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Abstract. We argue that a practical way to apply formal methods to

Java is to apply formal methods to the Java Virtual Machine (JVM)

instead. A Java system can be proved correct by analyzing the bytecode

produced for it. We believe that this clari�es the semantic issues without

introducing inappropriate complexity. We say \inappropriate" because

we believe the complexity present in the JVM view of a Java class is

inherent in the Java, when accurately modeled. If it is desired to model

a subset of Java or to model \Java" with a slightly simpler semantics,

that can be done by formalizing a suitable abstraction of the JVM. In this

paper we support these contentions by surveying recent applications of

the ACL2 theorem proving system to the JVM. In particular, we describe

how ACL2 is used to formalize operational semantics, we describe several

models of the JVM, and we describe proofs of theorems involving these

models. We are using these models to explore a variety of Java issues

from a formal perspective, including Java's bounded arithmetic, object

manipulation via the heap, class inheritance, method resolution, single-

and multi-threaded programming, synchronization via monitors in the

heap, and properties of the bytecode veri�er.

1 ACL2 Background

ACL2 [11] is a functional programming language based on Common Lisp, a

�rst-order mathematical logic with induction and recursive de�nition, and a me-

chanical theorem prover in the style of the Boyer-Moore theorem prover NQTHM

[2, 4]. Among other successful industrial uses of ACL2 is the veri�cation of the

hardware designs for the elementary 
oating-point arithmetic operations on the

AMD Athlon microprocessor [21] and the formalization of the �rst silicon version

of the JVM [8, 9]. See [10] for other case studies.

In this paper we advocate the use of formal models of the JVM [13] to verify

Java programs. Some readers may think this is an impractical suggestion. But

work by Yu [5] with NQTHM (the predecessor of ACL2) supports our sugges-

tion. Yu developed an operational formal model of the Motorola 68020 and then
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veri�ed C programs from the Berkeley C String Library by verifying the machine

code produced by gcc. Since the conceptual gap between C and 68020 machine

code is much greater than the gap between Java and JVM bytecode, we believe

it is reasonable to follow an analogous strategy to deal with Java programs.

2 Our Basic Approach

Our models of the JVM are operational ones. The state of the machine is rep-

resented by a list containing, say, a thread table, a heap, and a class table. The

thread table is a list containing an entry for each thread. The entry includes

the thread's call stack, scheduled status and other information. A call stack is

a stack (list) of frames, each of which contains a program counter, the method

body, a map from local variable names to values, an operand stack, and a 
ag

indicating whether the method is synchronized. The heap is a �nite mapping

from reference \addresses" to instance objects. The class table is a list describ-

ing the superclasses, �elds and methods and other attributes of each class. We

then de�ne in ACL2 the function that \steps" such a state, producing the next

state. We �nally de�ne a function, run, that \runs" a state, by stepping it re-

peatedly. Such an ACL2 model of the JVM may be thought of as a system of

Lisp programs that simulates the JVM.

We have produced several such models of the JVM, so that we can explore

ways to prove various kinds of properties. Before discussing the variety of for-

mal models we have, we will use one of them to illustrate the foregoing sketch.

The model we use is a multi-threaded JVM with unbounded arithmetic. It sup-

port classes, instances, instance methods, monitors and synchronization, but not

arrays, 
oats and certain other data types. It also completely ignores class load-

ing, constructor methods, exceptions, the JVM's provisions for type safety, and

a variety of other issues.

For each JVM opcode supported in the model we de�ne an ACL2 function

that produces the corresponding state change. Here, for example, is that part of

the formal model for an instruction called LOAD, which is analogous to the JVM's

family of typed load instructions ILOAD, ALOAD, DLOAD, etc. In this function, inst

is a symbolic form of the particular load instruction to be executed; its value will

be a list of the form (LOAD var), where var is a variable name. The variable th

identi�es which thread is to be stepped and s is the JVM state.

(defun execute-LOAD (inst th s)

(make-state

(modify-tt th

(push (make-frame (+ 1 (pc (top-frame s th)))

(locals (top-frame s th))

(push (binding (arg1 inst)

(locals (top-frame s th)))

(stack (top-frame s th)))

(program (top-frame s th))

(sync-flg (top-frame s th)))
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(pop (call-stack s th)))

'SCHEDULED

(thread-table s))

(heap s)

(class-table s)))

Informally, this function returns a new state obtained by changing the thread

table of s at thread th. The topmost item on the call stack of that entry is

popped o� and replaced by a new frame in which the program counter has been

advanced and the value of var has been pushed onto the operand stack of that

frame.

