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Abstract

Millions of programmers use ECMA CLI-compliant languages like VB.NET and C#. The
resulting bytecode can be executed on several CLI implementations, such as those from Mi-
crosoft and the open-source Mono organisation. While assemblies are the standard unit of
deployment, no standard exists for the process of finding and loading assemblies at run-time.
The process is typically complex, and varies between CLI implementations. Unlike other link-
ing stages, such as verification, it is visible to programmers and can be a source of confusion.

We offer a framework that describes how assemblies are resolved, loaded and used in CLI
implementations. We strive for implementation-independence and note how implementations
from different organisations vary in behaviour. We describe the reflection features available for
dynamic loading, and give C# examples that exercise the features modelled in the framework.

1 Introduction & Motivation

Traditional language mechanisms for modular development - packages in Ada, modules in Modula-
2, namespaces and classes in C++ - have no role at run-time. A compiler typically employs a
static linker to emit a monolithic executable file, so the compilation environment automatically
becomes the entire execution environment. Few (or no) dynamic checks are needed to resolve
external dependencies. In contrast, the basic unit of development in Java and C# - the class
- maintains its discrete identity throughout compilation and execution. A Java Virtual Machine
or Microsoft’s .NET Common Language Runtime (CLR) can start with the bytecode for just one
class, then lazily load and link classes from the execution environment as necessary for continued
execution.

Class loading tends to be highly configurable, unlike later linking stages such as verification.
UNIX offered the dlopen C-language interface and most OO languages offer an API for dynamic
class loading in their reflection libraries. Java has the familiar CLASSPATH mechanism for identi-
fying class locations, and custom classloaders can be installed into the JVM.

Matters are complicated in a CLI implementation [ECM02] because classes are not deployed
as standalone units. Instead, classes are encapsulated inside assemblies. An assembly enumerates
classes it provides and also the names of other assemblies whose classes it uses. Assembly reso-
lution consists of converting a bytecode’s reference to an assembly name into a physical location
where a suitable assembly exists. Because an assembly’s identity incorporates version and security
information, resolving an assembly is more complex than (and indeed, a pre-requisite to) finding
a class inside an assembly.1

Different CLI implementations have different rules for assembly resolution. Also, the process
of loading an assembly from a given location is implementation-specific. We use the term binding
for the combined resolution and loading process.

1We do not consider, in this paper, the resolution of classes in an assembly or of members in a class.
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Microsoft’s CLI implementation, the Common Language Runtime (CLR),[MG00] provides a
user-configurable, network-aware system for binding called “Fusion”. For resolution, it supports a
hierarchy of policies that can modify the requested version of an assembly. This allows security and
performance patches to be used without rebuilding an assembly’s manifest (akin to recompiling
source code). It can also resolve references to assemblies compiled for other platforms, such as the
.NET Compact Framework. For loading, it supports downloading of code from remote machines
and, as a last resort, on-demand installation where the user is asked to provide an assembly.

Fusion’s behaviour is typically explained in verbose official technical documentation. Recently,
“blogs” written by Microsoft employees [Coo05, Shi05, Zha05, Far05, Pra05] have explained areas
of poorly documented behaviour in the current CLR release (v1.1), and given detailed information
about the next CLR release (v2.0). Programmer understanding is significantly enhanced by this
new channel, but there is no single place where dynamic loading is explained in full detail from
‘top to bottom’. One must piece together information from around the Internet in order to explain
a program’s exact assembly and classloading behaviour.

An alternative CLI implementation is Mono [dI05]. Its functionality is a subset of the CLR’s,
including for assembly binding, so documentation is shorter and easier to understand. However, its
binding process is subtly different from Fusion’s. Other CLI implementations, such as Microsoft’s
.NET Compact Framework for mobile devices, also exhibit different behaviour from Fusion.

We wish to unify the rules that govern assembly binding in CLI implementations. We present
a model that describes, at one level, how assemblies are bound (i.e. resolved and loaded), and at
another level, how loaded assemblies are used when evaluating bytecode instructions. Assembly
binding is interleaved with bytecode evaluation as in all current CLI implementations.2 The model
is parameterised by resolution and loading policies, so we specialise it for the Microsoft CLR v1.1
and Mono v1.1.

2 The Assembly Model

2.1 Assembly structure

In the COM and Java environments, a file that contains code has only one identifier: its filename.
“DLL hell”[EJS02] arises because multiple DLL files, each containing different code, share the same
filename and are placed in a shared location on disk. An application’s dependency is resolved to
a filename, but there is no guarantee that the DLL file with that filename is what the application
was tested against. Java applications face a similar problem, even without a standard location in
the filesystem for classes.

In contrast, the CLI specification[ECM02] gives an assembly a logical identity quite different
from its filename. We call this identity an assembly name, and reflection APIs in CLI-compliant
languages typically make it a first-class value. It contains a display name, a version number (con-
sisting of major, minor, revision and build numbers), a cultural identifier (for internationalisation)
and a public key. It is convenient to just consider the presence of a security value in an assembly
name, rather than the public key per se.

