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Abstract

In supervised learning, a training set consisting of labeled instances is used by a learn-
ing algorithm for generating a model (classifier) that is subsequently employed for deciding
the class label of new instances (for generalization). Characteristics of the training set,
such as presence of noisy instances and size, influence the learning algorithm and affect
generalization performance. This paper introduces a new network-based representation
of a training set, called hit miss network (HMN), which provides a compact description
of the nearest neighbor relation between each pair of classes. We show that structural
properties of HMN’s correspond to properties of training points related to the one nearest
neighbor (1-NN) decision rule, such as being border or central point. This motivates us
to use HMN’s for improving the performance of a 1-NN classifier by removing instances
from the training set (instance selection). We introduce three new algorithms based
on HMN for instance selection. HMN-C, which removes instances without affecting accu-
racy of 1-NN on the training set, HMN-E, which removes more instances than HMN-C, and
HMN-EI, which applies iteratively HMN-E. Their performance is assessed on 22 datasets
with different characteristics, such as input dimension, cardinality, class balance, number
of classes, noise content, and presence of redundant variables. Results of experiments on
these datasets show that accuracy of 1-NN classifier increases significantly when HMN-EI

is applied. Comparison with state-of-the-art editing algorithms for instance selection on
these datasets indicates best generalization performance of HMN-EI and no significant dif-
ference in storage requirements. In general, these results indicate that HMN’s provide a
powerful graph-based representation of a training set, which can be successfully applied
for performing noise and redundance reduction in instance-based learning.

Keywords: Graph-based training set representation, nearest neighbor, instance se-
lection for instance-based learning.

1 Introduction

In supervised learning, a machine learning algorithm is given a training set, consisting of
training examples called labeled instances (here called also points). Each instance consists of
an input vector of values, one for each variable of the learning task, and has assigned a class
label. A machine learning algorithm uses the training set to generate a so-called model that
is subsequently used for deciding the class label of (classify) new instances. In particular, the
1-NN rule classifies an unknown point into the class of the nearest of the training set points.
This rule does not rely on knowledge of the underlying data distribution (non-parametric
classification). Moreover, for all distributions, its probability of error is bounded above by
twice the Bayes’ probability of error ([11]).
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A central issue in 1-NN classification, and more generally in instance-based learning,
concerns storage requirements. The basic 1-NN rule stores all training instances, hence can
be slow when classifying new instances. Moreover, when the training set contains noisy
instances, generalization accuracy can be negatively affected if these instances are stored as
well (cf. [37]). Instance selection algorithms tackle these issues by selecting a subset of the
training set in order to reduce storage and possibly also enhance accuracy of the 1-NN rule
on new instances (generalization performance).

In this paper we introduce a new graph-based representation of a training set, called Hit
Miss Network. In an HMN, nodes are instances of the considered training set. Edges are defined
as follows: for each node x and for each class, there is a directed edge from x to its nearest
neighbor among training set instances belonging to that class. Thus HMN represents a ’more
specific’ nearest neighbor relation, namely between each pair of classes.

We show that structural properties of HMN’s correspond to properties of training instances
related to the decision boundary of the 1-NN rule, such as being border or central point.
These observations motivate the use of HMN for performing instance selection for the 1-NN

rule. We introduce three new instance selection algorithms. The first algorithm, called HMN-C,
discards instances corresponding to nodes of the HMN with no incoming edges (zero in-degree
nodes). We prove that instance selection by means of this algorithm does not change the 1-NN
classification of instances in the training set. The second algorithm, called HMN-E, employs a
more aggressive deletion strategy, removing a larger number of training instances, including
those with zero in-degree. The last algorithm, called HMN-E, applies iteratively HMN-E. Such
algorithms have the desirable properties of being order-independent and of having quadratic
time complexity, which can be reduced using metric trees or other spatial data structures.

We assess effectiveness of the proposed algorithms with respect to generalization perfor-
mance of the 1-NN rule and storage requirements, using 22 datasets with different character-
istics, such as input dimension, cardinality, class balance, number of classes, noise content,
and presence of redundant variables. Results of experiments show that HMN-EI improves
significantly average accuracy of the 1-NN rule, and achieves significantly better performance
than HMN-C and HMN-E. Experiments on the same datasets are conducted with the following
three algorithms, which have been analyzed in Brighton and Mellish’s paper on advances in
instance selection [8]. Edited Nearest Neighbor (E-NN), designed for noise reduction [35], and
two state-of-the-art editing algorithms: Iterative Case Filtering (ICF) [7] and the best of the
Decremental Reduction Optimization algorithms introduced in [36] (DROP3). Comparison of
the results shows that HMN-EI achieves best accuracy, with storage requirements similar to
those of ICF and DROP3.

These results indicate that HMN’s provide a powerful graph-based representation of training
sets, with local structural properties useful for analyzing and enhancing 1-NN-based classifi-
cation.

Related Work

Graphs have been successfully used for representing relations between points of a given
dataset, such as functional interaction between proteins (protein-protein interaction networks)
or proximity (nearest neighbor graphs) [17]. Graph representations in the context of 1-NN
instance-based learning mainly use proximity graphs. Proximity graphs are defined as graphs
in which points close to each other by some definition of closeness are connected [3]. Rep-
resentations of a dataset based on proximity graphs have been used with success to define



algorithms for reducing the size of the training set (e.g., [6]), for removing noisy instances
(e.g., [28]), and for detecting critical instances close to the decision boundary (e.g., [4]), in
order to improve storage and accuracy of 1-NN.

