif-
ically

τX ◦ τX = idX τX ◦ cX = cX
sX ◦ τX = tX τX ◦ ∗ = ∗ ◦ ⟨τπ2, τπ1⟩
tX ◦ τX = sX

2. C has nice constant paths, that is

P1 ≃ 1

29



3. C has nice path contraction, that is, there is a natural transformation

η : PP ⇒ P

such that

sPX ◦ ηX = idPX P (sX) ◦ ηX = idPX

tPX ◦ ηX = cX ◦ tX P (tX) ◦ ηX = cX ◦ tX
ηX ◦ cX = cPX ◦ cX

A more intuitive explanation of the components of this definitino shall
follow below, as we discuss specifics of this construction in Asm.

3.1.1 Intervals and path objects

An interval of length n is an assembly In = {0, . . . , n} with the realizability
relation m ⊩In i iff m = i or m = i + 1. A path of length n (n-path), in an
object X, is a morphism p : In → X. An exponential XIn is thus a collection
of n-paths in X.

It is tempting to define a path object over X as a sum Σn≥0X
In . In this

case we would have something like a Moore-path object, where paths have
different lengths. To obtain a nicer path object we want to quotient this
collection by an equivalence relation.

Definition 19. A map σ : In → Im is order and endpoint preserving iff it is
order preserving and satisfies σ(0) = 0 and σ(n) = m.

Every such map is surjective; for, suppose that j ∈ Im is not in the image
of σ and σ is tracked by φ. But then σ(i) < j and σ(i + 1) > j for some i.
Since i+1 realizes both i and i+1, it must be the case that φ(i+1) realizes
both σ(i) and σ(i+ 1), but they should not a realizer in common. Hence an
order and endpoint preserving map σ : In → Im exists only if n ≥ m.

We can now give a definition of a path object.

Definition 20. Given an assembly (X,E) we can construct a path object
P (X,E) (which we write as P (X) when it is unambiguous) the underlying
set of which is a quotient of {(n, f) | f : In → X} by the relation ∼. We say
that (n, f) ∼ (m, g) if

30



1. n ≥ m and there is an order and endpoint preserving map σ : In → Im
such that f = gσ; or

2. m ≥ n and there is an order and endpoint preserving map σ : Im → In
such that g = fσ.

The realizability relation on P (X) is given by

EP (X)([(n, f)]) =
∪

(m,g)∈[(n,f)]

{⟨m, b⟩ | b ⊩XIm g}

Sometimes we will denote the equivalence class [(n, f)] by [n, f ]. We write
(n, p)⇝σ (m, q) when σ : In → Im is an order and endpoint preserving map,
and p = qσ; in particular (n, p)⇝σ (m, q) implies (n, p) ∼ (m, q).

The construction in definition 20 extends to a pullback-preserving end-
ofunctor P : Asm → Asm. Indeed, suppose that f : X → Y is a map of
assemblies, tracked by f . Then the map P (f) : P (X) → P (Y ) is defined by

[n, p] 7→ [n, f ◦ p]

To see that this is well defined, assume (n, p) ⇝σ (m, q). But then
fp = fqσ, hence P (f)([n, p]) = P (f)([m, q]). The map P (f) is tracked
by λ⟨m, b⟩.⟨m,λx.f(b(x))⟩. It is clear that P obeys the functorial laws.

To show that P preserves pullbacks, i.e. that for each pullback square

Z ×Y X X

Z Y

π2

π1 f

g

we have P (Z ×Y X) ≃ P (Z) ×P (Y ) P (X). It suffices to show that for
each object A and morphisms h : A → PX and k : A → PZ, such that
P (g) ◦ k = P (f) ◦ h, there is a unique morphism A → P (Z ×Y X), making
the diagram below commute.

31



A

P (Z ×Y X) PX

PZ PY

h

k

r

P (π2)

P (π1) P (f)

P (g)

Suppose that a ∈ A and h(a) = [n, p] ∈ PX, k(a) = [m, q] ∈ PZ.
Furthermore, P (f)(h(a)) = P (g)(k(a)), hence, (n, fp) ∼ (m, gq). Without
loss of generality, suppose (n, fp)⇝σ (m, gq).

The put r(a) = [(n, θ)], where θ(x) = (p(x), q(σ(x))). Clearly, θ(x) ∈
Z ×Y X, as f(p(x)) = g(q(σ(x)).

For each path [n, p] we define its source and target by natural transfor-
mations

sX([n, p]) = p(0)

tX([n, p]) = p(n)

We can see that s, t are well-defined: suppose (n, p) ⇝σ (m, q), then,
since σ is endpoint-preserving, p(0) = q(σ(0)) = q(0); similarly for t.

In addition, sX is tracked by λ⟨m, b⟩.b0 and tX is tracked by λ⟨m, b⟩.bm.
To show that s and t are natural, consider a diagram

PX PY

X Y

sX

P (f)

sY

f

Given [n, p] ∈ PX, sY (P (f)(n, p)) = f(p(0)) = f(sY (n, p)), hence the
diagram above commutes; similarly for t.

For each point x0 we have a constant path cX(x0) = [0, i 7→ x0]. The map
cX is tracked by λa.⟨0, λi.a⟩. It is a matter of calculation to see that c is
natural in X.

