
Modular Speci�cation of Frame Properties

in JML

Peter M�uller1, Arnd Poetzsch-He�ter1, and Gary T. Leavens2

1 FernUniversit�at Hagen, 58084 Hagen, Germany

fPeter.Mueller, Arnd.Poetzsch-Heffterg@Fernuni-Hagen.de
2 Iowa State University, Ames, Iowa, 50011-1040, USA

leavens@cs.iastate.edu

Abstract. We present a modular speci�cation technique for frame prop-

erties. The technique uses modi�es clauses and abstract �elds with de-

clared dependencies. Modularity is guaranteed by a programming model

that restricts aliasing, and by modularity requirements for dependen-

cies. For concreteness, we adapt this technique to the Java Modeling

Language, JML.

1 Introduction

In an interface speci�cation language, a frame property describes what loca-

tions a method may modify, and, implicitly, what locations it may not modify

[BMR95]. This is often speci�ed using a modi�es clause [GHG+93,Win87].

We address three problems for speci�cation and veri�cation of frame proper-

ties: (1) Information hiding|The concrete (e.g., private) �elds of a class should

be hidden from its clients, even in speci�cations; yet the frame properties of

(public) speci�cations must somehow permit those locations to be modi�ed.

(2) Extended state|When a subclass overrides a method, it may need to mod-

ify additional �elds it declared; yet the demands of behavioral subtyping (e.g.,

[LW94,DL96]) would seem to prohibit modi�cation of these additional �elds

[Lei98]. (3) Modularity|A modular solution to the frame problem must allow

one to precisely specify the frame properties of methods and to verify their im-

plementations, without knowing the context in which the methods will be used.

However, in general one cannot know what locations might be found in a pro-

gram that extends or uses a given class or interface.

Leino's work [Lei95] solves problems (1) and (2) by introducing abstract �elds

with explicitly declared dependencies and a re�ned semantics of modi�es clauses

(see below). This paper explains part of M�uller's thesis [M�ul01], which builds on

Leino's work and provides a modular sound solution to problem (3).

1.1 Related Work

When modeling objects as records containing possibly abstract locations, one

needs a way to specify the correspondence between abstract and concrete loca-

tions. To do this, Leino introduced depends and represents clauses [Lei95,Lei98].

2

A represents clause says how an abstract location's value is determined from

various concrete locations. To a �rst approximation, a depends clause says what

concrete locations are used to determine the abstract location's value. More pre-

cisely, a dependency declaration allows dependees to be modi�ed whenever the

abstract location is named in a modi�es clause. Thus, in JML, \depends absloc

<- concloc" says that concloc can be modi�ed whenever absloc is modi�able.

To support the speci�cation of extended state, a subtype may declare that

an inherited abstract �eld depends on the �elds it declares. Such dependencies

allow overriding methods in subclasses to modify their extended state.

Leino and Nelson distinguish static dependencies, of the form \depends f

<- g", and dynamic dependencies, of the form \depends f <- p.g", in which

abstract �eld f depends on �eld g of the pivot object p. Leino and Nelson handle

static and dynamic dependencies in di�erent ways, that is, by di�erent desugar-

ing of modi�es clauses, and di�erent modularity rules. Although M�uller's thesis

[M�ul01] treats both cases uniformly, in this paper, to avoid introducing addi-

tional concepts, we also distinguish them.

Leino and Nelson use scope-dependent depends relations [Lei95], which lead

to a scope-dependent meaning of modi�es clauses. Soundness is not immedi-

ate, because proofs for smaller scopes do not necessarily carry over to larger

scopes; indeed, Leino and Nelson have not yet proved modular soundness of

their technique for dynamic dependencies. See [M�ul01, Section 5.5.1] for a de-

tailed comparison between our approach and Leino's and Nelson's work.

1.2 Approach

To solve the �rst two problems described above, we follow Leino and Nelson

[Lei95,LN00], using abstract �elds and explicitly declared dependencies. We

explain the ideas by applying them to the Java Modeling Language (JML)

[LBR01,LBR99], which allows the speci�er to declare abstract �elds by using

the modi�er \model". JML also allows one to declare dependencies, although it

does not yet incorporate the restrictions we propose here.

Our solution to the modularity problem entails three steps: (1) We de�ne a

programming model that hierarchically structures the object store into so-called

contexts and restricts references between contexts [MPH00,MPH01,M�ul01].