The nearest neighbor graph (NNG) is a typical example of proximity graph, where each
vertex is a data point that is joined by an edge to its nearest neighbor. The minimum
spanning tree (MST) is also a proximity graph. Graph-based applications to instance-based
learning algorithms mainly use the Gabriel graph (GG). Both the NNG and MST are sub-
graphs of the GG. The GG is a subgraph of the Delaunay Triangulation (DT), the dual of
the Voronoi diagram. The Voronoi diagram and correspondingly the DT of a point set cap-
ture all the proximity information about the point set because they represent the original
1-NN rule decision boundary. A so-called Voronoi condensed dataset is obtained by discard-
ing all those points whose Voronoi cell shares a face with those cells that contain points of
the same class [33]. The 1-NN decision boundary is the union of the common faces of the
Voronoi diagram between Voronoi cell neighbors of different classes. The algorithm produces
a decision-boundary consistent set. Voronoi condensing does not reduce the number of points
to a great extent and its computational complexity in higher dimensions is exponential in the
number of dimensions [33]. Exact computation of the Gabriel graph is cubic in the number
of nodes.

In [4, 5, 6, 24, 28], faster algorithms for instance selection are investigated, which are based
on the GG and the Reduced Neighborhood graph [22]. In particular, in [5] a specific data-
structure for efficient computation of approximate Gabriel neighbor is proposed. Moreover,
three instance selection algorithms are considered: Gabriel-Graph algorithm, ICF, and a so-
called Hybrid. Hybrid incorporates E-NN, ICF, and the Gabriel graph rule. Specifically, it
consists of the sequential application of a modified version of E-NN based on approximate
Gabriel neighbor, a condensing step using Gabriel graph rule, and a filtering step of ICF. The
authors provide a rather short discussion of results, and do not test the difference in quality
of the average results of the algorithms.

For a thorough survey of graph-based methods for nearest neighbor classification, the
reader is referred to [32]. There are two main differences between proximity graphs and
HMN’s. First, HMN’s explicitly use the class label of points in the definition of edges. As a
consequence, while proximity graphs can be applied to any dataset, HMN’s are specifically
defined for labeled data. Second, HMN’s are directed graphs, while proximity graphs are not.
Exact computation of HMN has quadratic time complexity. This bound can be reduced by
using metric trees or other spatial data structures [18].

A new class of directed proximity graphs, called class cover catch digraphs (CCCD’s) has
been introduced in [23], which provide a graph-based representation of one (target) class
versus a different (non-target) class. In a CCCD of two such classes, nodes are the target
instances and the maximal covering balls centered on each target instance, where a maximal
covering ball of a target point is the ball centered in that point with maximum radius, which
does not contain any non-target point. Each maximal covering ball is connected to its center
by a directed edge.

CCCD’s have been used for translating the so-called ’constrained class cover problem’
(CCCP) to a problem on directed graphs. The CCCP amounts to find a minimum cardi-
nality set of open covering balls with centers in target class points whose union covers the
target class and does not contain any point of the non-target class.

The problem of finding an optimal solution to an instance of the CCCP has been shown
to be equivalent to the one of finding a minimum cardinality dominating set in a general



digraph. For CCCD’s with points on Euclidean L2 metric space, the problem can be solved in
O(nm) time, with n and m equal to the number of target and non-target points, respectively.
Further information about analysis of CCCD’s and their application to classification can be
found in [14, 15, 16].

While both HMN’s and CCCD are directed graphs, they describe different relations: HMN’s
describe the nearest neighbor relation between points of each pair of classes, while CCCD’s
describe the relation between maximal covering balls and target instances of one class.

The rest of the paper is organized as follows. After introducing the terminology used
throughout the paper, the next section defines HMN’s and discusses their properties. Section
3 presents a brief review of instance selection methods. Section 4 introduces HMN-C, HMN-E
and HMN-EI. Section 5 describes experiments. Finally, in Section 6, we conclude and point to
future work.

Terminology

The following notions and terms will be used in the sequel.
- X: a training set,
- L = 1, . . . , c: class labels of X
- x: an element of X,
- |X|: the number of elements (cardinality) of X,
- Xi: the set of points of X with label i,
- label(x): the class label of x,
- 1-NN(x, l): the nearest neighbor of x among those points (different from x) with label l,
- G: a directed graph with nodes representing elements of X,
- e = (x, y): an edge of G, with x the vertex from which e is directed and y the vertex to
which e is directed,
- d(x): the number of edges where x occurs (the degree of x),
- d(G): the total number of edges of G (the degree of G),
- in-degree of x: the number of edges pointing to x,

2 Hit Miss Networks

Suppose X consists of points from c different classes. In an HMN of X, a directed edge from
point x to y is defined if y is the nearest neighbor of x in the class of y. Thus each point x
has c outgoing edges, one for each class. When the classes of x and y are the same, we call x
a hit of y, otherwise a miss of y . The name hit miss network is derived from these terms.

Definition 2.1 (Hit Miss Network) The Hit Miss Network of X, HMN(X), is a directed
graph G = (V,E) with

• V = X and

• E = {(x, 1-NN(x, l)) for each x ∈ X and l ∈ L}.