AssemblyName α : AN =
DisplayName : id, V ersion : int×int×int×int, Culture : id, Security : id,Retargetable : bool

Binding maps an assembly name to an assembly definition. All elements in an assembly name
are potentially used during binding, e.g. if the culture is present, it can be used to choose a
directory on disk where an assembly definition might be found. The security value plays the
most important role because it determines whether an assembly name is a strong name. A non-
null security value indicates that the assembly has been signed by a private key. A verification
procedure can use the security value to detect unauthorised changes to the assembly, but we do not

2The CLI specification allows resolution to take place when an application is installed, but we do not know of
any implementation that takes such an eager approach.
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consider verification further since it happens after binding. However, whether or not an assembly
name is strong significantly affects binding, so this definition will be useful:

StrongName(α) ≡ Key(α) 6= ε

An assembly definition consists of an assembly name, assembly dependencies and class defi-
nitions. Bytecode refers to assemblies by their display name, so the dependencies map display
names to full assembly names. We assume that bytecode is encapsulated in class definitions of
some type ClassDef . An assembly definition knows the location of the file that it was loaded
from; this is used in type-casting and reflection operations.

AssemblyDefinition δ : AD =
Name : AN,Refs : id −→ AN,Code : id −→ ClassDef, Loc : id

The CLI specification defines an assembly as comprised of modules (that contain bytecode) and
other resource files. An assembly’s module and resource files may be placed in a single physical
file or left as independent files. However, modules and the physical layout of an assembly play no
role in binding3, so we ignore them in our model. This keeps the definition of the Code element
simple.

2.2 Assembly environment

Most CLI implementations (though not the CLI specification itself) support a standard location
on disk where assemblies can be placed, typically if they have a strong name. At load-time, this
location is typically checked before others, and thus provides the default environment from which
assemblies come. In the CLR and Mono, the environment is provided by the Global Assembly
Cache (GAC).

Environment ∆ : Env = AN −→ AD

We introduce the extended environment to represent both the filesystem of the machine ex-
ecuting the code, and a URL-addressable space of machines that have assemblies available for
download. Given a list of paths, the extended environment tries each in turn until an assembly
definition is found; it returns ε if the list is exhausted without finding an assembly.

Extended Environment EE : ExtEnv = id∗ −→ AD

3 Assembly-Oriented Execution

3.1 State

We wish to show how assembly identity, resolution and loading affect execution. We distinguish
the state of the executing program from the state of the runtime system itself. Program state P
is a pair whose elements are an instruction stack and an operand stack.

Program state P : I∗ × V ∗

A CLI instruction I is parameterised by a display name and a member descriptor, M. The
display name must have a corresponding entry in the Refs element of the enclosing assembly. A
member descriptor is simply a class and a field/method signature. Values come from a type V
with which we are not concerned.

The runtime system’s state is represented by three elements: an environment (defined in section
2), a heap and a stack.

The runtime system’s heap stores assembly definitions loaded from the environment and ex-
tended environment. The CLR’s heap is divided into two parts, called contexts.4 Contexts stop

3Partition I, §9.6: “... rather than establishing relationships between individual modules and referenced assem-
blies, every reference is resolved through the current assembly. This allows each assembly to have absolute control
over how references are resolved.”

4In fact, there is a third heap context, but its role is not important in our current model.
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a programmer circumventing the system’s binding policies. The Mono system does not support
contexts at present.

An assembly loaded by the CLR itself is placed in the first context. This happens when a
bytecode instruction is jitted and the instruction’s display name is resolved. Assemblies loaded
directly from a filename are placed in the second context. This happens when a programmer uses
the reflection API provided by the core assemblies in the CLR and Mono. With a heap consisting
of a pair of mappings from assembly name to definition, we write Hx for H ↓1.

Heap H : (AN −→ AD)× (AN −→ AD)
In a CLI implementation, the heap of loaded assemblies is part of an appdomain, which is a

logical unit of isolation in a process. As we do not model the ability of a program to dynami-
cally create and destroy appdomains, there is exactly one appdomain per executing application.
Therefore, we do not need to qualify our heap of assemblies with an appdomain.

We need to track the call stack of assemblies at each dynamic program point. This is because
the references of the currently executing assembly is consulted when resolving a reference to
another assembly.5 In addition, the context of the currently executing assembly is important
when resolving an assembly reference. The stack starts with the assembly that the operating
system considers is the entrypoint for an application.

Stack S : (AN × {1, 2})∗

3.2 Evaluation

Evaluation is performed by a small-step operational semantics that evolves the state of the runtime
system (δ, H, S) and the program state (P).

∆,H, S, P −→ ∆′,H ′, S′, P ′

The rules are shown in fig. 1. The bytecode instruction on the program’s instruction stack
can be evaluated if it depends on an assembly already loaded into the system heap. (Rules Exec-
Instr, Exec-Instr-Call, Exec-Instr-Cast) Details of the evaluation are not important, so
we abstract it into this judgement which evolves the program state given an assembly definition
needed by the instruction:

δ, P −→ P ′

We are forced to differentiate the call instruction from other instructions because we need to
add the called assembly’s name to the system stack, and modify the program’s instruction stream
with the body of the called method. We assume a lookup function that can find a member M in
an assembly.

A binding step can take place to resolve and load an assembly that an instruction is dependent
on. (Rule Exec-Bind) It uses the binding rules that evolve an environment and heap with an
assembly definition for assembly name α, returning the name of the actual assembly loaded:

∆,H, α −→ ∆′,H ′, α′

The execution is stuck if binding fails to find an assembly definition, i.e. α′ is ε.