Here is our bytecode for the instance method

public int fact(int n)f
if (n<=0) return 1;

else return n*fact(n-1);g

except in our model arithmetic is not bounded.

("fact" (N) NIL ; Method int fact(int)

(LOAD N) ; 0 iload 1

(IFGT 3) ; 1 ifgt 6

(PUSH 1) ; 4 iconst 1

(XRETURN) ; 5 ireturn

(LOAD N) ; 6 iload 1

(LOAD THIS) ; 7 aload 0

(LOAD N) ; 8 iload 1

(PUSH 1) ; 9 iconst 1

(SUB) ; 10 isub

(INVOKEVIRTUAL "Alpha" "fact" 1) ; 11 invokevirtual ...fact...

(MUL) ; 14 imul

(XRETURN)) ; 15 ireturn

Because our model is an ACL2 program, it can be executed on concrete data

to produce concrete results. Because ACL2 is a mathematical logic, it is possible

to prove the following theorem:

(implies (poised-to-invoke-fact th s n)

(equal (top

(stack

(top-frame

th

(run (fact-sched n th) s))))

(factorial n)))

which says that, given any state poised, in thread th, to execute the fact byte-

code the natural number n, the execution of a certain number of instructions in

thread th will leave n! on top of the operand stack in thread th. The number

of instructions required is given by the function fact-sched, which returns a



4

schedule adequate to compute the method on input n. We have proved similar

theorems about other arithmetic methods, methods manipulating the heap in

destructive ways [15], and insertion sort implemented in a list processing class

[12]. Insertion sort is discussed brie
y below.

3 A Survey of Our Models

We have several JVM models and are in the process of building others. All

of our current models ignore 
oats, class loading and initialization, exceptions,

and interfaces. We do not consider 
oats a problem; there is so much work in

modeling 
oating-point arithmetic in ACL2 (see for example [21]) that we have

extensive 
oating-point models and libraries about them. Aspects of class loading

and initialization, exceptions and interfaces have been modeled by others [19, 1].

Garbage collection is invisible on the JVM and so need not be modeled.

3.1 Single-Threaded/Non-Safe/Unbounded

Our basic model is a single-threaded JVM in which we ignore typing issues and

support unbounded integer arithmetic only. Using this model we have proved a

variety of theorems about bytecode programs, including a single-threaded version

of the factorial theorem above and theorems involving the overriding of methods

and the destructive modi�cation of instance objects in the heap [15]. Using this

model we can explore basic issues of code speci�cation and veri�cation, including

control 
ow and data operations, instance object creation and manipulation,

class inheritance, and method resolution and invocation.

For example, we have used the model to prove the correctness of a bytecoded

insertion sort method that copies a linked list of numbers in the heap, producing

a permutation of it in which the elements appear in ascending order. To state

the theorem we had to de�ne the sense in which a reference (into a given \non-

circular" heap) denotes some structure. The theorem we proved says that if the

isort method (not shown here) is invoked on a reference, ref0 and allowed to

run for a certain number of instructions, returning a reference ref1, then the list

denoted by ref1 in the �nal heap is an ordered permutation of the list denoted

by ref0 in the original heap. The preconditions imposed certain constraints on

the non-circularity of the initial reference [12]. Here is the theorem proved.

(implies (poised-to-invoke-isort s0)

(let* ((x0 (top (stack (top-frame s0))))

(heap0 (heap s0))

(n0 (isort-clock x0 heap0))

(s1 (run n0 s0))

(x1 (top (stack (top-frame s1))))

(heap1 (heap s1)))

(let ((list0 (deref* x0 heap0))

(list1 (deref* x1 heap1)))

(and (ordered list1)
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(perm list1 list0)))))

One can prove theorems about non-terminating computations in ACL2. If

one adds to the model an instruction for explicitly indicating the normal termi-

nation of a program (e.g., add a halt 
ag to the state and arrange for a bytecode

instruction, e.g., halt, to set it and for the machine not to proceed afterwards),

one can prove theorems about the conditions under which a program halts nor-

mally, including that halting never occurs. One can also eliminate the use of

\clocks" [14].

3.2 Single-Threaded/Non-Safe/Bounded

We have produced a version of the simple machine that supports Java's int and

long (bounded) arithmetic. It also supports arrays. Using this model we have

a proved the analogous theorem about the bounded factorial method. The code

for this method is like that shown for fact above, except that the arithmetic op-

erations are those for 32-bit twos complement. The theorem states that the �nal

answer is equal to the result of converting to an int the factorial of the input.