Definition 2.2 (Hit, Miss Points) Let G = HMN(X). A hit of x (respectively, miss of x)
is any point y such that e = (y, x) is an edge of G and label (y) = label(x) (respectively,
label(y) 6= label(x) ).
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Figure 1: HMN graph of the training set for an artificial classification problem. Hit- and
miss-degree of each node is written on the left and right side of the node, respectively.

We call hit-degree (respectively miss-degree) of x the number of hit (respectively miss)
nodes of x. Hit(x) (respectively Miss(x)) denotes the set of hit (respectively miss) nodes of
x.

Figure 1 shows the HMN of the training set for a toy binary classification task. Observe that
the two points with zero in-degree are relatively isolated and far from points of the opposite
class, while points with high miss-degree are closer to points of the opposite class and to the
1-NN decision boundary.

Computing HMN requires quadratic time complexity in the number of points. Nevertheless,
by using metric trees or other spatial data structures this bound can be reduced. For instance,
using kd trees, whose construction takes time proportional to nlog(n), nearest neighbor search
exhibits approximately O(n1/2) behavior [18]. A recent fast all nearest neighbor algorithm
for applications involving large point-clouds is introduced in [29].

By construction, the degree of G, and the degree d(x) of a node x ∈ V satisfy the following
properties:

d(G) = c · |X|
and

c ≤ d(x) ≤ |X|+ c− 1.

HMN’s describe the nearest neighbor relation of each pair of classes of the training set.
Formally, it is easy to check that

HMN(X) = ∪i,j,i6=j,i,j∈[1,c]HMN(Xi ∪Xj).



Thus HMN’s can be constructed in an incremental way by adding nodes and edges for each
pair of classes, implying that if a new class is added, one does not need to recompute the
entire HMN.
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Figure 2: A XOR problem data set (left) and plot of sorted in-degrees (y-axis) of nodes
(x-axis), in decreasing order, of the corresponding HMN graph (right).

Figure 2 shows a training set for a XOR classification task, and the sorted in-degrees of
its HMN graph. The in-degree distribution follows a Power law, where very few nodes have
high in-degree. If we randomly permute the class labels of the training set then the degree
distribution changes, with lower in-degree values and more nodes having small in-degree (cf.
Figure 3).

These observations indicate that the local structure of HMN provides information about
properties of the training points, and motivate us to use HMN’s for defining a new instance
selection technique. Before that, in the next section we review briefly instance selection
algorithms.

3 Instance Selection Algorithms

In instance-based learning, the training set is stored, and the machine learning algorithm
computes a distance between the new instance and the stored ones in order to classify new
instances. In particular, in the one nearest neighbor algorithm (1-NN) the class label of a new
instance is the one of the stored instance with minimum distance.

Instance selection techniques, here also called editing techniques, select a subset of the
training set in order to improve the storage and possibly the generalization performance of
an instance-based learning algorithm. In this paper we focus on the 1-NN classifier.

Research on instance selection started with the seminal work of [19]. Subsequent research
focussed mainly on three types of training set condensation techniques [8]: competence preser-
vation, competence enhancement, and hybrid approaches.

• Competence preservation algorithms compute a training set consistent subset by remov-



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Figure 3: Training points of a XOR problem data set with labels randomly permuted (left
figure) and plot of in-degrees, sorted in decreasing order, obtained by applying HMN (right
figure).

ing irrelevant points that do not affect the classification accuracy of the training set
(e.g., [2, 12]).

• Competence enhancement methods remove noisy points in order to increase classifier
accuracy. Noise reduction techniques can remove exception instances or border instances
which cannot be distinguished from true noise by the technique, hence can possibly affect
negatively the generalization performance of the classifier that uses only the selected
instances (e.g., [34, 35]).

• Hybrid methods aim at finding a subset of the training set that is both noise free and
does not contain irrelevant points (e.g., [8, 36]). Alternative methods use prototypes
instead of instances of the training set (cf., e.g., [25]).

In [37], Wilson and Martinez present a comprehensive survey of concepts and issues related
to reduction techniques for instance-based learning algorithms, including a thorough experi-
mental comparison of algorithms. Other, more recent surveys of instance selection techniques
are [8, 20, 21]. In particular, in their paper [8] on advances in instance selection, Brighton
and Mellish compare experimentally Edited Nearest Neighbor (E-NN) and the state-of-the-art
editing algorithms Iterative Case Filtering (ICF) and Decremental Reduction Optimization
Procedure 3 (DROP3). E-NN is an algorithm generally considered in comparative experimental
analysis of editing methods mainly because it provides useful information on the amount of
’noisy’ instances contained in the considered datasets, and on the improvement of accuracy
obtained by their removal. Iterative Case Filtering uses E-NN as pre-processing noise reduc-
tion step, followed by an iterative procedure for deleting ’superfluous points’. Also DROP3

begins with the application of a simple noise reduction step, followed by another simple type
of heuristic for discarding ’superfluous points’.

Results of an extensive comparative experimental analysis performed in [37] and in [8]
indicate that ICF and DROP3 are cutting-edge instance selection algorithms, achieving best



K-NN accuracy and storage reduction on a large number of learning tasks over many other
editing methods. These algorithms, together with E-NN, are described in more detail below
and used to assess comparatively the performance of HMN-based editing algorithms.