3.2.1 Heap contexts in evaluation

To evaluate a bytecode instruction, a definition must be available for the assembly it refers to.
As per the CLI specification, we take the display name N mentioned in an instruction and look
it up in the references of the currently executing assembly T , obtaining a full assembly name α.
In the CLR, which heap context to look up this assembly name α in depends on which context

5CLI Specification Partition 1 §9.6
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the currently executing assembly is loaded in. An assembly loaded in the first context can only
“see” assemblies also loaded in the first context; an assembly loaded in the second context can see
assemblies in both contexts, preferring the second. This policy is justified by the first context being
where assemblies are “officially” loaded and the second context being where expert programmers
place their own assemblies. (Mono only has one context, so the issue does not arise.)

contextCLR(α, H, x) =
{

x if α ∈ dom(Hx)
1 if x = 2 ∧ α /∈ dom(H2),∈ dom(H1)

contextMono(α, H, x) = x

3.2.2 Casting

Casting is complicated because assemblies play the same role as classloaders in Java, i.e. scoping
a class such that a type is an (assembly name,class name) pair. Ensuring that the same classes
from different assemblies are not confused is an important defence against attacks. Therefore, in
the CLR, the source and target classes must be defined in the same assembly file on disk.

In addition, the heap context in which an assembly is loaded provides another level of qual-
ification for a class, i.e. a type in the CLR is a (context id,assembly name,class name) triple.
The same assembly definition can be loaded into multiple contexts, but casting an object across
contexts would give rise to the same problems as casting it across classloaders. Therefore, the
assembly definitions containing the source and target classes must be in the same context.

The Exec-Instr-Cast rule first obtains the full assembly name α referred to by the castclass
instruction. We assume that the object to be cast is accessible via the top value v on the program
state’s value stack, and that the auxiliary function type returns an (assembly name,class name)
pair representing the object’s type. The assemblies named by α and α′ must be loaded, potentially
in different contexts. We check that the two loaded assemblies were loaded from identical paths,
as required by the CLR. If so, then the success of the cast is for the program to determine; we
assume a notional cast operator that checks subclassing using the class definitions provided from
an assembly definition:

Code(Hy(α)), P [cast C ′ to C] −→ P ′

4 Assembly Binding

The binding rules in fig. 2 take a logical assembly name and return an assembly definition plus
a name. If the assembly is not already loaded in the heap, then they use a name resolver η, a
location resolver �, a assembly installer ⊕, and a name matcher ∼.

A name resolver performs a logical-to-logical mapping, applying versioning policy to an as-
sembly name in order to obtain a more refined assembly name. A location resolver performs
a logical-to-physical mapping, taking an assembly name and applying a “probing” policy that
describes where to search for an assembly definition. If the location resolver fails to provide a lo-
cation where a suitable assembly can be found, then an on-demand (i.e. “just-in-time”) assembly
installation operation is tried, via ⊕.

If the extended environment is able to find an assembly, or an assembly is installed on-demand,
then the binding rules return the heap augmented with the assembly definition, plus the name
of the assembly that was actually loaded. CLI implementations require that the loaded name
matches the name of the desired assembly (i.e. produced by the name resolver), according to ∼.

Name Resolver η : AN −→ AN

Location Resolver � : AN × E −→ id∗

Installer ⊕ : AN × E −→ E
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P [−] = (− :: is , v :: vs)

I[−] = ldfld [−]M | stfld [−]M | new [−]M

(Exec-Instr)

Refs(Hx(T ))(N) = α y = context(α, H, x) Code(Hy(α)), P [I[N ]] −→ P ′

∆,H, (T, x) :: Ts, P [I[N ]] −→ ∆,H, (T, x) :: Ts, P ′

(Exec-Instr-Call)

Refs(Hx(T ))(N) = α y = context(α, H, x) lookup(Hy(α),M) = e

∆,H, (T, x) :: Ts, P [call [N ]M ] −→ ∆,H, (α, y) :: (T, x) :: Ts, P [e]

(Exec-Instr-Cast)

Refs(Hx(T ))(N) = α y = context(α, H, x)
type(v) = (α′, C ′) z = context(α′,H, x)
Loc(Hy(α)) = Loc(Hz(α′))
Code(Hy(α)), P [cast C ′ to C] −→ P ′

∆,H, (T, x) :: Ts, P [castclass [N ]C] −→ ∆,H, (T, x) :: Ts, P ′

E[−] = I[−] | castclass [−]M | call [−]M

(Exec-Bind)

Refs(Hx(T ))(N) = α ∆,H1, α −→ ∆′,H ′
1, α

′

∆,H, (T, x) :: Ts, P [E[N ]] −→ ∆′, (H ∪1 H ′
1), (T, x) :: Ts, P [E[N ]]

(Exec-Run)

∆,H, S, P [E[N ]] −→ ∆′,H ′, S, P [E[N ]] ∆′,H ′, S, P [E[N ]] −→ ∆′,H ′′, S, P ′

∆,H, S, P [E[N ]] −→ ∆′,H ′′, S, P ′

H ∪1 H ′ ≡ (H1[y 7→ H ′(y)|y ∈ dom(H ′)],H2)

Fig. 1: Execution and Loading

Name Matcher ∼: AN ×AN −→ bool

We introduce an application context that stores facts about the runtime environment for use
by the name and location resolvers.