(2) Dependency declarations generate a theory for dependencies declared in

a given set of modules. This depends relation does not specify dependencies for

extensions to the given set of modules. Because of this underspeci�cation one

can only prove properties about a module that hold in well-formed extensions.

Thus modular soundness is much simpler to prove than with a scope-dependent

semantics of the modi�es clause. The restricted programming model guarantees

that this weaker semantics is still strong enough to verify method invocations.

(3) We impose three modularity requirements to restrict the permissible de-

pendencies of abstract locations. These restrictions allow us to prove a modu-

larity theorem that makes modular veri�cation of frame properties possible.

A detailed presentation of these ideas, including all formalizations and proofs,

but not their application to JML, is found in [M�ul01].

3

List

first

last

val

prev

next

Node

val

prev

next

Node

val

prev

next

Node

val

prev

next

Node

myList

Fig. 1. Nodes in a context (the oval). The owner object sits atop the context it owns.

2 The Programming Model

To achievemodularity, dependencies must be controlled. There are two problems,

both of which involve aliasing: (1) Representation exposure occurs when objects

inside the representation of an object X may be referenced by objects outside of

X 's representation. (2) Dependencies on argument objects occur when an object

X 's abstract value is determined by the abstract values of objects, called argu-

ment objects, outsideX 's representation. Both problems allow modi�cation of an

object's abstract value in ways that cannot be controlled by its implementation.

To prevent representation exposure, the object store is structured into a

hierarchy of contexts. Contexts are disjoint groups of objects. There is a root

context. All other contexts have an owner object in their parent context. Aliasing

is controlled by the following invariant: Every reference chain from objects in the

root context to an object in a context C passes through C's owner. Thus, an

owner object can control access to objects in its context. This structure of the

object store is called the ownership model [CPN98].

The ownership model is not suÆcient to prevent dependencies on argument

objects because it allows objects inside a context to reference argument objects in

ancestor contexts. We re�ned the ownership model in two ways [MPH01,M�ul01]:

(a) references to argument objects are made explicit by marking them readonly,

and (b) readonly references can point to any object, not only to objects in ances-

tor contexts. Access via readonly references is restricted to reading operations

without side-e�ects. This re�ned ownership model is more general than the orig-

inal one. In this re�ned model, we prevent dependencies on argument objects by

forbidding dependencies via readonly references.

Figure 1 illustrates our re�ned ownership model. The nodes of a linked list are

contained in a context owned by the list header. The objects stored in the list are

outside the context and are referenced readonly (dashed arrows). Consequently,

abstract �elds of the list must not depend on �elds of these objects.

To enforce the re�ned ownership model's invariant, we use the universe type

system [MPH01,M�ul01]. Besides tagging types as readonly, this type system also

4

distinguishes between references that remain inside a context and references

to objects that belong to the descendant context owned by the this-object.

References of the latter kind are tagged with the keyword rep [CPN98].

3 Speci�cation of frame properties in JML

3.1 Data abstraction in JML

Data abstractions in JML are speci�ed using abstract locations, i.e., model �elds.

For example, consider the speci�cations of List in Figure 2 and Node in Figure 3.

//@ model import edu.iastate.cs.jml.models.*;

public abstract class List {

//@ public model non_null JMLObjectSequence listValue;

protected /*% rep %*/ Node first, last;

//@ protected depends listValue <- first, first.values, last;

/*@ protected represents listValue <-

@ (first == null ? new JMLObjectSequence() : first.values); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies listValue;

@ ensures listValue.equals(\old(listValue.insertBack(o))); @*/

public void append(/*% readonly %*/ Object o) {

if (last==null) {

last = new /*% rep %*/ Node(null, null, o);

first = last;

} else {

last.next = new /*% rep %*/ Node(null, last, o);

last = last.next;

}

}

/* ... */

}

Fig. 2. A JML speci�cation of the Java class List, of doubly-linked lists.

The class List declares a public model �eld listValue, which describes the

abstract value of a List object. In the class Node, the model �eld values forms

part of the abstract value of Node objects. In JML, method speci�cations precede

the method header, preconditions are introduced by the keyword requires and

postconditions by the keyword ensures. For example, in the speci�cation of

List's method append, the postcondition describes the abstract e�ect of append

on the model �eld listValue.