Each path [(n, p)] can be reversed, to obtain a path

˜[(n, f)] = [(n, i 7→ f(n− i))]

32



We can see that path reversal is well-defined, for if (n, f) ⇝σ (m, g),
then the map σ′(x) = m − σ(n − x) is order and endpoint preserving, and

(̃n, f)⇝σ′ (̃m, g).
The map −̃ is tracked by λ⟨m, b⟩.⟨m,λi.b(m− i)⟩.
Finally, we are to describe path composition. Given an n-path (n, p) and

anm-path (m, q), s.t. p(n) = q(0), we define (n, p)∗(m, q) to be (n+m, p⋆q),
where

(p ⋆ q)(i) =

{
p(i) if i ≤ n

q(i− n) if i ≥ n

To verify that this operation extends to a map PX ×X PX → PX, we
must show that it is well-defined w.r.t. the equivalence classes in PX. So
suppose that (n, p) ∼ (n′, p′) and (m, q) ∼ (m′, q′); we are to show that
(n, p) ∗ (m, q) ∼ (n′, p′) ∗ (m′, q′). We shall treat only the most indirect case:
n ≤ n′ and m′ ≤ m, in other words (n′, p′)⇝σ (n, p) and (m, q)⇝δ (m

′, p′).
We are going to show that (n+m, p ⋆ q) ⇝(n′+m, p′ ⋆ q)⇝ (n′+m′, p′ ⋆ q).
See fig. 3.1.

· · ·

· · ·

n m

n′ m′

σ δ

Figure 3.1: (n′, p′)⇝σ (n, p) and (m, q)⇝δ (m
′, p′)

We do so in several steps.
Step 1: (n′ + m, p′ ⋆ q) ⇝σ0 (n + m, p ⋆ q). We define an endpoint and

order-preserving map σ0

σ0(i) =

{
σ(i) if i ≤ n′

n+ (i− n′) if i > n′

To see that σ0 is realizable, suppose we have x ⊩In′+m
i; we can decide

whether x ≤ n′. If it is the case, then return σx (where σ tracks σ), otherwise
return n + (x − n′). It is straightforward to check that such computable
procedure tracks σ0. It remains to check the following:

33



(p ⋆ q)(σ0(i)) =

{
(p ⋆ q)(σ(i)) if i ≤ n′ (hence, σ(i) ≤ n)

(p ⋆ q)(n+ (i− n′)) otherwise

=

{
p(σ(i)) = p′(i) = (p′ ⋆ q)(i) if i ≤ n′

q(i− n′) = (p′ ⋆ q)(i) otherwise

Step 2: (n′ +m, p′ ⋆ q)⇝σ1 (n
′ +m′, p′ ⋆ q′). We define an endpoint and

order-preserving map σ1

σ1(i) =

{
i if i ≤ n′

n′ + δ(i− n′) if i > n′

We can see that

(p′ ⋆ q′)(σ1(i)) =

{
(p′ ⋆ q′)(i) if i ≤ n′

(p′ ⋆ q′)(n′ + δ(i− n′) if i ≥ n′

=

{
p′(i) = (p′ ⋆ q)(i) if i ≤ n′

q′(δ(i− n′)) = q(i− n′) = (p′ ⋆ q)(i− n′) if i ≥ n′

3.1.2 Internal groupoid

To check that X PX PX ×X PXcX
sX

tX
∗ is an internal categroy, we

must confirm several axioms.
First of all, we must verify the identity laws

X PX

X

cX

sX

X PX

X

cX

tX

Which amounts to checking that sX(cX(x0)) = x0 = tX(cX(x0)); that it
holds is clear from the definitions.

Next, we must check that composition respects sources/targets:

PX ×X PX PX

PX X

∗

π1 sX

sX

PX ×X PX PX

PX X

∗

π2 tX

tX

34



That is, given [n, p] and [m, q], such that t([n, p]) = s([m, q]), we have
s([n, p]∗[m, q]) = s([n, p]) and t([n, p]∗[m, q]) = t([m, q]). It is straightforward
to check that s([n, p] ∗ [m, q]) = (p ⋆ q)(0) = p(0) = s([n, p]) and t([n, p] ∗
[m, q]) = (p ⋆ q)(n+m) = q(m).

Furthermore, we have to check that composition respects constant paths
(from right and from left)

PX PX ×X PX PX

PX

⟨id,cX tX⟩

∗

⟨cXsX ,id⟩

Once again, it is a straightforward calculation. For instance, the right
identity law

(∗ ◦ ⟨id cXtX⟩)([n, p]) = [n, p] ∗ cX(tX(n, p)) = [n, p ⋆ (i 7→ p(n))] = [n, p]

Finally, we have to check that internal composition is associative; that is,
the following diagram commutes

PX ×X PX ×X PX PX ×X PX

PX ×X PX PX

⟨∗,id⟩

⟨id,∗⟩ ∗

∗

Which follows from the fact that the composition of n-paths ⋆ is associa-
tive.

To see see that ·̃ is internal path reversal, we must verify the following
axioms:

1. ·̃ ◦ ·̃ = idP (X)

˜̃
(n, p) = ˜(n, i 7→ p(n− i)) = (n, i 7→ p(n− (n− i))) = (n, p)

2. sX ◦ ·̃ = tX & tX ◦ ·̃ = sX

sX((̃n, p)) = sX(n, i 7→ p(n− i)) = p(n) = tX(n, p)

35



3. ·̃ ◦ cX = cX

c̃X(x0) = (0, i 7→ x0) = cX

4. ·̃ ◦ ∗ = ∗ ◦ ⟨̃· ◦ π2, ·̃ ◦ π1⟩

( ˜(n, p) ∗ (m, q)(i) = ˜(n+m, p ⋆ q))(i) = (p ⋆ q)(n+m− i)

=

{
p(n+m− i) = (̃n, p)(i−m) if i ≥ m

q(m− i) = (̃m, q)(i) if i ≤ m

= ((̃m, q) ∗ (̃n, p))(i)

3.1.3 Nice constant paths and nice path contraction

Constant paths. The path object functor supports nice constant paths,
that is

P1 ≃ 1

To see that this holds, it is sufficient to provide a map 1 → P1, which is
the left inverse to the terminal map ⊤ : P1 → 1. We claim that c1 ◦ ⊤ =
idP1, we can think of this as P1 being “contractible”. Consider an n-path
p : In → 1. Clearly, p has the form p(i) = ∗. Then, consider an order and
endpoint preserving map map σ : In → I0 defined by i 7→ 0 and tracked by
λx.0; it is then the case that (n, p)⇝σ c1(∗).