This theorem correctly characterizes the actual behavior of the Java program

for fact shown above.

The user input required to prove the bounded factorial is exactly analogous

to that required to prove the unbound factorial, justifying our belief that the

unbounded model is a simpler (though technically inaccurate) test bed. The

\new" reasoning, about modular arithmetic, is handled automatically by an

ACL2 library of lemmas. We are continuing the development of ACL2's already

extensive collection of arithmetic theorems.

3.3 Multi-Threaded/Non-Safe/Unbounded

An orthogonal variation of the basic model introduces multiple threads [17].

Each entry in the thread table lists a unique thread number, a call stack, a

status 
ag (e.g., indicating whether the thread has been started), and a reference

to the instance object representing the thread object in the heap. We do not

model the scheduler, which is unspeci�ed in [13], but provide an \oracle" to the

operational semantics.

With this model we have proved an interesting theorem about the Java classes

shown in Figure 1. Inspection of the code shows that the main method in class

Apprentice starts an unbounded number of Jobs, each of which is contending

for a shared object called the Container. Each Job is in an in�nite loop incre-

menting the counter �eld of the Container. Each such increment is done within

a synchronized block. (The model supports unbounded arithmetic.)

One might think that it is obvious that the value of the counter �eld of

the Container increases monotonically. However, this is a nontrivial observation

that requires showing that each Job has mutually exclusive access to the counter.

Again, the naive Java user may think this mutual exclusion property is obvious.
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class Container f
public int counter; g

class Job extends Thread f
Container objref;

Object x;

public Job incr () f
synchronized(objref) f

objref.counter = objref.counter + 1; g
return this; g

public void setref(Container o) f
objref = o; g

public void run() f
for (;;) f

incr(); g g g
class Apprentice f

public static void main(String[] args)f
Container container = new Container();

for (;;) f
Job job = new Job();

job.setref(container);

job.start(); g g g

Fig. 1. The Apprentice Class: Unbounded Parallelism

We have had several programmers dismiss our theorem as trivial and claim that

it may be observed merely by looking at the text

synchronized(objref) f

objref.counter = objref.counter + 1; g

in the code for class Job. This claim is false.

A few changes to the main method of the Apprentice class can cause mutual

exclusion to be violated and can permit the counter value to decrease under

some scheduling regimes. These changes do not involve writing to the counter

�eld of the Container or changing the Job class at all. The pathological behav-

ior (of the counter decreasing) is ultimately manifested by the very assignment

statement shown above. The changes we have in mind can cause that \synchro-

nized" assignment statement to clobber the counter without owning the monitor

for it.

Since many readers insist that it is \obvious" that the Apprentice class

causes the counter to increase monotonically, we will not explain here how to

cause the bad behavior. Ask someone who thinks it is obvious. Or try to prove

it from a detailed formal model of multi-threaded Java. Our discussion of the

problem and our proof is reported in [16].

Our multi-threaded model includes all of the functionality of our basic ma-

chine (e.g., classes, heap-allocated instance objects, virtual method invocation,

etc.) plus support for the Thread class (including the signi�cance of the run
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method for an extension of the Thread class, the native methods start and

stop, monitors on all Objects, the opcodes MONITORENTER and MONITOREXIT,

and support for synchronous methods.

4 Relations Between Models

So far we have only discussed theorems about particular bytecoded methods

under the semantics formalized in particular models. Because our models are

formal, we can reason about the models themselves and even relate them. Lack

of space precludes much discussion.

4.1 Single- versus Multi-Threaded Models

We have proved [18] a theorem relating the single-threaded model to the multi-

threaded one. If the multi-threaded machine is being used to do what is essen-

tially a single-threaded computation, the single-threaded machine may be used

instead. We formalize the hypothesis so that we are concerned with states in

which only one thread is scheduled (meaning the start method has been called

on only one thread) and the bytecode running in that thread does not create or

interfere with other threads. The conclusion is a \commuting diagram" stating

that the \same" computation could be done on the single-threaded model by

transforming the states appropriately. The theorem allows us to \lift" certain

veri�ed programs from the single-threaded model to the multi-threaded model.

Ultimately we hope to be able to reason formally about \independent" con-

current threads by reasoning about each on the single-threaded model. The

biggest problem will be combining the \independent" e�ects of the two threads

on the shared heap. This involves reasoning not unlike that already done in

analyzing the denotation of the object references in the heap produced by the

insertion sort method.