5

//@ model import edu.iastate.cs.jml.models.*;

public class Node {

//@ public model non_null JMLObjectSequence values;

public Node next, prev;

public /*% readonly %*/ Object val;

//@ public depends values <- next, next.values, prev, val;

/*@ public represents values <-

@ (next == null ? new JMLObjectSequence(val)

@ : next.values.insertFront(val)); @*/

Node(Node nextp, Node prevp, /*% readonly %*/ Object valp) {

next = nextp; prev = prevp; val = valp;

}

}

Fig. 3. The JML speci�cation of the Java class Node.

3.2 Explicit dependencies in JML

Although M�uller's thesis [M�ul01] uses a quite general form of dependencies,

we use a syntax for depends clauses like that in Leino's thesis [Lei95]. Besides

simplicity, this syntax also permits the restrictions discussed in Section 4 to be

statically checked easily. We leave extensions to this syntax as future work.

For example, in the class List, the model �eld listValue is represented by

a sequence determined by first and first.values. Hence listValue is also

declared to depend on these �elds. Although the represents clause for List does

not use the �eld last, that �eld is listed in the depends clause, to permit it to be

modi�ed whenever listValue is modi�able. Similarly, in class Node, the model

�eld values depends on next, next.values, prev, and val.

3.3 Modi�es Clauses in JML

An example of a modi�es clause in JML appears in the speci�cation of List's

append method. It says that the method may modify listValue.

The semantics of the modi�es clause is that all relevant locations that either

are named in the clause or on which such locations depend may be modi�ed. A

location is relevant to the execution of a non-static method m if it is either in

the context that contains m's receiver or a descendant context of the one that

contains m's receiver. For example, if myList is an object of type List, then for

the call myList.append(o), the relevant locations are those in the context that

contains myList, and locations in descendant contexts. Since the �eld first in

List is declared using the keyword rep, the object myList.first points to is in

the context owned by myList (see Figure 1), which is thus a descendant context

of the context that contains myList. Since the next �elds of Node objects are not

6

//@ model import edu.iastate.cs.jml.models.*;

public abstract class Set {

//@ public model non_null JMLObjectSet setValue;

protected /*% rep %*/ /*@ non_null @*/ List theList;

//@ protected depends setValue <- theList, theList.listValue;

/*@ protected represents setValue \such_that

@ (\forall Object o; o != null;

@ theList.listValue.has(o) <==> setValue.has(o)); @*/

/*@ public normal_behavior

@ requires o != null;

@ modifies setValue;

@ ensures setValue.has(o); @*/

public void insert(/*% readonly %*/ Object o) {

if (!theList.contains(o)) { theList.append(o); }

}

}

Fig. 4. The JML speci�cation of the Java class Set.

declared using rep, the objects reachable via next are all in the same context.

It follows that all the nodes are in the context owned by myList, and hence that

the �elds of these nodes are also relevant locations. That is, the call may modify

myList.first, myList.first.values, myList.last, and all the �elds of the

nodes reachable from myList.first via the next �eld.

To explore the modularity consequences of this semantics, consider an ex-

tended program, in which the type List is used to implement the type Set, speci-

�ed in Figure 4. Set's model �eld setValue depends on its concrete �eld theList

and theList.listValue. Since the speci�cation of Set's insert method lists

setValue in its modi�es clause, a call such as mySet.insert(o) may modify

mySet.setValue and all the other relevant locations on which it depends. Since

theList is declared using rep, it is in the context owned by mySet, and so

is in a descendant context of the one containing mySet (see Figure 5). There-

fore mySet.theList is a relevant location, and since it is also a dependee, it can

be modi�ed. Similarly, mySet.theList.listValue, mySet.theList.first, and

the �elds of the nodes are relevant, and so these dependees can be modi�ed.

The modularity of the semantics is shown by the call theList.append(o)

in Set's insert method. How does the semantics allow List's append method

to modify the set's model �eld setValue, which it does when it modi�es the

abstract value of theList? The semantics allows this because it underspeci�es

the locations that append can modify, since it only describes the modi�cation of

relevant locations, and setValue is not relevant for the call theList.append(o).