Path contraction. The goal of the rest of this subsection is to provide a
natural transformation η : P ⇒ PP , that contracts a path onto its target;
that is, η is subject to the following axioms:

PX PPX

PPX PX

ηX

ηX sPX

P (sX)

X PX

PX PPX

cX

cX ηX

cPX

PX PPX

X PX

ηX

tX tPX

cX

PX PPX

X PX

ηX

tX P (tX)

cX

36



First of all, we define a map αn : X(In) → (X(In))In that satisfies the
properties above. Then we show that this map extends to ηX : PX → PPX.

To give a map In → (XIn) is to give a sequence (p0, . . . , pn), such that
each pi, pi+1 has a realizer in common in XIn . We put

pi(j) =

{
p(i) if j ≤ i

p(j) if j ≥ i

Then, in particular, p0 = p and pn is the constant path over p(n). For
each i, we can effectively calculate the realizers for pi. Suppose that b is a
realizer for p, then we define a function i 7→ pi by induction, with the base
case p0 = b.

pi+1 = λx.

{
if x ≤ i+ 1 then pi(i+ 1)

if x > i+ 1 then pi(x)

We denote the effective function assigning pi to i as ϕ(b, i).

Proposition 21. If pi tracks pi, then pi+1 tracks pi+1.

Proof. We distinguish cases

Case j ≤ i. Then pi+1(j) = p(i+ 1) = pi+1(i+ 1) = pi(i+ 1).

– pi+1j = pi(i+ 1) ⊩X pi(i+ 1) = pi+1(i+ 1)

– pi+1(j + 1) = pi(i+ 1) ⊩X pi(i+ 1) = pi+1(i+ 1)

Case j > i. Then pi+1(j) = p(j) = pi(j).

– pi+1j = pi(j) ⊩X pi(j) = pi+1(j)

– pi+1(j + 1) = pi(j + 1) ⊩X pi(j) = pi+1(j)

Furthermore, pi+1 is a realizer both for pi and pi+1

Proposition 22. pi+1 tracks pi.

Proof. Again, we distinguish two cases

Case j ≤ i. Then pi(j) = p(i) = pi(i).

37



– pi+1j = pi(i+ 1) ⊩X pi(i)

– pi+1(j + 1) = pi(i+ 1) ⊩X pi(i)

Case j > i. Then

– pi+1j = pi(j) ⊩X pi(j)

– pi+1(j + 1) = pi(j + 1) ⊩X pi(j)

Hence, the assignment p 7→ (i 7→ pi) defines a morphism αn : XIn →
(XIn)In , which is tracked by λb.λi.ϕ(b, i).

It remains to show that αn extends to a well-defined function PX →
PPX, that is, if (n, p) ⇝σ (m, q), then (n, i 7→ [n, pi]) ∼ (m, i 7→ [m, qi]).
Note that any endpoint order preserving map σ : In → Im can be decomposed
into “degeneracy” maps sk : Ie+1 → Ie that “hits” k two times1:

sk[0, . . . , e+ 1] = [0, . . . , k, k, . . . , e]

If given (n + 1, p) ⇝sk (n, q) we manage to show that (n + 1, i 7→ [n +
1, pi]) ∼ (n, i 7→ [n, qi]), then we can do this for an arbitrary σ, by pasting
together results for each sk.

So, suppose p = qsk. We will show the following

Proposition 23.

αn+1(p) = ⟨(qsk)0, . . . , (qsk)n+1⟩ = ⟨q0sk, . . . , qksk, qksk, . . . , qnsk⟩

(where ⟨q1, . . . , qn⟩ = αn(q))

Proof. Case 1: i ≤ k =⇒ (qsk)i = qisk.

(qsk)i(j) =

{
q(sk(i)) if j ≤ i ≤ k

q(sk(j)) if j > i, i ≤ k

=


q(i) = qi(j) = qi(sk(j)) if j ≤ i ≤ k

q(sk(j)) = q(j) = qi(j) = qi(sk(j)) if i < j ≤ k

q(sk(j)) = q(j − 1) = qi(j − 1) = qi(sk(j)) if i ≤ k < j

= qi(sk(j))

1Formally, such map can be denoted as sek, but here we follow a convention of leaving
e implicit

38



Case 2: i > k =⇒ (skq)i = skqi−1.

(qsk)i(j) =

{
q(sk(i)) if j ≤ i, i > k

q(sk(j)) if j ≥ i > k

=


q(i− 1) = qi−1(j) = qi−1(sk(j)) if j ≤ k < i

q(i− 1) = qi−1(j − 1) = qi−1(sk(j)) if k < j ≤ i

q(j − 1) = qi−1(j − 1) = qi−1(sk(j)) if j ≥ i > k

= qi−1(sk(j))

From proposition 23 it follows that

(i 7→ [n+ 1, pi]) = (i 7→ [n+ 1, (qsk)i]) = (i 7→ [n, qi]) ◦ sk

hence, the extension of α to PX is well-defined and we obtain a morphism
ηX : PX → PPX.