4.2 Single-Threaded/Type Safe/Unbounded

We have developed a \type safe" version of the basic machine. Before each

instruction is executed, this machine checks that the state is suitable for the

execution of the instruction. For example, if an ADD instruction is to be executed,

then the machine dynamically checks that the operand stack has at least two

items on it and that the top two items are numbers. The machine sets a 
ag in

the state and halts if the next instruction is to be executed in an unacceptable

situation.

We are developing a formal version of the Java bytecode veri�er described by

[13] that crawls over a class declaration and does a certain syntactic check of the

code therein. Our goal is to prove a theorem relating the type safe machine to the

unsafe machine, namely, the two are \equivalent" on code that has been accepted

by the bytecode veri�er. This work can be thought of as leading towards the

formal statement of the correctness of the bytecode veri�er and the mechanized

veri�cation that for a particular veri�cation algorithm.
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5 Related Work

The earliest formal mechanized JVM model we know of was Cohen' \defensive

JVM" [6], formalized in ACL2. Our series of models evolved from his: Moore

and Cohen simpli�ed Cohen's model and developed the series of successive elab-

orations to make it easier to teach at the undergraduate level.

Projects formalizing the JVM are ongoing in other mechanized logics with

considerable success. The soundness of a bytecode veri�cation algorithm is ad-

dressed in Isabelle/HOL in [20, 19]. The approach follows closely the class �le

format of [13] and model aspects of interfaces, signatures and exceptions, all of

which we ignore. As in [6] and (some of) our work, type information is stored

with data and instructions are modeled as state transforming functions. The Is-

abelle/HOL work is the �rst published mechanically checked proof of the sound-

ness of a bytecode veri�er.

Somewhat closer to our work is that done with Coq and described in [1].

In this work, an operational model of the entire JavaCard VM is presented.

They provide a tool for converting class �les into their formal format. They also

verify a bytecode veri�er mechanically. The authors of [1] stress the importance

of executability { an emphasis with which we agree. They do not discuss the

eÆciency with which their model can be implemented.

ACL2 was used to model the Rockwell JEM1 microprocessor, the world's �rst

silicon JVM, now marketed by Ajile Systems, Inc. The formal ACL2 model was

actually used in the standard test bench on which Rockwell engineers tested the

chip design against the requirements by executing compiled Java programs. The

ACL2 model executed at approximately 90% of the speed of the previously used

C model [8, 9]. In [7], Wilding and Greve describe how microprocessor models

in ACL2 are made to execute fast. The model there executes at approximately

3 million simulated instructions per second on a 733 MHZ Pentium III host

running Allegro Common Lisp.

As far as we know, ours is the �rst formal thread model for the JVM. In

addition, the emphasis of our work is on the veri�cation of bytecode programs

with respect to the operational semantics. This is surely within the reach of

the related work above, but has not, apparently, been a focus of their work.

Because of the way previously proved lemmas in the ACL2 library can be used

to con�gure ACL2 to do proofs automatically in a given domain, we anticipate

that the continued development of correctness proofs for individual bytecoded

methods will increase the ease with which new methods can be veri�ed.

6 Conclusion

We have described a variety of formal models of the JVM and discussed Java

and JVM programs that we have veri�ed with respect to these models. We have

also discussed formally veri�ed relationships between some of our models.

These examples support the contention that with formal operational seman-

tics of the JVM one can
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{ specify and verify Java code with respect to a detailed and accurate seman-

tics,

{ reuse much previously developed formal work,

{ explore the speci�cations of code under various re�nements of the semantics

of Java,

{ establish properties of the semantic models,

{ formally relate di�erent semantic models, and

{ specify and verify the bytecode veri�er.

Our models are inadequate for practical Java: among other omissions are


oating point, exceptions, and class loading. But there is ample evidence [10]

that ACL2 is rugged enough to permit the models to be suÆciently elaborated.

Among the compelling reasons to base a formal semantics of Java on an op-

erational semantics of the JVM are the following. First, the Java compiler takes

care of many subtle static semantics issues. Second, the operational semantics

of the JVM can be executed, meaning it is possible to test the semantics against

accepted implementations of the JVM. Third, the operational semantics is easily

unwound by standard symbolic evaluation and induction techniques [3]. Fourth,

and most important, the semantics is rendered formally, so it can be inspected

by language experts and used directly by the veri�er.
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