The reason for this is that a context's owner is not contained in the context it

owns, and theList is in the context owned by the receiver in Set's insert

7

Node Node Node Node

List

Set

theListmySet

Fig. 5. Object Structure for a Set object.

method (see Figure 5). Hence in Set's insert method, this.setValue is not a

relevant location for the call to theList.append(o).

Responsibility for verifying frame properties is divided. A method's imple-

mentor is responsible for the locations relevant to its executions, as speci�ed in

its modi�es clause, and the method's caller is responsible for other locations.

For example, append's implementor is responsible for verifying the frame prop-

erties in its modi�es clause. When verifying the call to append in Set's insert

method, one uses append's modi�es clause and Set's depends clauses to reason

about modi�cation of Set's �elds theList and setValue.

4 Modularity and Dependencies

To achieve modularity, we impose three requirements on dependencies:

Locality Requirement: Abstractions of an object X can only depend on lo-

cations in the context that contains X or its descendants. That is, they may

depend on locations in X 's representation, but not on argument objects.
Authenticity Requirement: The declaration of an abstract location L in a

context C must be visible in every scope that contains a method m that

could|if invoked on a target object in C|modify L. Thus the veri�er of m

can determine all relevant locations that m might modify.

Visibility Requirement: Whenever two locations are declared in a scope S,

the dependencies in S must allow one to determine whether these locations

depend on each other or not.

We enforce these requirements by statically checking the following rules for

single depends clauses of the form \depends f <- g" or \depends f <- p.g".

Locality Rule: For dynamic dependencies, the pivot �eld must not hold a read-

only reference; that is, p must not be of a readonly type.

8

Authenticity Rule: For static dependencies and for dynamic dependencies

where the pivot �eld is not of a rep type, f must be declared in the scope of

g. For dynamic dependencies where the pivot �eld is of a rep type, f must

be declared in the scope of the owner type of p. In most implementations

such as in our examples, the owner type of a �eld is its declaration type (see

[M�ul01] for a precise de�nition).
Visibility Rule: Static and dynamic dependencies where the pivot �eld is not

of a rep type must be declared in the scope of g. Dynamic dependencies

where the pivot �eld is of a rep type must be declared in the scope of p's

owner type.

To verify frame properties of a method m, one has to prove that m leaves all

relevant locations that are not covered by m's modi�es clause unchanged. This

proof obligation can be shown for those locations that are declared in the scope

ofm by referring to their representations and dependencies. For all other relevant

locations, the locality and authenticity requirements guarantee that they are not

modi�ed by m, as stated by the following modularity theorem:

A method m can only modify relevant locations that are declared in m's scope.

A sketch of this theorem's proof is contained in the appendix. A formalization of

the theorem and the full proof can be found in [M�ul01]. The modularity theorem's

proof shows that the modularity requirements in combination with the universe

programming model are strong enough to enable modular veri�cation of frame

properties. Similar requirements are used in [LN00].

5 Conclusions

We extended the Java Modeling Language by constructs to specify frame prop-

erties in a modular way. The extension is based on a re�ned ownership model:

The programmer can hierarchically structure the object store into contexts to

which only designated owner objects have direct access. All other references

crossing context boundaries have to be declared readonly. The ownership model

is enforced by the universe type system. It provides the basis to re�ne the se-

mantics of the modi�es clause and to de�ne context conditions that guarantee

the modularity of speci�cation and veri�cation of frame properties.

The JML extensions are based on a more general framework that was de-

veloped for modular veri�cation of Java programs [M�ul01]. In that work, these

ideas are also applied to the modular treatment of class invariants, by consider-

ing invariants to be boolean-valued abstract �elds. Thus these ideas also lead to

modular speci�cation and veri�cation of invariants.

Although our technique can express common implementation patterns such

as containers with iterators and mutually recursive types [M�ul01], some exten-

sions might be useful in practice. For instance, unique variables would allow

objects to migrate from one context to another, and less restrictive modular-

ity rules would provide better support for inheritance [M�ul01]. We leave such

extensions for future work.

9

Acknowledgments

The work of Leavens was supported in part by the US NSF under grant CCR-

9803843, and was done while Leavens was visiting the University of Iowa.