It is then straightforward to verify that path contraction η satisfies the
required laws.

3.2 Homotopies and “extended” path contrac-

tions

Homotopies and deformation retracts. Given maps f, g : X → Y , a
homotopy θ between f and g (written θ : f → g) is a map X → PY , such
that sY ◦ θ = f and tY ◦ θ = g.

Y

X PY

Y

f

g

θ

sY

tY

Example 24. Path contraction ηY is a homotopy idPY ⇒ cY ◦ tY .

39



The notion of homotopy between maps f, g : X → Y is different from
the notion of a path in the “function space” Y X , as can be witnessed by the
following example2 in the category of assemblies.

Example 25. Consider an “half-line” N with the realizability realtion EN(x) =
{x, x+ 1}. We can define two functions f : N → N and g : N → N

f(x) = 0

g(x) = x

realized by λx.0 and λx.x respectively. The functions f and g are homot-
topic, as witnessed by a map θ : N → PN, defined as

θ(i) = [i, x 7→ x]

Then s(θ(i)) = 0 = f(i) and t(θ(i)) = i = g(i). In addition, θ is tracked
by λxλy.y Thus θ : f ⇒ g.

However, there is no path in P (NN) that connects f and g. For suppose
there is one; then it is a equivalence class with a representative (n, p : In →
NN) with p(0) = f and p(n) = g. Furthermore, p is tracked by some φ.
Then a computable function φ · 0 tracks f , and thus can only take values
{0, 1}, as rng(f) = {0}. Since 1 ⊩N 0, 1, it is the case that φ · 1 tracks
both f and p(1). Because it tracks f , φ · 1 can only take values in {0, 1}.
In particular, that means that rng(p(1)) ⊆ {0, 1}. By the same argument,
the range of p(2) is contained in {0, 1, 2}. By induction, we can prove that
rng(p(i)) ⊆ {0, . . . , i}. In particular, rng(p(n)) = rng(g) ⊆ {0, . . . , n},
which is clearly a contradiction.

Compositions of homotopies. Homotopies can be composed vertically.
If θ : f ⇒ g and Ω : g ⇒ h are homotopies, then the vertical composition
θ ∗ Ω : f ⇒ h can be visualized as depicted below.

A B

f

g

h

θ

Ω

→ A B

f

h

θ∗Ω

2Example due to Jaap van Oosten, via personal communication.

40



It can be defined as follows. Consider

X

PY ×Y PY PY

PY Y

Ω

θ

⟨θ,Ω⟩

sX

tX

Then θ ∗ Ω = ∗ ◦ ⟨θ,Ω⟩.
We also can whisker a homotopy with a map; if θ : f ⇒ g, as in the

picture below

A X Y Ch

f

g

θ
k

then we put

θ.h : f ◦ h⇒ g ◦ h
θ.h = θ ◦ h
k.θ : k ◦ f ⇒ k ◦ g
k.θ = P (k) ◦ θ

Furthermore, we can compose homotopies horizontally: if θ : f ⇒ g and
Ω : h⇒ k then θ ◦ Ω : h ◦ f ⇒ k ◦ g

A B C

f

g

θ

h

k

Ω → A C

h◦f

k◦g

θ◦Ω

We can obtain horizontal composition θ ◦Ω in two ways: either as (h.θ) ∗
(Ω.g) or as (Ω.f)∗(k.θ). Unfortunately, there is no reasons for those operators
to be equal in general; see [1, Remark 6.1.2]. For the path object category
in assemblies we can obtain the following counterexample.

41



x2

x1

x0

y1

y2

γ1 γ2

Figure 3.2: Assembly X

Consider an assembly X depicted in fig. 3.2. It consists of elements
x0, x1, x2, y1, y2, with the realizability relation γ0 ⊩X x0, x1, y1 and γ1 ⊩X

x1, y1, y2, x2, for some numbers γ0, γ1.
We can define two maps ⟨x0, x1, x2⟩, ⟨x0, y1, y2⟩ from the interval I2 to X

as

⟨x0, x1, x2⟩(0) = x0 ⟨x0, y1, y2⟩(0) = x0

⟨x0, x1, x2⟩(1) = x1 ⟨x0, y1, y2⟩(1) = y1

⟨x0, x1, x2⟩(2) = x2 ⟨x0, y1, y2⟩(2) = y2

In general, when unambiguous, we use the notation ⟨a0, . . . , an⟩ to denote
a function In → X with ⟨a0, . . . , an⟩(i) = ai. Both ⟨x0, x1, x2⟩ and ⟨x0, y1, y2⟩
are tracked by a p.r. α, which is defined as

α(0) = γ0 α(1) = γ1 α(2) = γ1

Then, we can define a homotopy Ω : ⟨x0, x1, x2⟩ ⇒ ⟨x0, y1, y2⟩ by

Ω(0) = cX(x0)

Ω(1) = [1, ⟨x1, y1⟩]
Ω(2) = [1, ⟨x2, y2⟩]

42



A realizer for Ω is a p.r. φ given by

φ(0), φ(1) := λz.γ0 φ(2) := λz.γ1

By a straightforward calculation we get s ◦ Ω = ⟨x0, x1, x2⟩ and t ◦ Ω =
⟨x0, y1, y2⟩.