3.1 Edited Nearest Neighbor

Wilson in [35] introduced the Edited Nearest Neighbor (E-NN), where each point x is removed
from X if it does not agree with the majority of its K nearest neighbors. This editing rule
removes noisy points as well as points close to the decision boundary, yielding to smoother
decision boundaries.

3.2 Iterative Case Filtering

In [7] Brighton and Mellish proposed the Iterative Case Filtering algorithm (ICF), which
first applies E-NN algorithm iteratively until it is not possible to remove any point, and next
iteratively removes other points as follows. At each iteration, all points for which the so-called
reachability set is smaller than the coverage one are deleted. The reachability of a point x
consists of the points inside the largest hyper-sphere containing only points of the same class
as x. The coverage of x is defined as the set of points that contain x in their reachability set.

3.3 Decremental Reduction Optimization

The family of Decremental Reduction Optimization (DROP) algorithms was first introduced
by Wilson and Martinez in [36], and further extended and analyzed in [37]. It consists of five
algorithms DROP1-5. DROP1 is the basic removal rule, which removes a point x from X if the
accuracy of the K-NN rule on the set of its associates does not decrease. Each point has a
list of K nearest neighbors and a list of associates, which are updated each time a point is
removed from X. A point y is an associate of x if x belongs to the set of K nearest neighbors
of y. If x is removed then the list of K nearest neighbors of each of its associates y is updated
by adding a new neighbor point z, and y is added to the list of associates of z. Moreover, for
each of the K nearest neighbors y of x, x is removed from the list of associates of y.

DROP2 is obtained from DROP1 by discarding the last update step, hence it considers all
associates in the entire training set when testing accuracy performance in the removal rule.
Moreover, the removal rule is applied to the points sorted in decreasing order of distance from
their nearest neighbor from the other classes (nearest enemy). In this way, points furthest
from their nearest enemy are selected first.

DROP3 applies a pre-processing step which discards points of X misclassified by their K
nearest neighbors, and then applies DROP2.

DROP4 uses a stronger pre-processing step which discards points of X misclassified by their
K nearest neighbors if their removal does not hurt the classification of other instances.

Finally DROP5 modifies DROP2 by considering the reverse order of selection of points, in
such a way that instances are considered for removal beginning with instances that are nearest
to their nearest enemy.

DROP3 achieves the best mix of storage reduction and generalization accuracy of the DROP

methods (cf. [37]). Moreover, results of experiments conducted in [36, 37] show that DROP3

achieves higher accuracy and smaller storage requirements than several other methods, such
as CNN [19], SNN [27], E-NN [35], the All k-NN method [31], IB2, IB3 [1], and the Explore



method [9]. Therefore it seems sufficient, in our opinion, to use DROP3 and ICF in order to
compare our algorithms with the state-of-the-art ones.

4 Instance Selection with Hit Miss Networks

Zero in-degree nodes of HMN(X) include relatively isolated points, and points not too close
to the decision boundary. This is illustrated in the HMN-C sub-plot of Figure 5, where zero
in-degree nodes of the HMN for a XOR data set are highlighted in bold.

Zero in-degree nodes can be safely removed from X without affecting 1-NN classification
of the training points. Formally, we have the following result.

Proposition 4.1 Let S be obtained by removing from X all points with zero in-degree. Then
S is a decision-boundary consistent subset.

Proof
Suppose there exists x ∈ X s.t. 1-NN(x,X) = y, 1-NN(x, S) = y1 and l(y) 6= l(y1). Then

y 6= y1 and y has been removed. So y has in-degree equal to 0.
From 1-NN(x,X) = y it follows that x is in Hit(y) or in Miss(y), hence the in-degree of

y is at least 1, which yields a contradiction.
Then l(y) 6= l(y1) was false. Hence S is a training set consistent subset.

We call HMN-C (HMN for training set Consistent instance selection) the algorithm that
removes from the training set all instances with zero in-degree.

HMN-C does not remove noisy instances. Therefore, we introduce an instance selection
algorithm based on a more aggressive removal strategy, called HMN-E (HMN for Editing).
HMN-E uses properties of the hit- and miss-degree of nodes for deciding which points of X to
remove.

Pseudo-code of this algorithm is given in Figure 1. HMN-E is based on four if-then rules,
described below.

1. The first rule removes x if its miss-degree is greater or equal than its hit-degree, that is
|Miss(x)| ≥ |Hit(x)|. This amounts to discard a point when it is isolated (that is, has
zero in-degree), as well as when it has more ’miss’ than ’hit’ points.

In order to deal with unbalanced data sets, the terms of the inequality are weighted by
the fraction of points of the same and other classes, respectively, resulting in rule R1

(lines 3-5 in Figure 1) which removes a point x from X if

wl(x) ∗ |Miss(x)|+ ε > (1− wl(x)) ∗ |Hit(x)|, (1)

where wl(x) = |{z | l(z) = l(x)}|/|X| and ε < 1 (ε = 0.1 is used in our experiments).

2. On small datasets, application of R1 could remove too many points of one class. Rule
R2 (lines 10-12 in Figure 1) handles this case. It checks if the size of a class becomes too
small after application of R1. In such a case all points of that class having positive in-
degree are added. The threshold used in the rule is set in such a way that the minimum
size of a condensed class becomes equal to 4. We consider this to be a reasonable class
storage lower bound for the condensed 1-NNrule.