Application Context Γ :
(RuntimeV ersion : int× int× int× int,Mapping : AN −→ (AN × id), AppBase : id)
We define a Binding Framework BF = (Γ,∆, η,�,⊕,∼). A binding framework is instantiated

for a specific machine, CLI implementation and application. The local disk of the machine supplies
the environment ∆, which is a single directory for the CLR and one or more directories for Mono.
The CLI implementation supplies ΓRuntimeV ersion, η, � and ⊕. The executed application supplies
ΓAppPath and ΓMapping. This models “side-by-side execution”, where several CLI implementations
can be installed on the same machine, each with its own core assemblies, and the operating system
chooses which implementation is suitable for executing a given application.

4.1 Name Resolution

A name resolver η maps a logical assembly name to another logical assembly name, according to
three policies: servicing, unification and retargeting. Fig. 3 shows name resolvers for the CLR
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(Bind-Already-Loaded)

α ∈ dom(H)
∆,H, α −→ ∆,H, α

(Bind-Available)

α /∈ dom(H) η(α) = α′ EE(∆� α′) = δ α′ ∼ Name(δ)
∆,H, α −→ ∆,H[α 7→ δ], Name(δ)

(Bind-Install-On-Demand)

α /∈ dom(H) η(α) = α′ EE(∆� α′) = ε ∆⊕ α′ = ∆′ α′ ∼ Name(∆′(α))
∆,H, α −→ ∆′,H[α 7→ ∆′(α)], Name(∆′(α′))

(Bind-Unavailable)

α /∈ dom(H) η(α) = α′ EE(∆� α′) = ε ∆⊕ α′ = ∆
∆,H, α −→ ∆,H, ε

Fig. 2: Binding

and Mono.

Servicing policy To allow assemblies to be serviced (i.e. upgraded for security and perfor-
mance reasons without modifying calling applications), the CLR supports policies for redirecting
references to strongly-named assemblies. A reference to a non-strongly-named assembly cannot
be serviced. (Mono does not currently support redirection policies.)

First, each application can supply a policy file for redirecting one version of a given assembly
to another. Second, “publisher policies” can redirect requests for assemblies in the GAC. Third,
a machine-wide redirection policy is applied after the application and publisher policies. We
represent the union of these policies as a mapping from assembly name to assembly name in
ΓMapping (using the first element of the range).

Unification policy A CLI-compliant virtual machine, such as the CLR, is often developed by
different individuals from those who program the core assemblies that accompany the VM.6 It is
often practical to test a VM only with the exact framework assemblies that will accompany it.

The CLR and Mono both impose a restriction that some core assemblies (the exact set differs)
must be the same version as that of the runtime execution system itself.

Retargeting policy As well as the CLR, Microsoft producesa CLI implementation for mobile
devices called the .NET Compact Framework. An application compiled for the CLR will not run
on a mobile device equipped with just the .NET Compact Framework, even if the developer is
careful to use only assemblies available in the Compact Framework. This is because the core as-
semblies that accompany the CLR have different strong names from the assemblies in the Compact
Framework [Mot04].

However, an application compiled for the .NET Compact Framework will run on the CLR.
This is possible because the generated assembly references the Compact Framework’s assemblies
by their strong names, as usual, but each reference features a retargetable flag. The .NET Compact
Framework’s runtime ignores this flag and resolves the core assemblies as usual. The CLR reacts to
it by rewriting the retargetable assembly names to the relevant core assembly names; the version
number is unified and the key token is set to a standard value that indicates a core assembly to
Fusion. This is Microsoft-specific behaviour; the Mono runtime will halt on failing to resolve the
strong names of the Compact Framework assemblies referenced by the application.

6In Java, the java.lang.* class hierarchy.
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ηCLR(α) =



α
if ¬StrongName(α)

ΓMapping(α) ↓1
if StrongName(α) ∧ ¬CoreCLR(α)

α[V ersion 7→ ΓRuntimeV ersion]
if StrongName(α) ∧ CoreCLR(α) ∧ ¬Retargetable(α)

α[V ersion 7→ ΓRuntimeV ersion, Security 7→ ‘b77a5c561934e089′]
if StrongName(α) ∧ CoreCLR(α) ∧ Retargetable(α)

ηMono(α) =


α

if ¬CoreMono(α)

α[V ersion 7→ ΓRuntimeV ersion]
if CoreMono(α)

CoreCLR(α) ≡
DisplayName(α) ∈ {mscorlib, System.Windows.Forms, ...}

CoreMono(α) ≡ StrongName(α) ∧ DisplayName(α) ∈ {mscorlib}

Fig. 3: Name Resolution

4.2 Location resolution

A location resolver � supplies a list of physical filenames for the extended environment to try to
obtain an assembly from. Fig. 4 shows location resolvers for the CLR and Mono.

Given an assembly name, the CLR’s location resolver prefers to search the environment first
if the assembly’s name is a strongname. The next possible location is a “codebase” from the
application context, specifically the second element of the ΓMapping entry for the target assembly
name. The codebase’s location is final in the sense that no alternative paths are tried if it is
specified. If a codebase is not specified, then various locations in the filesystem are suggested,
using the path of the currently executing application (which is not necessarily that of the currently
executing assembly). The extended environment will “probe” each of these locations in turn.

When performing location resolution for an assembly name that is not a strongname, the
environment is not used. If a codebase is available, it must come from the same location as the
executing application. Otherwise, the filesystem is tried as before.

The location resolver for Mono is quite different. It tries the application’s local directory first
before the environment. (It also searches a CLASSPATH-style directory list before the environment,
but we do not show this.)

