Reinforcing Fragile Base Classes

Kees Huizing and Ruurd Kuiper*™

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven,
The Netherlands,
keeshQwin.tue.nl, wsinruur@win.tue.nl

Abstract. The Fragile Base Class problem is approached from the angle
of a proof system for class invariants. It is shown that the source of
the FBC itself can be understood as a problem of dynamic binding of
predicates in the correctness proof of invariants. A solution is presented
based on an extension of the concept of behavioural subtyping and the
novel notion of cooperative contracts. Thus, flexible boundaries of reuse
can be specified for each class.

1 Introduction and Position

When a developer believes in the assumption that changing the imple-
mentation of a method within the boundaries of the specification (con-
tract) should leave the behaviour of other methods unchanged, he may
be caught off guard by the Fragile Base Class problem (FBC).

Specifically: if a reuser subclasses a class C to a class D by inheritance,
and later the provider of C revises C, keeping its contract, the reuser
may find that D no longer satisfies its contract.

For this, inheritance is often blamed and therefore rejected as a vehicle
for code reuse. This we regard as an unacceptable limitation on code
reuse. Similarly, we regard disallowing the provider to change the base
class as too restrictive.

In the literature, the solution to the FBC is mainly sought in syntacti-
cally restricting the allowed class dependencies during development. We
propose a different approach that leads to a more fine-grained, or if you
like, semantic, check of the dependency between classes and methods.

When we study the proof obligations in a formal proof system, we can pin
down the problem to dynamic binding. Either the provider of the base
class has to prove the invariant of a (future!) subclass, or the subclass
developer needs access to the implementation of the base class to prove
the invariant.

We solve this problem in two steps. First, we remove the dependency of
the base class on the derived class by extending the notion of behavioural

** The authors are partially supported by ITEA DESS.

subtyping. This means that the developer of the subclass has to prove
additional clauses for methods that are inherited.

The second step of the solution is a notion of cooperative contract. The
developer of the base class can use a kind of parametrized postconditions
that allow the reuser to derive more properties about a method than
could be derived from an ordinary contract, without giving the reuser
access to the implementation. Without cooperative contracts some code
would not be amenable to reuse.

By choosing a level of cooperation in the contract, the provider can define
the boundaries of reuse.

Workshop Position: Both providers and reusers of classes should be
allowed to make adaptations to classes; the FBC should be understood
and remedied in the context of a proof system:

1. user developments from the base classes should be in accordance
with a new notion of behavioural subtyping;

2. provider’s changes to a base class should respect a new notion of
cooperative contract.

2 The Fragile Base Class

The following example is modified from an example in [8]. Consider a
class Set that represents a set of integers with methods add(int) and
addSquared (int). The first method simply adds an integer to the set;
the second one computes the square of an integer and then calls add ()
to add the result to the set. In Java this class could be defined as follows.

class Set {
(I: true)

public add(int n) {

.('p.ost: s = s U {n})

}

public addSquared(int n) {
add (n*n) ;
(post: s = s~ U {n?})

}

We write assertions surrounded with angle brackets to avoid confusion
with the Java curly brackets.

Here, s represents the contents of the set; a variable in a postcondition
with a ~-symbol attached represents the old value, i.e., the value at
the start of the method. To keep the example simple, we used a trivial
integrity check.

Now a subclass CountingSet of Set is made that adds an instance vari-
able keeping track of the number of elements in the set. For this purpose,
method add () is overridden and we get the following class.

class CountingSet extends Set {
(I:|s|= size)
int size;

public add(int n) {
size++;

.(‘;.)ost: s = s° U {n} A size = size” + [{n}\ s7|)

Here, Iis the invariant of the class, which specifies the consistent states
of all objects of this class. A user of an object of this type may expect the
invariant to hold. As a consequence, all public methods should establish
the invariant at method return.

Note that the postcondition of add() has been strengthened with infor-
mation about size.

CountingSet has no need to override addSquared(), since this latter
method calls add() and thanks to dynamic binding, the correct version
of add () will be executed, depending on the type of the object underhand.