1: compute HMN(X)
2: for x in X do
3: if wl(x) ∗ |Miss(x)|+ ε > (1− wl(x)) ∗ |Hit(x)| then
4: flag x for removal {rule R1}
5: end if
6: end for
7: XR1,remove = {x ∈ X with flag for removal}
8: for l in 1 . . . c do
9: Leftl = {x 6∈ XR1,remove | l(x) = l}

10: if |Leftl| < 4 then
11: unflag {z ∈ XR1,remove | l(z) = l, in-degree(z) > 0} {rule R2}
12: end if
13: end for
14: for x in XR1,remove do
15: if c > 3 and |Miss(x)| < c/2 and in-degree(x) > 0 then
16: unflag x {rule R3}
17: end if
18: if |Hit(x)| ≥ |Xl(x)|/4 then
19: unflag x {rule R4}
20: end if
21: end for
22: remove from X all x with flag for removal

Figure 4: Pseudo-code of HMN-E algorithm. Input: training set X. Output: subset of X.



3. Suppose for simplicity each class has equal size (|X|/c). Then |Miss(x)| ≤ (c−1)2|X|
c ,

and |Hit(x)| ≤ |X|/c − 1. Thus |Miss(x)| grows linearly with the number c of classes,
while |Hit(x)| decreases in an inverse linear way. Then |Miss(x)| has more ’chance’ to
assume higher values in the presence of many classes. This motivates the introduction
of the heuristic Rule R3 (lines 15-17 in Figure 1). For more than three classes, a point x
with in-degree greater than 0 is added if it has a low number of ’miss’ points, low with
respect to c. Here we use as threshold half of the total number of classes.

4. Points with many ’hits’ are closer to the ’centroid’ of the class, hence are considered to
be relevant for discriminating the classes, even when they are close to points of other
classes. This case is implemented in rule R4 (lines 18-20 in Figure 1) which adds x if it
is the ’hit’ of at least 25% of the points of its class.

Rules R2 - R4 can be considered as ’rules of thumb’. The thresholds have been set to val-
ues considered reasonable for the general case, and not tuned on each specific dataset. They
could possibly be improved by performing parameter tuning or by using domain knowledge
on the data distribution of the learning task provided by the user.

In order to remove more “redundant” points, HMN-E can be applied iteratively. We repeat
the application of HMN-E until the generalization accuracy of 1-NN on the original training set
with the reduced set decreases. The resulting algorithm is called HMN-E Iterated (HMN-EI).

These three HMN-based editing algorithms are order independent, that is, their output does
not depend on the order in which training points are processed.

4.1 Comparison of the Methods on the XOR Problem

Figure 5 shows application of the considered editing algorithms to the training set of a XOR
classification task. Points removed by an algorithm are shown in bold.

Observe that points considered ’noisy’ by E-NN are close to the decision boundary. ICF

deletes also ’safe’ points far from the decision boundary (in order to enhance storage require-
ments).

Note that by construction points removed by HMN-C are also removed by HMN-E, and points
removed by HMN-E are also removed by HMN-EI. Moreover, points removed by E-NN are also
removed by ICF.

While HMN-EI selects only points with in-degree 1 and 2, ICF and DROP3 selects also
points of higher degree. The figures do not show any other apparent set-theoretic relationship
between the subsets of points removed by the methods.

Figure 6 plots the sorted in-degrees of the considered XOR training set, where in-degree
of points removed by a method are marked with triangles. As expected, points removed by
ICF and not already deleted by E-NN have low in-degree. The majority of points removed
by E-NN have high in-degree, showing the tendency of ’noisy’ points to have high in-degree.
HMN-E removes more points with high in-degree than E-NN, and it selects points with low,
but not zero, degree. Finally, HMN-EI removes some more points with low degree.

5 Experiments

The following seven algorithms are considered: 1-NN (no instance selection), HMN-C, HMN-E,
HMN-EI, E-NN, ICF, and DROP3. In order to assess their comparative performance, we im-
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Figure 5: Effect of the algorithms on a XOR problem training set: removed points are shown
with filled markers. Top row, from left to right: E-NN, ICF, DROP3. Bottom row, from left to
right: HMN-C, HMN-E and HMN-EI.
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Figure 6: In-degree of nodes of the HMN built on the considered XOR training set, sorted in
decreasing order. The in-degree of points removed by an algorithm are marked with triangles.
Top row, from left to right: E-NN, ICF, DROP3. Bottom row, from left to right: HMN-C, HMN-E
and HMN-EI.



plement the above algorithms and conduct extensive experiments on 22 Machine Learning
benchmark datasets. All algorithms are tested using one neighbor.

The performance measures here used are (average) test accuracy of the classifier and
(average) percentage of the training set removed by the method.

5.1 Datasets

The following 22 publicly available benchmark datasets used in previous studies on model
selection for (semi)supervised learning, are considered.

1. Raetsch’s binary classification benchmark datasets have been used in [26]: they consists
of 1 artificial and 12 real-life datasets from the UCI, DELVE and STATLOG benchmark
repositories.

For each experiment, the 100 (20 for Splice and Image) partitions of each dataset into
training and test set available in the repository are here used.

2. Chapelle’s benchmark datasets used in [10] are from two artificial binary classification
and three real-life multi-class classification problems. Specifically, g50c and g10n are
generated from two standard normal multi-variate Gaussians. In g50c, the labels cor-
respond to the Gaussians, and the means are located in 50-dimensional space such that
the Bayes’ error is 5%. In contrast, g10n is a deterministic problem in 10 dimensions,
where the decision function traverses the centers of the Gaussians, and depends on only
two of the input dimensions.