We also define maps e0, e2 : ⊤ → I2 with ei(∗) = i and obvious realizers.
Then θ := ∗ 7→ [2, idI2 ] is a homotopy between e0 and e2. The picture is

⊤ I2 X

e0

e2

θ

⟨x0,x1,x2⟩

⟨x0,y1,y2⟩

Ω

Then,

(θ ◦ Ω)(∗) = (⟨x0, x1, x2⟩.θ)(∗) ∗ (Ω.e2)(∗)
= P (⟨x0, x1, x2⟩)[2, idI2 ] ∗ Ω(2) = [2, ⟨x0, x1, x2⟩] ∗ [1, ⟨x2, y2⟩]
= [3, ⟨x0, x1, x2, y2⟩]

(θ ◦1 Ω)(∗) = (Ω.e0)(∗) ∗ (⟨x0, y1, y2⟩.θ)(∗)
= Ω(0) ∗ P (⟨x0, y1, y2⟩)[2, idI2 ] = cX(x0) ∗ [2, ⟨x0, y1, y2⟩]
= [2, ⟨x0, y1, y2⟩]

Those two paths are from different equivalence classes. For, suppose
(3, ⟨x0, x1, x2, y2⟩)⇝σ (2, ⟨x0, y1, y2⟩); then ⟨x0, x1, x2, y2⟩(1) = x1 = ⟨x0, y1, y2⟩(σ(1)),
but the latter path doesn’t take value x1 at any point.

Strong deformation retracts. Homotopies allow us to define a notion of
a strong deformation retract:

Definition 26. Given an arrow f : X → Y , a strong deformation retraction
of f is a map k : Y → X, such that

• k ◦ f = idX

• There is a homotopy θ : idY ⇒ f ◦ k

43



• θ is constant on X: θ.f = idf , i.e. θ ◦ f = cY ◦ f

We say that f is a strong deformation retract, if there is a strong defor-
mation retraction of f .

Extended path contraction. In a nice path object category, not only we
can contract a path onto its end, but we can contract a path onto a final
subpath. Specifically, there is a natural transformation L : PY ×Y PY →
PPY that internally satisfies s(L(α, β)) = α ∗ β and t(L(α, β)) = β. Or,
equivalently, sPY ◦ L = ∗ and tPY ◦ L = π2, where π2 : PY ×Y PY → PY is
the second projection.

Here is how we construct it. First of all, we obtain a morphism ⟨ηY ◦
π1, cPY ◦ π2⟩ from the following diagram

PY ×Y PY

P (PY ×Y PY ) PPY

PPY PY

⟨ηY ◦π1,cPY ◦π2⟩

cPY ◦π2

ηY ◦π1 P (π1)

P (π2)

P (sY )

P (tY )

In which the inner square is a pullback, since P preserves pullbacks. The
outer square commutes because P (t) ◦ ηY ◦ π1 = cY ◦ tY ◦ π1 by the η-law,
and P (s) ◦ cPY ◦ π2 = cY ◦ sY ◦ π2 by the naturality of c.

After that, we obtain the map L by the composition

PY ×Y PY P (PY ×Y PY ) PPY
⟨ηY ◦π1,cPY ◦π2⟩ P (∗)

First, we want to show that sL = ∗. Observe that the following diagram
commutes:

PY ×Y PY P (PY ×Y PY ) PPY

PY ×Y PY PY

⟨ηY ◦π1,cPY ◦π2⟩

s

P (∗)

s

∗

It it thus suffices to show that sPY×Y PY ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = idPY×Y PY .
Since PY ×Y PY is a pullback, we can establish the equation by proving

44



π1 ◦ sPY×Y PY ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = π1

π2 ◦ sPY×Y PY ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = π2

By naturality of s, π1 ◦ sPY×Y PY = sPY ◦ P (π1). Hence,

π1◦sPY×Y PY ◦⟨ηY ◦ π1, cPY ◦ π2⟩ = sPY ◦P (π1)◦⟨ηY ◦ π1, cPY ◦ π2⟩ = sPY ◦ηY ◦π1 = π1

where the penultimate step holds because P (π1) is the first projection
out of PPY ×PY PPY ≃ P (PY ×Y PY ). Similarly, for the second equation

π2◦sPY×Y PY ◦⟨ηY ◦ π1, cPY ◦ π2⟩ = sPY ◦P (π2)◦⟨ηY ◦ π1, cPY ◦ π2⟩ = sPY ◦cPY ◦π2 = π2

This confirms that s ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = id and, therefore, sL = ∗.
Now we are going to show that tL = π2. We use a similar strategy. First,

we note that the following diagram commutes

PY ×Y PY P (PY ×Y PY ) PPY

PY ×Y PY PY

⟨ηY ◦π1,cPY ◦π2⟩

t

P (∗)

t

∗

If we can show that t ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = ⟨cY ◦ tY ◦π1, π2⟩, then we are
done, because

∗⟨cY ◦ tY ◦ π1, π2⟩ = π2

Because PY ×Y PY is a pullback, it suffices to verify that

π1 ◦ t ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = cY ◦ tY ◦ π1
π2 ◦ t ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = π2

Using the same tactics as in the first part, we get

π1◦t◦⟨ηY ◦ π1, cPY ◦ π2⟩ = t◦P (π1)◦⟨ηY ◦ π1, cPY ◦ π2⟩ = t◦ηY ◦π1 = cY ◦tY ◦π1

and

45



π2 ◦ t ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = t ◦P (π2) ◦ ⟨ηY ◦ π1, cPY ◦ π2⟩ = t ◦ cPY ◦ π2 = π2

Note that η is a special case of L, if we put the second component to be
a constant path cY (tY (α)).