This is an example of the design pattern Template Method, where exe-
cution of a primitive operation (add () in this example) is delegated to a
subclass [1].

Now suppose the class Set is revised. For some reason, maybe of effi-
ciency, the method addSquared does not call add() anymore, but puts
the element directly into the set. This seems harmless, since the con-
tract of addSquared is maintained. For Set-objects everything works.
For CountingSet-objects however, things go wrong. Since add() isn’t
called anymore, the variable size will not be updated when an element
is added by means of addSquared(). As a consequence, the invariant I
is not maintained.

This problem is known in the literature as the Fragile Base Class Prob-
lem ([5]). This version is called the semantic problem. There is also a
syntactic version, which concerns the problems when the subclass is not
recompiled after revision of the base class. Since Java solves the syn-
tactic problem, the semantic one is even more important. In this paper,
we will mean the semantic problem when we speak about the Fragile

Base Class problem. There are several related problems, such as infinite
recursion as a consequence of incorrect overriding. As we only consider
partial correctness here, we will not treat this problem. For an extensive
list of issues related to the Fragile Base Class problem, see [8].

3 Pinning down the problem

When we use a formal verification system, it becomes clear where the
intuition makes an unjustified assumption that causes the FBC problem.
For this purpose, we use a proof system along the lines of the one pre-
sented in [2]; other systems such as [7] could do as well. The problem is
centered around the concept of dynamic binding.

3.1 Dynamic binding

In Java, the method call b.m() means: choose the first definition of m
that you find when going up in the type hierarchy, starting in the class
to which object b belongs, and then execute this method in the context of
object b. With “object b” we mean the object that results from evaluating
the expression b. Note that this value depends on the state, and so does
the class of which method m() is chosen. This state dependency of method
choice is called dynamic binding.

We extend this notation to predicates. The expression b.] means: inter-
pret predicate I in the context of object b. As with method invocation,
the choice of I depends on the class of b.

To simplify the discussion, without losing anything of the essence, we
formulate a proof rule for a parameterless method in the absence of
recursion.

for all classes C containing m:
(this.pre A this.I A...) body,, (this.post Athis.IA...)

(b.pre) b.m() (b.post A b.I)

The premise requires proofs for the bodies of all the methods that could
be executed as a result of the call b.m(). We keep on the safe side by
taking every method called m. Since the correctness of all these bodies
should be proven anyhow, albeit not for this specific call, we are not
interested in removing this redundancy from the rule.

On the dots, more invariants may appear, depending on the proof sys-
tem and the circumstances. This does not interfere with the exposition,
however; details can be found in [2].

The object this in the premise refers to the object on which the method
body is executed. We write this.pre etc. to stress that the predicate pre

has to be evaluated in the context of this object and likewise for post
and I.

Now dynamic binding puts us a problem. What are the predicates pre,
post, and I? Since we don’t know the dynamic type of b, we don’t know
which version of m() will be executed and hence, which precondition,
postcondition, and invariant will apply.

3.2 The solution

In practice, the pre- and postconditions will not arbitrarily change in
a subtype (inheritance) hierarchy. A method in a subclass should at
least fulfill the contract of the method it overrides. This idea is called
behavioural subtyping after [4] and it amounts to the requirement that,
when D <: C (D is a subtype of C), the following implications should
hold:

- preq = prep
— postp = post
— Ip = I¢

This is a principle of good OO design and it enables us to replace in
many cases dynamic reference to predicates with static ones. When b is
an object and P is a predicate (pre/postcondition or invariant), we use
the notation b:P for the staticly bound P, i.e., if C' is the static type of
expression b, then b:P = (C)b.P, where (C) is the type cast operator.
We assume that the static type of an expression is always known. Surely
it can be derived from the program context. Under assumption of be-
havioural subtyping, we can formulate a friendlier proof rule for method
call:

for all classes C containing m:
(this:pre A this:I A...) body,, , (this:post A this.TA...)

(bpre A ...y bom() (b:post Ab:I A ...)

In this rule, all occurrences of dynamic binding of predicates are removed,
except one: this.J in the premise. In a minute we will see how to get rid
of this dynamic binding also.