References

[BMR95] Alex Borgida, John Mylopoulos, and Rayomnd Reiter. On the frame prob-

lem in procedure speci�cations. IEEE Transactions on Software Engineer-

ing, 21(10):785{798, October 1995.
[CNP01] D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for

containment. In European Conference on Object-Oriented Programming,

ECOOP 2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

(to appear).
[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
exible

alias protection. In Proceedings of Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), volume 33(10) of ACM SIGPLAN

Notices, October 1998.
[DEJ+00] Sophia Drossopoulou, Susan Eisenbach, Bart Jacobs, Gary T. Leavens, Pe-

ter M�uller, and Arnd Poetzsch-He�ter. Formal techniques for Java pro-

grams. In Jacques Malenfant, Sabine Moisan, and Ana Moreira, editors,

Object-Oriented Technology. ECOOP 2000 Workshop Reader, volume 1964

of Lecture Notes in Computer Science, pages 41{54. Springer-Verlag, 2000.
[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyp-

ing through speci�cation inheritance. In Proceedings of the 18th Interna-

tional Conference on Software Engineering, Berlin, Germany, pages 258{

267. IEEE Computer Society Press, March 1996. A corrected version is

Iowa State University, Dept. of Computer Science TR #95-20c.
[GHG+93] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet,

and J.M. Wing. Larch: Languages and Tools for Formal Speci�cation.

Springer-Verlag, New York, NY, 1993.
[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation

for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,

editors, Behavioral Speci�cations of Businesses and Systems, pages 175{188.

Kluwer Academic Publishers, Boston, 1999.
[LBR01] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design

of JML: A behavioral interface speci�cation language for Java. Technical

Report 98-06m, Iowa State University, Department of Computer Science,

February 2001. See www.cs.iastate.edu/~leavens/JML.html.
[Lei95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis,

California Institute of Technology, 1995. Available as Technical Report

Caltech-CS-TR-95-03.
[Lei98] K. Rustan M. Leino. Data groups: Specifying the modi�cation of extended

state. In OOPSLA '98 Conference Proceedings, volume 33(10) of ACM

SIGPLAN Notices, pages 144{153. ACM, October 1998.
[LH94] K. Lano and H. Haughton, editors. Object-Oriented Speci�cation Case Stud-

ies. The Object-Oriented Series. Prentice Hall, New York, NY, 1994.
[LN00] K. Rustan M. Leino and Greg Nelson. Data abstraction and information

hiding. Technical Report 160, Compaq Systems Research Center, 130 Lytton

Avenue Palo Alto, CA 94301, 2000.

10

[LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping.

ACM Transactions on Programming Languages and Systems, 16(6):1811{

1841, November 1994.

[MPH00] Peter M�uller and Arnd Poetzsch-He�ter. A type system for controlling

representation exposure in Java. Published in [DEJ+00]., 2000.

[MPH01] P. M�uller and A. Poetzsch-He�ter. Universes: A type system for alias and

dependency control. Technical Report 279, FernUniversit�at Hagen, 2001.

[M�ul01] Peter M�uller. Modular Speci�cation and Veri�cation of Object-Oriented

programs. PhD thesis, FernUniversit�at Hagen, Germany, March 2001.

[SBC92] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Ori-

entation in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2

1LQ, UK, 1992.

[Win87] Jeannette M. Wing. Writing Larch interface language speci�cations. ACM

Transactions on Programming Languages and Systems, 9(1):1{24, January

1987.

A Sketch of the Modularity Theorem's Proof

In the following, we sketch the �eld update case of the proof of the modularity

theorem from Section 4. The proof for method invocations is similar.

Proof Sketch. Let m be executed in context C (i.e., the receiver is in C). If m

updates Y:g, the universe type system guarantees that Y is in C or in one of

C's immediate descendants. Consider an abstract location X:f that is relevant

for m. If X:f does not depend on Y:g, X:f is not a�ected by updates of Y:g.

Otherwise, we show that f is declared in m's scope:

Case 1: Y is in C. If X:f is relevant for m, then by the locality rule X is

in C. Thus, X and Y are in the same context, and the authenticity rule ensures

that f is declared in g's scope. Since g is accessible in m, f is in m's scope.

Case 2: Y is in an immediately-descendant context D of C. Due to

locality, X is in D or in C. The former case is analogous to Case 1. In the latter

case: a dynamic dependency must be involved with a pivot �eld p of a rep type,

the owner type of p is in the scope of m (by the universe type system), and f

is declared in the scope of p's owner type (by the authenticity rule). Thus, f is

declared in m's scope.