Furthermore, we will need the following facts about L later on:

Proposition 27. Internally, P (s)(L(α, β)) = α and P (t)(L(α, β)) = cY (tY (β)),
or, equivalently

• P (s) ◦ L = π1

• P (t) ◦ L = cY ◦ tY ◦ π2

Proof. Consider the following diagram,

PY ×Y PY P (PY ×Y PY ) PPY

PY Y PY

cPY ◦π2

⟨ηY ◦π1,cPY ◦π2⟩

P (π2)

P (∗)

P (tY )

P (tY )

Where the rightmost square commutes because P (t) ◦ P (∗) = P (t ◦ ∗) =
P (t ◦ π2), and the left triangle commutes because P (π2) is the second pro-
jection (since P preserves pullbacks).

Finally, P (tY ) ◦ cPY ◦ π2 = cY ◦ tY ◦ π2 by the naturality of c. The other
equation can be verified in a similar fashion.

Contracting a path onto the start-point. The natural transformation
η allows us to contract a path onto its endpoint, i.e. sPY (ηY q) = q and
tPY (ηY q) = cY (tY q). We may also wish to contract a path onto its starting
point, i.e. have a homotopy νY : idPY ⇒ cY ◦ sY . We obtain it through as a
composition νY := P (̃·) ◦ ηY ◦ ·̃ : PY → PPY . Indeed, the diagram

PY PY

PY PY PPY PPY

PY PY

·̃

·̃ ηY

idPY

cY ◦tY

sY

tY

P (̃·)

sPY

tPY

·̃

46



commutes. Hence, sPY ◦ νY = ·̃ ◦ idPY ◦̃· = idPY and tPY ◦ νY = ·̃ ◦ cY ◦
tY ◦ ·̃ = cY ◦ sY . In a similar way we can prove the other counterparts of the
axioms in definition 18. For instance, we can derive the following equations:

P (sY ) ◦ νY = cY ◦ sY P (tY ) ◦ νY = ·̃
νY ◦ cY = cPY ◦ cY

3.3 Factorisation system

In a nice path object category, every map can be factored as a strong defor-
mation retract followed by a Hurewicz fibration (notions which we will define
shortly, definitions 26 and 28). Furthermore, such factorisation is functorial.

Let f : X → Y be a morphism. We define the factorisation by taking the
pullback

Ef PY

X Y

qf

pf tY

f

(3.1)

Then, since tY ◦cY ◦f = f , we obtain a map λf = ⟨idX , cY ◦f⟩ : X → Ef
from the universal property of the pullback

X

Ef PY

X Y

cY ◦f

idX

λf

qf

pf tY

f

Furthermore, we put ρf := sY ◦ qf . This data gives us a factorisation

X Ef Y
λf ρf

of f : X → Y , because ρf ◦ λf = sY ◦ qf ◦ λf = sY ◦ cY ◦ f = f .
To see that this construction is functorial, suppose we have a commutative

square

47



X W

Ef Eg

Y Z

λf

h

λg

ρf ρg

k

Then we are to find a filler E(h, k) : Ef → Eg. We construct it from the
pullback square

Ef

Eg PZ

W Z

h◦pf

P (k)◦qf

P (h,k)

pg

qg

tZ

g

It is possible to see that this indeed is a filler by using the universal
property of a pullback; see [2, Lemma 6.6] for details.

Next we give a definition of a Hurewicz fibration.

Definition 28 (Hurewicz fibration [7]). Given a map f , we obtain a map vf
from the diagram

PX

Ef PY

X Y

P (f)

tX

vf

qf

pf tY

f

The morphism f is a Hurewicz fibration if vf has a section. Such a
section is called a Hurewicz connection.

Hurewicz fibrations can be characterized by the homotopy lifting prop-
erty, which, when rewritten in the language of path object categories, states
the following:

48



Definition 29. A map f : X → Y has a homotopy lifting property if for any
map g : Z → X and a homotopy θ : Z → PY , such that tθ = fg,

Z X

PY Y

g

θ f

t

there is a lift θ̄ : Z → PX such that tθ̄ = g and f.θ̄ = P (f) ◦ θ̄ = θ.

Just like in standard case of topological spaces, the covering homotopy
condition is both sufficient and necessary for a map to be a Hurewicz fibration

Lemma 30 (Covering homotopy condition). A map f : X → Y is a
Hurewicz fibration/has a Hurewicz connection iff it has the covering homo-
topy property.

Proof. (⇒). Suppose λ is a section of vf . The desired lifting is then obtained
as θ̄ = λ ◦ ⟨g, θ⟩, where ⟨g, θ⟩ is obtained from the pullback square

Z

Ef PY

X Y

g

θ

⟨g,θ⟩

pf

qf

tY

f

Then tX θ̄ = tX ◦ λ ◦ ⟨g, θ⟩ = pf ◦ ⟨g, θ⟩ = g and p.θ̄ = P (p) ◦ λ ◦ ⟨g, θ⟩ =
qf ◦ ⟨g, θ⟩ = θ.

(⇐). Put θ := qf : Ef → PY and g := pf : Ef → X; clearly, tθ = f ◦ g.
Then, the lifted homotopy θ̄ : Ef → PX satisfies tX θ̄ = pf and P (p)◦ θ̄ = qf .
Thus, the following diagram commutes:

49



Ef

PX

Ef PY

X Y

θ̄

pf

qf

tX

P (p)

vf

pf

qf

tY

f

Since Ef is a pullback, we can conclude that vf ◦ θ̄ = idEf .

Finally, we are going to show that the functorial factorisation, defined
in the beginning of this section, factors each map as a strong deformation
retract followed by a Hurewicz fibration.

Proposition 31. For any map f , λf is a strong deformation retract and ρf
is a Hurewicz fibration.