The dynamic references in the conclusion can be replaced by static ones
because of behavioural subtyping. This is in fact an application of the
rule of consequence: (P) S (Q) implies (P') S (Q') if P" = P and
Q=Q.

Substituting this:pre and this:post in the premise is allowed because of
the rules for method choice in Java and most other OO languages. If the
dynamic type D of this differs from the static type C, there can be no
method m defined in D, since otherwise method m from D was chosen
instead of C.

For the invariant in the premise, however, this reasoning does not apply,
as each type may have its own invariant, independent of whether m
is overridden or not. The stronger obligation to prove this.] remains
here. It is here that the intuition unjustifiedly assumes that proving the
invariant of class C' is enough.

In terms of the fragile base class example: The method addSquared has
been defined in class Set and hence the proof of its correctness is per-
formed in the context of Set (the static type of this is Set). Since
addSquared is not redefined in CountingSet, exection of this method
may well be in the context of an object of the class CountingSet and
then the dynamic type of this is CountingSet.

In the most pregnant examples of the Fragile Base Class, the development
of base class C is both in time and place remote from the development
of derived class D. E.g., company X produces a class library of which C
is a part. Then company Y uses this library and reuses C' by inheritance.
X cannot be held responsible for the invariants of subclasses yet to be
made. On the other hand, passing the proof obligation to the developer
of D would require X to give its users insight in its source code. This is
unpractical and from a commercial point of view unwanted. Furthermore,
it denies the concept of abstraction by contract.

So the only reasonable proof obligation in the premise is this:I.

This obligation is too weak, however, and would render the proof rule
unsound. To solve this, we propose a strengthening of the notion of be-
havioural subtyping: When D has a stronger invariant than C, it should
be proven from the contract (specification) provided by C.

Definition 1 (Reinforced Behavioural Subtyping). Type D is a
reinforced behavioural subtype of C' if:

1. Ip = I¢

2. for every method mp overriding mc:
pre,,. = pre,,
post,,, = post,, .

3. for every non-private method m not overridden in D and any object
d of type D:
d:(I 1 invp, AI™ Apost,, AIc) = dI.

Here, the set inv,, consists of the variables that are not changed during
execution of m. It is derived from the specification of m. (This set is
specified explicitly or implicitly by specifying which variables are allowed
to change. Here, we do not elaborate on how to specify inv precisely.)

The predicate I™ is defined as the predicate I with all variables adorned

with the symbol ~. It simply says that I was true at the start of the
execution of m.

Obligation 3 is new. It requires the developer of D to prove the possibly
stronger invariant of the derived class after execution of m. For this he

may use the invariant of the base class I¢, the postcondition of m, the
stronger invariant restricted to variables that do not change under m,
and the knowledge that this stronger invariant held at the start of m.

Since this proof obligation is about a method that is not overridden in
D, it is possible that the developer of D has no access to the contract of
m, e.g., if m is a private method of C of a supertype thereof. This would
make obligation 3 impossible to fulfill. We take the approach, however,
that private methods need not establish the invariant, as in [3].

This proof obligation leaves not much room for the developer of the de-
rived class to strengthen the invariant. In the Fragile Base Class example,
e.g., the invariant of CountingSet cannot be proven. For situations like
this we propose the concept of cooperative contracts. The postcondition
of a method may contain references to postconditions of other methods,
in particular methods to be overridden in subclasses. In proof obliga-
tion 3 of reinforced behavioural subtyping, the interpretation of these
references depends on the type of d. This way, such a reference may re-
sult in a stronger predicate if the corresponding method is overridden in
the subclass. To see this, suppose post,, refers to a post,, the postcon-
dition of another method n. When this method is overridden in D with
a stronger postcondition, the conjunct post,, will be effectively stronger
too, since it is evaluated in the context of an object of class D. If done
right, this makes it possible to prove the stronger invariant of class D.

So under the assumption of Reinforced Behavioural Subtyping we have
the following proof rule for non-recursive method call:

for all classes C containing m:
(this:pre A this:I A...) body,, (this:post A this:I A...)