4.3 Name matching

The CLR and Mono require an exact match between desired and loaded assembly versions:
α ∼CLR,Mono α′ ≡

StrongName(α) ⇐⇒ StrongName(α′) ∧
V ersion(α) = a.b.c.d ⇐⇒ V ersion(α′) = a.b.c.d
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∆�CLR α =



∆, L
if StrongName(α) ∧ ΓMapping(α) ↓2= L

∆, Locs(α)
if StrongName(α) ∧ ΓMapping(α) ↓2= ε

L
if ¬StrongName(α) ∧ ΓMapping(α) ↓2= L

∧ L = ΓAppPath +′′ /′′ + x for some x

Locs(α)
if ¬StrongName(α) ∧ ΓMapping(α) ↓2= ε

Locs(α) = (ΓAppPath + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + DisplayName(α) + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + Culture(α) + “/′′ + DisplayName(α) + “.dll′′),
(ΓAppPath + “/′′ + Culture(α) + “/′′ + DisplayName(α) + “/′′+

DisplayName(α) + “.dll′′)

∆�Mono α = (ΓAppPath +′′ /′′ + DisplayName(α) +′′ .dll′′),∆

Fig. 4: Location Resolution

∆ ⊕CLR α = ∆′ for some ∆′ ⊇ ∆ where ∆′(α) 6= ε =⇒ ∆(α) = ε

∆ ⊕Mono α = ∆

Fig. 5: Software Installation

4.4 Install-on-demand

If both the environment and the extended environment fail to supply an assembly, the ⊕ function
tries to perform an “install-on-demand” operation. Unlike the extended environment, which is
queried at a specific location (e.g. a URL), the installer is required to return an assembly given
just its name.

In the CLR, we suppose that the end user is asked to supply an assembly, e.g. on a CD.
Because the supplied assembly is totally free, we pass the old environment to ⊕ to see that if it
does grow, then a truly new assembly is available in the new environment. This approach allows
us to accept that the installation can fail, leaving the environment unchanged and propagating
(through binding rule Bind-Unavailable) a loading failure.

Mono does not support on-demand installation, so returns an unchanged environment.

4.5 Dynamic loading through reflection

As stated in section 2, assemblies can be loaded using a reflection API. This is widely used
by developers building applications that support plug-ins. Among the many reflection methods
provided by the CLR’s core assemblies, we consider Load and LoadFrom. Mono’s core assemblies
provide Load only. The full method signatures are shown in fig. 6.

Load takes a display name N from the program state’s value stack, and and defers to the
runtime’s binding rules to resolve and load it. The behaviour here is exactly that of the Exec-
Load rule in fig. 1. (A CLI implementation will typically also provided an overloaded Load that
takes a full assembly name, but this merely allows lookup in Refs to be avoided.)
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LoadFrom is more complex. It takes a location L from the program state’s value stack, and
loads the file at that location directly. It then performs what Microsoft call a second bind by taking
the display name of the just-loaded assembly definition and trying to bind it. If binding gives the
same assembly (by physical file location) as one already loaded, then the heap is updated with
the result of the second bind. If the second bind cannot find an assembly, or it finds a different
physical file to that directly loaded, then the directly-loaded assembly is placed in the heap’s
second context.

LOAD ≡ call[mscorlib]System.Reflection.Assembly :: Load
LOADFROM ≡ call[mscorlib]System.Reflection.Assembly :: LoadFrom

P [−,−] = (− :: is ,− :: vs)

(Exec-Instr-CallLoad)

Refs(Hx(T ))(N) = α ∆,H1, α −→ ∆′,H ′
1, α

′

∆,H, (T, x) :: Ts, P [LOAD,N ] =⇒ ∆′, (H ∪1 H ′
1), (T, x) :: Ts, P [ε, α′]

(Exec-Instr-CallLoadFrom)

EE(L) = δ ∆,H1, DisplayName(Name(δ)) =⇒ ∆′,H ′
1, α

α 6= ε ∧ Loc(δ) = Loc(H ′
1(α))

∆,H, S, P [LOADFROM,L] =⇒ ∆′, (H ∪1 H ′
1), S, P [ε, α]

(Exec-Instr-CallLoadFrom2)

EE(L) = δ ∆,H1, DisplayName(Name(δ)) =⇒ ∆′,H ′
1, α

α = ε ∨ Loc(δ) 6= Loc(H ′
1(α))

∆,H, S, P [LOADFROM,L] =⇒ ∆, (H ∪2 [Name(δ) 7→ δ]), S, P [ε,Name(δ)]

H ∪1 H ′ as before
H ∪2 [α 7→ δ] ≡ (H1,H2[α 7→ δ|α /∈ dom(H2)])

Fig. 6: Dynamic loading through reflection

5 Related & Further Work

Classloading in Java has received significant attention[Dea97, JLT98, LB98, QGC00], and [FZA04]
presents it in an abstract setting. However, relatively little work focuses on the CLI platform.
[DLE03] unifies dynamic linking in Java and the CLI, but abstracts the assembly binding process to
a very high level. [EJS02] and [EJS03] offer a formal model of a well-formed GAC, where assembly
addition and removal do not break existing dependencies. Our work is clearly complementary to
this, as we show how the GAC is used in the wider assembly binding process. Our ⊕ operator
would ideally maintain a stronger safety property concerning evolution of the GAC[EJS03].