Proof. Note that pf is a retraction of λf ; to show that it is a strong defor-
mation retraction we must find a homotopy θ, that satisfies the conditions
of definition 26. For this we take the image of eq. (3.1) under P ; since P
preserves pullbacks, the resulting diagram is a pullback as well. Thus, to
obtain a map Ef → P (Ef) is to obtain a pair of maps Ef → PX and
Ef → PPY .

Note, that the following diagram commutes

Ef PY PPY

X Y PY

PX

qf

pf

ηY

tY P (t)

cX

f cY

P (f)

in which the upper left square is the pullback eq. (3.1), the upper right
square is a law for η, and the lower triangle expresses the naturality of c.

50



From that diagram we obtain θ : Ef → P (Ef) as

Ef

P (Ef) PY

X Y

ηY ◦qf

cX◦pf

θ

P (qf )

P (pf ) P (tY )

P (f)

We have to show that sθ = idEf and tθ = λf ◦ pf ; for this it is sufficient
to verify those identities up to the composition with pf and qf , since Ef is
a pullback, i.e. {

pf ◦ sEf ◦ θ = pf

qf ◦ sEf ◦ θ = qf

and {
pf ◦ tEf ◦ θ = pf ◦ λf ◦ pf = pf

qf ◦ tEf ◦ θ = qf ◦ λf ◦ pf = cY ◦ f ◦ pf = cY ◦ tY ◦ qf
For the first set of equations, note that pf ◦sEf = sX ◦P (pf ) by naturality,

hence

pf ◦ sEf ◦ θ = sX ◦ P (pf ) ◦ θ = sX ◦ cX ◦ pf = pf

and similarly for qf . For the second set of equations, we employ the same
strategy. By naturality, pf ◦ tEf = tX ◦P (pf ) and qf ◦ tEf = tX ◦P (qf ), hence

pf ◦ tEf ◦ θ = tX ◦ cX ◦ pf = pf

and

qf ◦ tEf ◦ θ = tY ◦ ηY ◦ qf = cY ◦ tY ◦ qf
Finally, we have to check that θ is constant at λf ; that is θ◦λf = cEf ◦λf .

Once again, it suffices to note that

{
P (pf ) ◦ θ ◦ λf = cX ◦ pf ◦ λf = P (pf ) ◦ cEf ◦ λf = cX ◦ pf ◦ λf
P (qf ) ◦ θ ◦ λf = ηY ◦ qf ◦ λf = ηY ◦ cY ◦ f = P (qf ) ◦ cEf ◦ λf = cPY ◦ qf ◦ λf = cPY ◦ cY ◦ f

51



where the last equation holds due to an η law.
Now we shall show that ρf is a Hurewicz fibration. Since Eρf is a pullback,

to find a section k of vρf is to find a map k making the following diagram
commute:

Eρf

PEf

Eρf PY

Ef Y

k

qρf

pρf

P (ρf )

tX

vρf

qρf

pρf tY

ρf

i.e. to find a map k satisfying{
t ◦ k = pρf
P (ρf ) ◦ k = qρf

We construct this map in two stages. First of all, we define a map m :
Eρf → PY ×Y PY from the following diagram

Eρf

PY ×Y PY PY

PY Y

m

qf◦pρf

qρf π1

π2

sY

tY

(3.2)

Then L ◦m is a homotopy ∗ ◦m ⇒ qf ◦ pρf . Internally, Eρf is an object
of “triples” (x, α, β), such that tβ = sα and tα = f(x). Then m picks out
(β, α) and L contracts β ∗ α onto α.

Secondly, we obtain k from the pullback P (Ef) as in the diagram below.

52



Eρf PY ×Y PY

Ef PEf PPY

X PX PY

k
pρf

m

L

pf

P (qf )

P (pf ) P (t)

cX P (f)

The outer part of the diagram commutes because

P (t) ◦ L ◦m = cY ◦ tY ◦ π2 ◦m proposition 27

= cY ◦ tY ◦ qf ◦ pρf (eq. (3.2))

= cY ◦ f ◦ pf ◦ pρf (eq. (3.1))

= P (f) ◦ cX ◦ pf ◦ pρf naturality of c

Now we are going to verify that{
t ◦ k = pρf
P (ρf ) ◦ k = qρf

• Equation t ◦ k = pρf : Because Ef is a pullback, it is sufficient to show
that {

pf ◦ t ◦ k = pf ◦ pρf
qf ◦ t ◦ k = qf ◦ pρf

For this, note that the following diagrams commute

Eρf PEf Ef

X PX X

k

pf◦pρf

t

P (pf ) pf

cX tX

Eρf PEf Ef

PY ×Y PY PPY PY

k

m

t

P (qf ) qf

L tPY

Thus,

pf ◦ t ◦ k = tX ◦ cX ◦ pf ◦ pρf = pf ◦ pρf
qf ◦ t ◦ k = tPY ◦ L ◦m = π2 ◦m ◦ qf ◦ pρf

53



• Equation P (ρf ) ◦ k = qρf : We have

P (ρf ) ◦ k = P (sY ) ◦ P (qf ) ◦ k = P (s) ◦ L ◦m = π1◦ = qρf

3.4 Discrete reflection

We can think of some assemblies (and of some objects in the effective topos)
as being discrete, meaning that they do not have any non-trivial paths. In
Asm such objects are modest sets.

Definition 32. An assembly (X,E) is a modest set if for each set E(x),
x ∈ X is a singleton.

Theorem 33. Modest sets are discrete in the sense that for all n ≥ 1, there
are no non-constant paths p : In →M .