The three real world datasets are Coil20, consisting of gray-scale images of 20 different
objects taken from different angles, in steps of 5 degrees, Uspst, the test data part of the
USPS data on handwritten digit recognition, and Text consisting of the classes ’mac’
and ’mswindows’ of the Newsgroup20 dataset.

For each experiment, the 10 partitions of each dataset into training and test set available
in the repository are used.

3. Finally, we consider four standard benchmark datasets from the UCI Machine Learning
repository: Iris, Bupa, Pima, and Breast-W.

For each experiment, 100 partitions of each dataset into training and test set are used.
Each partition randomly divides the dataset into training and test set, equal to 80%
and 20% of the data, respectively.

Thus the benchmark data consists of 3 artificial datasets (Banana, g50c, g10n) and 19
real-life ones, with different characteristics as shown in Table 1. In particular, Chapelle’s
datasets are balanced, that is, all classes are represented by similar number of points, while
some of Raetsch’s datasets are rather unbalanced.

5.2 Results

Cross validation is applied to each dataset. For each partition of the dataset, each editing
algorithm is applied to the training set X from which a subset S is returned. The one nearest
neighbor classifier that uses only points of S is applied to the test set. The average accuracy
on the test set over the given partitions is reported for each algorithm (cf. Table 2, Table



Dataset CL VA TR Cl.Inst. TE Cl.Inst.

Banana 2 2 400 212-188 4900 2712-2188
B.Cancer 2 9 200 140-60 77 56-21
Diabetis 2 8 468 300-168 300 200-100
German 2 20 700 478-222 300 222-78
Heart 2 13 170 93-77 100 57-43
Image 2 18 1300 560-740 1010 430-580
Ringnorm 2 20 400 196-204 7000 3540-3460
F.Solar 2 9 666 293-373 400 184-216
Splice 2 60 1000 525-475 2175 1123-1052
Thyroid 2 5 140 97-43 75 53-22
Titanic 2 3 150 104-46 2051 1386-66
Twonorm 2 20 400 186-214 7000 3511-3489
Waveform 2 21 400 279-121 4600 3074-1526

g50 2 50 550 252-248 50 23-27
g10n 2 10 550 245-255 50 29-21
Coil20 20 1024 1440 70 40 2
Text 2 7511 1946 959-937 50 26-24
Uspst 10 256 2007 267-201-169-192-137 50 6-5-9-4-3-3-4-5-5

-171-169-155-175

Iris 3 4 120 40-40-40 30 10-10-10
Bupa 2 6 276 119-157 69 26-43
Pima 2 8 615 398-217 153 102-51
Breast-W 2 9 546 353-193 137 91-46

Table 1: Datasets used in the experiments. Raetsch’s benchmark repository avail-
able at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. Chapelle’s bench-
mark repository available at http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/.
Four popular benchmark datasets from UCI Machine Learning repository available at
http://mlearn.ics.uci.edu/MLRepository.html. D = datasets, CL = number of classes, TR =
training set, TE = test set, VA = number of variables, Cl.Inst. = number of instances in
each class.

3). The average percentage of instances that are excluded from S is also reported under the
column with label R. Average and median accuracy and training set reduction percentage
for each algorithm over all the 22 datasets is reported near the bottom of the Table.

We compare statistically HMN-EI with each of the other algorithms as follows.

• First a paired t-test on the cross validation results on each dataset is applied, to assess
whether the average accuracy for HMN-EI is significantly different than each of the other
algorithms. In Tables 2, 3 a ’+’ indicates that HMN-EI’s average accuracy is significantly
higher than the other algorithm at a 0.05 significance level. Similarly, a ’-’ indicates
that HMN-EI’s average accuracy is significantly lower than the other algorithm at a 0.05
significance level. The row labeled ’Sig.acc.+/-’ reports the number of times HMN-EI’s
average accuracy is significantly better and worse than each of the other algorithms at a
0.05 significance level. A paired t-test is also applied to assess significance of differences



in storage reduction percentages for each experiment.

• Second, in order to assess whether differences in accuracy and storage reduction on
all runs of the entire group of datasets are significant, a non-parametric paired test,
the Wilcoxon Signed Ranks test1 is applied to compare HMN-EI with each of the other
algorithms. A ’+’ (respectively ’-’) in the row labeled ’Wilcoxon’ indicates that HMN-EI
is significantly better (respectively worse) than the other algorithm.