We have described and formalised how assemblies are resolved and loaded by common CLI
implementations. Most programmers assume that an assembly’s strong name is its sole identity
once loaded, but we show how the CLR, during execution, considers an assembly’s identity to
have more elements. Namely, it considers where an assembly was loaded from (i.e. a disk or URL-
based location) and where it was loaded to (i.e. its heap context). These elements are necessary
because the CLR exposes reflective assembly loading operations that can load arbitrary assemblies.
While merely loading such assemblies is harmless, it is essential to avoid using their classes if the
assembly’s identity masquerades as one of the core assemblies. We plan to state formally that
binding is “safe” in the current CLR in that it never leads to a heap where a non-core assembly
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is mistaken for a core assembly. The Mono system avoids the problem at present by not offering
reflective loading capabilities.

A weakness of the current model is that name resolution produces a very precise answer,
i.e. a single assembly name. This does not accurately model the .NET Compact Framework or,
indeed, more flexible future schemes for choosing an assembly to load[BD04, BMED05]. The
.NET Compact Framework does not support servicing policies that redirect an assembly’s desired
version, so applications cannot be directed to use later, better code. However, the Compact
Framework’s binding rules permit the loader to provide version a.b.c.x of an assembly when a
reference is made to version a.b.c.d, i.e. the last element of the version number can “float”. The
binding rules also permit any version of an assembly to be loaded when the reference mentions
version 0.0.0.0.

In our model, this equates to the name resolver producing a.b.c.∗ for the desired version to
locate. We could modify name resolution to produce a constraint on permitted names, rather
than a specific name. Location resolution would then need to iterate through the files found in
the extended environment to choose the “best” one matching the constraint. The name matcher
would have the following definition:

α ∼CompactFramework α′ ≡
StrongName(α) ⇐⇒ StrongName(α′) ∧
((V ersion(α) = a.b.c. ⇐⇒ V ersion(α′) = a.b.c. ) ∨ V ersion(α) = 0.0.0.0)

The CLR v2.0 will be released in late 2005 and makes some small changes to unification
policy[Shi05], so we will need a new name resolver. More interesting are Microsoft’s plans for
binding in Longhorn[GR04], where assemblies are typed and servicing policy is affected by the
types of referencing and referenced assemblies. A feature called “interim roll-back” is also planned,
where assemblies installed in the environment are temporarily hidden due to flaws being found in
them. Our model can handle the new servicing policy (at name resolution) and rollback policy
(at location resolution). More challenging is to state whether syntactic or semantic compatibility
is assured by these new features.
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A Examples

A.1 Context-locality of dependencies

We produce two strongly named assemblies, Server and Server2. Code in Server calls code in
Server2. We wish to show that if both assemblies are loaded in the second context, then a
dependency from one to the other is automatically resolved.

Server2 is built first (producing Server2.dll), then Server is built (referencing Server2.dll and
producing Server.dll). Server.dll and Server2.dll exist in separate directories, both unknown to
Fusion.

Listing 1: Server assembly
1 us ing System ;
2 us ing System . Re f l e c t i o n ;
3
4 [ assembly : AssemblyVersion ( ” 1 . 0 . 0 . 0 ” ) ]
5 [ assembly : AssemblyKeyFile (” Server . key ”) ]
6
7 pub l i c c l a s s Server {
8 pub l i c void UseServer2 ( ) {
9 Console . WriteLine (” Ca l l i ng other s e r v e r ”) ;

10 Server2 other = new Server2 ( ) ;
11 other . p r i n t ( ) ;
12 }
13 }

Listing 2: Server2 assembly
1 us ing System ;
2 us ing System . Re f l e c t i o n ;
3
4 [ assembly : AssemblyVersion ( ” 1 . 0 . 0 . 0 ” ) ]
5 [ assembly : AssemblyKeyFile (” Server2 . key ”) ]
6
7 pub l i c c l a s s Server2 {
8 pub l i c void p r i n t ( ) {
9 Console . WriteLine (” I am Server2 ”) ;

10 }
11 }

The Client class in listing 3 is placed in an assembly that has no static dependencies on the
Server or Server2 assemblies. The LoadFrom statements place both these assemblies in the second
context. The different hash codes in the output indicate that the different .dll files are distinct
Assembly objects in memory.

Listing 3: Dependencies are context-local
1 // Dependencies are context−l o c a l
2
3 us ing System ;
4 us ing System . Re f l e c t i o n ;
5
6 pub l i c c l a s s C l i en t {
7 pub l i c s t a t i c void Main ( S t r ing [ ] a rgs ) {
8 Assembly a = Assembly . LoadFrom(@”c :\ s c ena r i o1 \hidden1\ Server . d l l ”) ;
9 Console . WriteLine ( a+” at ”+a . Locat ion ) ;

10 Console . WriteLine ( a . GetHashCode ( ) ) ;
11
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12 Assembly b = Assembly . LoadFrom(@”c :\ s c ena r i o1 \hidden2\ Server2 . d l l ”) ;
13 // Assembly b = Assembly . Load (” Server2 , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l

, PublicKeyToken=4223ED1A651AD56B”) ;
14 Console . WriteLine (b+” at ”+b . Locat ion ) ;
15 Console . WriteLine (b . GetHashCode ( ) ) ;
16
17 Object o = a . Create Ins tance (” Server ”) ;
18 Type t = o . GetType ( ) ;
19 MethodInfo m = t . GetMethod (” UseServer2 ”) ;
20 m. Invoke (o , nu l l ) ;
21 }
22 }

By indirect invocation at line 20 of the client, code in the Server code is invoked. (We need to
use indirect invocation to avoid a static reference to the Server assembly from the Client. Since
the Client executable is in the first context, having been loaded by the operating system, it would
not be able to use the Server assembly in the second context.)