(bpre A ...y bom() (b:post Ab:I A ...)

Now we can go back to the example of the Fragile Base Class and change
the postcondition of addSquared () to:

2
pOStaddSquared . pOStadd(n)

Proof obligation 3 now becomes (we assume there are no relevant invari-
ance properties in the specification of addSquared):

d:(|s™| = size™ A post,,,(n°)) = d:(|s| = size)
which is equivalent to
d:(|s™| = size™ As = s~ U{n’} Asize = size™ + |{n’} \ s7|) = d:(|s| = size)
which follows easily from the facts
lz Uyl = |z| + |yl — [z Nyl
and

|z \ y| = [z] = |z Ny|

Of course, we could have strengthened the postcondition of add in the
class CountingSet with the invariant. This would have trivialized the
proof above, however. We believe that the current proof is more inter-
esting because it shows the role for the predicate I"™.

This shows that the correctness proof of the subclass is based on the
specification only of the base class, in contrast to the original situation
where formal correctness needs the code of the base class. As a conse-
quence, this allows for revising the base class, within the boundaries of
the contract. E.g., in the method addSquared above, the implementation
of the integrity check could be altered without fear of the Fragile Base
Class problem. The provider of the base class can decide how cooperative
the contract will be.

4 Conclusion

We have shown how to use formal methods to better understand the
Fragile Base Class problem and how to solve the problem. Other ap-
proaches to this problem can be found in the literature. [3] has an exten-
sive framework to specify properties of (Java) programs. It elaboreates
on properties of the call graph, wehereas we use a more assertional ap-
proach, concentrating on the validity of invariants.

In [6], the notion of cooperation contracts is introduced as part of a
solution of the Fragile Base Class problem. Their approach is purely
syntactical and their notion is not the same as our cooperative contracts,
which play a central role in proving the validity of assertions.

Mikhajlov and Sekerinski in [8] formulate several requirements that guar-
antee true refinement of superclasses. These requirements are more re-
strictive and do not allow the example of a subclass invariant that com-
bines instance variables of the subclass with those of the superclass as in
the CountingSet example.

We believe that we have clarified the Fragile Base Class problem, and,
with it, similar problems connected with inheritance and dynamic bind-
ing in object-oriented languages. The novel approach of cooperative con-
tracts allows for a fine grained semantic solution to the problem of safe
code reuse in the subtle frameworks that can be found in many object
oriented program designs.

References

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

2. K. Huizing, R. Kuiper, and SOOP. Verification of Object Oriented
Programs Using Class Invariants. In Fundamental Approaches to Soft-
ware Engineering (FASE 2000) (Maibaum, Ed.), Berlin, 2000, Lecture

Notes in Computer Science, Vol. 1783, Springer-Verlag, Berlin, 2000,
pp. 208-221.

3. Clyde Ruby and Gary T. Leavens. Safely Creating Correct Subclasses
without Seeing Superclass Code. In OOPSLA 2000 — Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
Minneapolis, Minnesota. SIGPLAN Vol. 35(10), pp. 208-228, 2000.

4. B. Liskov and J. Wing, A behavioral notion of subtyping, ACM
TOPLAS, 16:6, pp. 1811-1841, 1994.

5. C. Szyperski, Component software: Beyond object-oriented program-
ming, Addison-Wesley, 1998.

6. M. Mezini. Maintaining the consistency and behavior of class libraries
during their evolution. In Conference Proceedings of OOPSLA 97,
ACM SIGPLAN Notices, Vol. 32(10), pp. 1-21, Oct. 1997.

7. A. Poetzsch-Heffter and P. Miiller, Logical foundations for typed
object-oriented languages, in D. Gries and W.P. de Roever, Eds., Pro-
gramming Concepts and Methods (PROCOMET), 1998.

8. L. Mikhajlov and E. Sekerinski. A Study of the Fragile Base Class
Problem. In ECOOP’98 — Object-Oriented Programming 12th Euro-
pean Conference (E. Jul, Ed.), Brussels, July 1998, pp. 355-382, Lec-
ture Notes in Computer Science Vol. 1445, Springer-Verlag, 1998.