Dataset 1-NN HMN-C R HMN-E R HMN-EI R

Banana 86.4 + 85.6 + 19.7 + 88.2 + 38.5 + 88.6 57.9

B.Cancer 67.3 + 65.9 + 20.1 + 66.1 + 50.0 + 69.2 72.8

Diabetis 69.9 + 68.6 + 22.4 + 72.5 + 53.1 + 73.5 73.1

German 70.5 + 69.4 + 26.0 + 72.5 56.4 + 72.9 75.5

Heart 76.8 + 76.1 + 23.7 + 81.7 52.9 + 81.6 79.3

Image 96.6 - 96.1 - 23.7 + 94.8 - 41.1 + 92.7 57.3

Ringnorm 65.0 + 63.4 + 33.5 + 66.6 - 63.9 + 65.6 82.9

F.Solar 60.8 + 60.5 + 80.1 + 63.5 + 86.9 + 64.7 92.1

Splice 71.1 - 70.1 + 46.0 + 72.3 - 71.7 + 70.7 86.6

Thyroid 95.6 - 94.9 - 24.2 + 93.4 38.9 + 93.2 59.1

Titanic 67.0 + 66.9 + 79.6 + 70.9 + 84.9 + 76.0 94.7

Twonorm 93.3 + 92.8 + 39.4 + 95.7 60.4 + 95.9 83.5

Waveform 84.2 + 83.6 + 36.2 + 86.0 - 58.0 + 85.4 79.9

g50c 79.6 + 80.2 + 42.7 + 87.4 - 71.0 + 86.8 88.3

g10n 75.0 + 74.6 + 26.0 + 75.8 + 63.5 + 79.2 82.5

Coil20 100 - 100 - 6.7 + 100 - 10.4 + 99.5 15.0

Text 92.8 - 90.8 - 16.7 + 89.4 - 54.1 + 86.4 78.9

Uspst 94.6 - 94.6 - 12.5 + 94.4 - 20.3 + 93.6 29.8

Iris 95.5 95.0 24.7 + 95.1 38.7 + 95.4 75.2

Breast-W 95.7 + 95.5 + 50.7 + 97.1 54.9 + 96.9 71.8

Bupa 61.6 + 59.5 + 18.5 + 63.4 + 54.7 + 64.5 76.0

Pima 67.8 + 66.5 + 21.4 + 70.8 + 50.8 + 71.7 68.1

Average 80.3 79.6 31.6 81.7 53.4 82.2 71.8

Median 78.2 78.1 24.5 83.9 54.4 83.5 75.8

Sig.+/- 15/6 16/5 22/0 8/8 22/0 n/a n/a

Wilcoxon + + + ∼ + n/a n/a

Table 2: Results of experiments on ML benchmark datasets. Each column labeled with the
name of an algorithm reports its average test set accuracy on each dataset. R = percentage
of training points removed. Best results are shown in bold. Average (Median) = average
(median) results over datasets. Sig.+/- = number of times HMN-EI average accuracy (stor-
age reduction) is significantly better (+) or significantly worse (-) than the other algorithm,
according to a paired t-test at 0.05 significance level. Wilcoxon = a ’+’ indicates HMN-EI sig-
nificantly better than the other algorithm at a 0.01 significance level according to a Wilcoxon
test for paired samples, ∼ indicates no significant difference.

Results of Table 2 show that HMN-EI achieves best generalization accuracy, significantly
better than the one of 1-NN and of HMN-C. Moreover, HMN-EI outperforms significantly
HMN-E with respect to storage requirements and achieves similar generalization performance.

1We used ’wilcoxon’ Matlab routine by G. Cardillo.



For these reasons, HMN-EI is chosen for further comparison with state-of-the-art editing al-
gorithms.

5.3 Comparison with Other Algorithms

Dataset HMN-EI R ICF R E-NN R DROP3 R

Banana 88.6 57.9 86.1 + 79.2 - 87.8 + 13.1 + 87.6 + 68.2 -

B.Cancer 69.2 72.8 67.0 + 79.0 - 69.4 33.3 + 69.7 - 72.9

Diabetis 73.5 73.1 69.8 + 83.1 - 72.6 + 30.3 + 72.3 + 73.4

German 72.9 75.5 68.6 + 82.2 - 73.0 30.1 + 72.0 + 74.3 +

Heart 81.6 79.3 76.7 + 80.9 - 80.6 + 23.1 + 80.2 + 72.1 +

Image 92.7 57.3 93.8 80.3 - 95.8 - 3.4 + 95.1 - 64.9 -

Ringnorm 65.6 82.9 61.2 + 85.5 - 54.8 + 35.3 + 54.7 + 80.6 +

F.Solar 64.7 92.1 61.0 + 52.0 + 61.3 + 39.8 + 61.4 + 93.8 -

Splice 70.7 86.6 66.3 + 85.5 + 68.4 + 28.3 + 67.6 + 79.01 +

Thyroid 93.2 59.1 91.9 + 85.6 - 94.0 - 4.0 + 92.7 + 65.7 -

Titanic 76.0 94.7 67.5 54.3 + 67.3 + 33.0 + 67.7 + 94.3

Twonorm 95.9 83.5 89.2 + 90.7 - 94.1 + 6.4 + 94.3 + 72.7 +

Waveform 85.4 79.9 82.1 86.8 - 85.4 15.7 + 84.9 + 73.6 +

g50c 86.8 88.3 82.2 + 56.3 + 82.2 + 19.7 + 82.8 + 77.7 +

g10n 79.2 82.5 73.0 + 53.9 + 74.0 + 22.8+ 75.0 + 71.4 +

Coil20 99.5 15.0 98.5 + 42.6 - 100 - 0.0 + 95.5 + 64.4 -

Text 86.4 78.9 88.2 - 68.8 + 91.6 - 7.7 + 88.0 - 66.7 +

Uspst 93.6 29.8 86.2 87.8 - 94.0 4.7 + 91.4 + 67.3 -

Iris 95.4 75.2 95.3 69.7 - 95.9 - 4.2 + 95.8 - 66.4 +

Breast-W 96.9 71.8 95.4 + 93.8 - 96.6 4.1 + 96.8 74.2 -

Bupa 64.5 76.0 60.9 + 74.3 + 63.2 + 38.1+ 63.1 + 73.8 +

Pima 71.7 68.1 67.9 + 78.7 - 69.7 + 32.4 + 69.4 + 73.3 -

Average 82.0 71.8 78.6 75.0 80.5 19.5 79.9 73.7

Median 83.5 75.8 79.4 79.8 81.4 21.25 81.5 73.1

Sig.+/- n/a n/a 16/2 7/15 12/5 22/0 17/4 11/8

Wilcoxon n/a n/a + ∼ + + + ∼

Table 3: Results of experiments on ML benchmark datasets of HMN-EI, ICF, Wilson’s editing,
and DROP3.