Proof. Suppose p is such a path and p(i) ̸= p(j) for some i < j. Let e be the
realizer/tracker for p. Then there is a number i′ ∈ [i, j), s.t. p(i′) ̸= p(i′+1).
Since i′ + 1 ⊩ i′, i′ + 1, it must be the case that e(i′ + 1) ⊩ p(i′), p(i′ + 1).
That means that E(p(i′)) ∩ E(p(i′ + 1)) is non-empty, which is impossible,
since M is a modest set.

Theorem 34. The converse holds as well: if X is discrete, then X is modest.

Proof. Let x, y ∈ X and x ̸= y. Define a set-level function p : I1 → X
by p(0) = x and p(1) = y. It is easy to see that p is realized iff there is
some c ∈ EX(x) ∩ EX(y) – the realizer would be a p.r. function defined by
λx.c.

The inclusion functor Mod ↪→ Asm has a left adjoint, giving rise to a
discrete reflection.

Suppose X is an assembly. We define its discrete reflection Xd as a
coequalizer of the following diagram:

PX X
s

t

Concretely, Xd is the quotient of X by the relation ∼p, such that sp ∼p tp
for all p ∈ PX. In other words, x ∼p y if there is a path p′ : Im → X, with

54



p′(0) = x and p′(m) = y. Intuitively, a class [x] ∈ Xd contains all points of
X that are path-connected to x. The realizability relation on Xd is defined
as

a ⊩Xd
[x] ⇐⇒ a ⊩X y for some y ∈ [x]

The map [–] : X → Xd is realized by λx.x.
Given a morphism f : X → Y (tracked by f), we obtain a morphism

fd : Xd → Yd defined as

fd([x]) = [f(x)]

and realized by f . To establish the reflection we have to verify two things:
that Xd is indeed discrete, and that the arrow [–] is universal.

For the first part, suppose that [x], [y] ∈ Xd, [x] ̸= [y]. Then, by definition,
x ̸∈ [y], and there is no path between x and y in X; in particular, there is
no path p′ : I1 → X, such that sp′ = x and tp′ = y. Thus, essentially by the
same argument as in theorem 34, Xd is modest.

The second part amounts to filling in a dotted morphism g in the following
diagram, where Y is modest/discrete:

X

Y Xd

f
[–]

g

We simply put g([x]) = f(x). This is well-defined, for suppose y ∈ [x], i.e.
there is a path p′ : Im → X connecting x and y. Then, by the same argument
as in theorem 34, there is a c ∈ EX(x) ∩ EX(y). Given a realizer f for f ,
we have f · c ⊩Y f(x), f(y). Because Y is modest, f(x) = f(y). Finally, if
a ⊩Xd

[x], then a ⊩X y for some y ∈ [x], and f · a ⊩Y f(y) = g([x]).

55



Bibliography

[1] Benno van den Berg and Richard Garner. “Topological and Simplicial
Models of Identity Types.” In: ACM Trans. Comput. Logic 13.1 (Jan.
2012), 3:1–3:44.

[2] Simon Docherty. “A Model Of Type Theory In Cubical Sets With Con-
nections.” Master’s thesis. the Netherlands: University of Amsterdam,
2014.

[3] F.W. Lawvere. “Adjointness in Foundations.” In: Dialectica 23 (1969),
pp. 281–296.

[4] F.W. Lawvere. “Equality in Hyperdoctrines and the Comprehension
Schema as an Adjoint Functor.” In: Applications of Categorical Algebra.
Ed. by A. Heller. American Mathematical Society, Providence RI, 1970,
pp. 1–14.

[5] J.M.E. Hyland. “The effective topos.” In: The L.E.J. Brouwer Cen-
tenary Symposium. Ed. by A.S. Troelstra and D. Van Dalen. North
Holland Publishing Company, 1982, pp. 165–216.

[6] S.C. Kleene. “On the Interpretation of Intuitionistic Number Theory.”
In: Journal of Symbolic Logic 10 (1945), pp. 109–124.

[7] Jaap van Oosten. “A notion of homotopy for the effective topos.” In:
Mathematical Structures in Computer Science 25 (Special Issue 05 June
2015), pp. 1132–1146.

[8] Jaap van Oosten. Realizability: an introduction to its categorical side.
Vol. 152. Studies in Logic and the Foundations of Mathematics. Elsevier
B.V. Amsterdam, 2008.

[9] Robert A. G. Seely. “Hyperdoctrines, Natural Deduction and the Beck
Condition.” In: Mathematical Logic Quarterly 29.10 (1983), pp. 505–
542.

56



[10] T. Streicher. Introduction to Constructive Logic and Mathematics. http:
//www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf.
2001.

[11] T. Streicher. Realizability. http://www.mathematik.tu-darmstadt.
de/~streicher/CLM/clm.pdf. 2007/2008.

[12] A.S. Troelstra, ed. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis. With contributions by A.S. Troelstra, C.A.
Smoryski, J.I. Zucker and W.A. Howard. Springer, 1973.

[13] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. 2
volumes. North-Holland, 1988.

57

http://www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/CLM/clm.pdf

	Introduction
	Categorical realizability logic
	Hyperdoctrines
	Equality

	Category of assemblies
	Limits and colimits in Asm
	Alternative presentation

	Logic in Asm
	Subobjects in Asm
	Quantification
	Implication and negation
	Disjunction
	Equality and -separation
	Arithmetic and realizability in Asm

	Effective topos

	Homotopy theory in the category of assemblies
	Path object categories
	Intervals and path objects
	Internal groupoid
	Nice constant paths and nice path contraction

	Homotopies and ``extended'' path contractions
	Factorisation system
	Discrete reflection