Now, code in the Server assembly (class Server, method UseServer2) calls code in the Server2
assembly. The static dependency that Server has on Server2 is successfully resolved within the
second context. No attempt to load a Server2 assembly takes place.

Listing 4: Output of listing 3
1 C:\ s cenar io1 >c l i e n t
2 Server , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=fc71b27c35bb8a9d at

c :\ s c ena r i o1 \hidden1\ s e r v e r . d l l
3 2
4 Server2 , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=4223ed1a651ad56b

at c :\ s c ena r i o1 \hidden2\ s e rv e r2 . d l l
5 3
6 Ca l l i ng other s e r v e r
7 I am Server2

Note that if we comment out lines 12 and uncomment line 13 in the Client class, then we see
cross-context dependency resolution. Assuming that Server2.dll is able to be found (e.g. it is in
the same directory as the Client executable), it will be loaded into the first context. The code in
the Server assembly, loaded in the second context, is able to call code in the Server2 assembly,
loaded in the first context.
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A.2 Unification

This example shows that trying to bind to an arbitrary core assembly results in the bind succeeding,
but to the “approved” core assembly.

This program tries to load some unavailable versions of the mscorlib core assembly.

Listing 5: Unification
1 // Re fe rences to mscor l ib are automat i ca l l y un i f i e d
2
3 us ing System ;
4 us ing System . Re f l e c t i o n ;
5
6 pub l i c c l a s s C l i en t {
7 pub l i c s t a t i c void Main ( S t r ing [ ] a rgs ) {
8 Assembly a = Assembly . Load (” Mscorl ib , Vers ion =2 . 0 . 0 . 0 , Culture=neutra l ,

PublicKeyToken=B77A5C561934E089”) ;
9 Console . WriteLine ( a+” at ”+a . Locat ion ) ;

10 Assembly b = Assembly . Load (” Mscorl ib , Vers ion =0 . 0 . 0 . 1 , Culture=neutra l ,
PublicKeyToken=B77A5C561934E089”) ;

11 Console . WriteLine (b+” at ”+b . Locat ion ) ;
12 }
13 }

Running it on the CLR v1.1.4322.0, we see unification happening, so only the correctly ver-
sioned assembly is loaded.

1 C:\ s cenar io2 >c l i e n t
2 mscor l ib , Vers ion =1 .0 . 5000 . 0 , Culture=neutra l , PublicKeyToken=

b77a5c561934e089 at c :\windows\mic ro so f t . net \ framework\v1 . 1 . 4322\
mscor l ib . d l l

3 mscor l ib , Vers ion =1 .0 . 5000 . 0 , Culture=neutra l , PublicKeyToken=
b77a5c561934e089 at c :\windows\mic ro so f t . net \ framework\v1 . 1 . 4322\
mscor l ib . d l l
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A.3 Casting across assemblies

This example shows that casting an object from a class in one assembly, to the same class in
another assembly, fails when the assemblies have different versions.

We create two assemblies, both called Server.dll, that differ only in their version number. We
install both to the GAC.

Listing 6: Server assembly v1.0.0.0
1 us ing System ;
2 us ing System . Re f l e c t i o n ;
3
4 [ assembly : AssemblyVersion ( ” 1 . 0 . 0 . 0 ” ) ]
5 [ assembly : AssemblyKeyFile (” Server . key ”) ]
6
7 pub l i c c l a s s Server {}

Listing 7: Server assembly v1.0.0.1
1 us ing System ;
2 us ing System . Re f l e c t i o n ;
3
4 [ assembly : AssemblyVersion ( ” 1 . 0 . 0 . 1 ” ) ]
5 [ assembly : AssemblyKeyFile (” Server . key ”) ]
6
7 pub l i c c l a s s Server {}

The client loads both assemblies (into the first context), then tries to cast an instance of the
Server class from the v1.0.0.1 assembly, to the Server class from the v1.0.0.0 assembly. The Client
executable statically references v1.0.0.0 of the Server assembly, due to the instantiation of a Server
object at line 8 in listing 8.

Listing 8: No casting between assembly versions
1 // A c l a s s i sn ’ t compatible with i t s e l f i f i t comes from d i f f e r e n t v e r s i on

o f the same assembly
2
3 us ing System ;
4 us ing System . Re f l e c t i o n ;
5
6 pub l i c c l a s s C l i en t {
7 pub l i c s t a t i c void Main ( S t r ing [ ] a rgs ) {
8 Server s = new Server ( ) ;
9 Console . WriteLine (” S t a t i c a l l y−r e f e r en c ed Server c l a s s comes from

assembly : ”+ s . GetType ( ) . Assembly . GetName ( ) +” at ”+s . GetType ( ) .
Assembly . Locat ion ) ;

10
11 Assembly a = Assembly . Load (” Server , Vers ion =1 . 0 . 0 . 1 , Culture=neutra l ,

PublicKeyToken=17aa5269acb19216 ”) ;
12 Object o = a . Create Ins tance (” Server ”) ;
13 Console . WriteLine (” Dynamically−r e f e r en c ed Server c l a s s comes from ”+o .