From the results of the experiments reported in Table 3 we derive the following observa-
tions.

• On the g50c dataset, HMN-EI achieves highest average accuracy, significantly better
than that of all other methods. With an average error of about 13%, close to twice
the Bayes probability of error, HMN-EI performs almost optimally, and discards about
88% of the training data. This shows effectiveness and robustness of this method with
respect to the presence of noise (on this type of classification task).

• On the g10n dataset, HMN-EI achieves significantly better performance than that of
the other methods, indicating robustness to the presence of irrelevant variables (on this
type of classification task).

• On datasets with more than three classes, HMN-EI has worse storage requirements than
the other algorithms, but also generally higher accuracy, due to the more conservative



editing strategy (Rule 3) HMN-EI uses on datasets with many classes.

• Results of a paired t-test at a 0.05 significance level shows better accuracy performance
of HMN-EI over ICF, E-NN and DROP3 (cf. row Sig.+/-) on 15, 12, and 17 of the datasets,
and worse accuracy on 2, 5, and 4 datasets, respectively. Storage reduction of HMN-EI is
7, 22, and 11 times better, and 15, 0, and 8 worse, indicating better storage performance
of ICF, according to this test. As shown, e.g., in [13], comparison of the performance of
two algorithms based on the t-test is only indicative because the assumptions of the test
are not satisfied, and the Wilcoxon test is shown to provide more reliable estimates.

• Results of the non parametric Wilcoxon test for paired samples at a 0.01 significance
level indicate that the performance of HMN-EI on the entire set of classification tasks
is significantly better than each one of the other algorithms with respect to accuracy,
and that there is no significant difference in storage reduction between HMN-EI and
state-of-the-art editing algorithms (cf. last row of the table).

• The three best performing instance selection algorithms, DROP3, ICF and HMN-EI have
quadratic computational complexity in the number of instances (which can be reduced
by using ad-hoc data structures such as kd-trees). ICF and HMN-EI are in principle
slower than the other algorithms, due to their multiple passes over (selected) instances.
Nevertheless, in our experiments these algorithms require a small number of iterations
(about 7 for ICF and 3 for HMN-EI). Thus their computational complexity is not signif-
icantly worse than that of DROP3.

In summary, results of these experiments indicate effectiveness of HMN-based instance se-
lection and robustness of HMN-EI with respect to the presence of high number of variables,
training examples, multiple classes, noise and irrelevant variables. Comparison with results
obtained by E-NN, ICF and DROP3 shows improved average accuracy and similar storage
requirement of HMN-EI, ICF and DROP3 on these datasets.

6 Conclusions and Future Work

This paper proposed a new graph-based representation of a training set and showed how
local structural properties of nodes provide information about the closeness of the points to
the decision boundary of the 1-NN rule. We formalized these properties by means of the
notions of Hit and Miss set, and used such notions for defining three algorithms for 1-NN’s
instance selection. We proved that HMN-C removes instances without affecting the accuracy
of the 1-NN rule on the original training set (it computes a decision-boundary consistent
subset). We showed that HMN-E and HMN-EI remove more points than HMN-C, including
those close to the decision boundary. Results of extensive experiments indicated that HMN-EI
significantly improves the generalization accuracy of 1-NN and reduces significantly its storage
requirements.

We compared experimentally HMN-EI with a popular noise reduction algorithm (E-NN),
and two state-of-the-art editing algorithms (ICF and DROP3). Results of extensive experi-
ments on 19 real-life datasets and 3 artificial ones showed that HMN-EI achieved best average
accuracy, and storage reduction similar to that of ICF and DROP3. This indicates that simple
topological properties of the proposed graph-based dataset representation provide an effective
tool for 1-NN’s instance selection.



The design of condensing algorithms could also be based on an extension of HMN for
describing the K-nearest neighbor relation between each pair of classes. We conducted pre-
liminary experiments to investigate whether using more than one neighbor to classify new
points affects the accuracy performance of the condensing algorithms here considered. Re-
sults of experiments on seven UCI ML datasets, using 3 and 5 neighbors for classifying new
points, showed that HMN-EI still achieves best average accuracy. In general, the generalization
performance increased (of about 1%, 2%) when 3 and 5 neighbors were used.

HMN’s could be used for other applications. For instance, for measuring the difficulty of a
learning task with respect to a given training set (cf. e.g. [38]), for enhancing classification
techniques based on a notion of margin, such as Support Vector Machines (cf. e.g. [30]),
for improving Boosting algorithms by means of editing techniques (cf. e.g. [34]), and more
generally for tackling over-fitting in supervised learning.
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