GetType ( ) . Assembly+” at ”+o . GetType ( ) . Assembly . Locat ion ) ;
14
15 // Try ca s t i ng from the Server c l a s s in assembly 1 . 0 . 0 . 1 to the Server

c l a s s in assembly 1 . 0 . 0 . 0
16 try {
17 Server s2 = ( Server ) o ;
18 } catch ( Inva l idCastExcept ion ex ) {
19 Console . WriteLine ( ex ) ;
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20 }
21 }
22 }

The cast fails and a InvalidCastException is thrown. Even though the Server class itself
is identical in both the Server and Server2 assemblies, the fact that the assemblies have different
versions is important.

1 C:\ s cenar io3 >c l i e n t
2 S t a t i c a l l y−r e f e r en c ed Server c l a s s comes from assembly : Server , Vers ion

=1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17aa5269acb19216 at c :\windows
\assembly\gac\ s e r v e r \ 1 . 0 . 0 . 0 17aa5269acb19216 \ s e r v e r . d l l

3 Dynamically−r e f e r en c ed Server c l a s s comes from Server , Vers ion =1 . 0 . 0 . 1 ,
Culture=neutra l , PublicKeyToken=17aa5269acb19216 at c :\windows\assembly\
gac\ s e r v e r \ 1 . 0 . 0 . 1 17aa5269acb19216 \ s e r v e r . d l l

4 System . Inva l idCastExcept ion : Sp e c i f i e d ca s t i s not va l i d .
5 at C l i en t . Main ( S t r ing [ ] a rgs )
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A.4 Casting across contexts

This example shows that casting an object from a class in one assembly, to the same class in
another assembly, fails when the assemblies are loaded in different contexts.

We use the v1.0.0.0 Server assembly from scenario A.3, and build Server.dll. We install it into
the GAC, and also copy it to a directory unavailable to Fusion.

Listing 9: Server assembly v1.0.0.0
1 us ing System ;
2 us ing System . Re f l e c t i o n ;
3
4 [ assembly : AssemblyVersion ( ” 1 . 0 . 0 . 0 ” ) ]
5 [ assembly : AssemblyKeyFile (” Server . key ”) ]
6
7 pub l i c c l a s s Server {}

The client references the Server class, so when we build the client executable, we must reference
the “hidden” Server.dll that provides the class. This gives the client executable a static reference
to an assembly called Server, of version v1.0.0.0. Such a reference causes the server to load the
Server.dll assembly in the GAC. This assembly goes into the first context. The client also loads
the “hidden” Server.dll via LoadFrom, so the assembly goes into the second context.

The client then tries to cast an instance of the Server class from the Server.dll loaded from the
filesystem, to the class from the Server.dll loaded from the GAC.

Listing 10: No casting across contexts
1 // A c l a s s i sn ’ t compatible with i t s e l f i f i t comes from as s emb l i e s in

d i f f e r e n t context s ( hence t h e i r paths are d i f f e r e n t )
2
3 us ing System ;
4 us ing System . Re f l e c t i o n ;
5
6 pub l i c c l a s s C l i en t {
7 pub l i c s t a t i c void Main ( S t r ing [ ] a rgs ) {
8 Server s = new Server ( ) ;
9 Console . WriteLine (” S t a t i c a l l y−r e f e r en c ed Server c l a s s comes from

assembly : ”+ s . GetType ( ) . Assembly+” at ”+s . GetType ( ) . Assembly .
Locat ion ) ;

10
11 Assembly a = Assembly . LoadFrom(@”C:\ s c ena r i o4 \hidden\ Server . d l l ”) ;
12 Object o = a . Create Ins tance (” Server ”) ;
13 Console . WriteLine (” Dynamically−r e f e r en c ed Server c l a s s comes from

assembly : ”+o . GetType ( ) . Assembly+” at ”+o . GetType ( ) . Assembly .
Locat ion ) ;

14
15 // Try ca s t i ng from the Server c l a s s in the LoadFrom context to the

Server c l a s s in the Load context
16 try {
17 Server s2 = ( Server ) o ;
18 } catch ( Inva l idCastExcept ion ex ) {
19 Console . WriteLine ( ex ) ;
20 }
21 }
22 }

Since the assemblies that declare Server classes are in different contexts, the cast fails, even
though the Server classes are identical. (Indeed, the assemblies themselves are identical; only their
location, and hence context, is different.)
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1 C:\ s cenar io4 >c l i e n t
2 S t a t i c a l l y−r e f e r en c ed Server c l a s s comes from assembly : Server , Vers ion

=1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17aa5269acb19216 at c :\windows
\assembly\gac\ s e r v e r \ 1 . 0 . 0 . 0 17aa5269acb19216 \ s e r v e r . d l l

3 Dynamically−r e f e r en c ed Server c l a s s comes from assembly : Server , Vers ion
=1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17aa5269acb19216 at c :\
s c ena r i o4 \hidden\ s e r v e r . d l l

4 System . Inva l idCastExcept ion : Sp e c i f i e d ca s t i s not va l i d .
5 at C l i en t . Main ( S t r ing [ ] a rgs )
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A.5 LoadFrom reuses assemblies

This example shows that LoadFrom has the surprising behaviour that it does not always load the
assembly specified.

We use the v1.0.0.0 Server assembly from scenario A.3. We copy it to two different locations,
both unavailable to Fusion. The client then uses LoadFrom to attempt to load both files.

Listing 11: LoadFrom reuses assemblies
1 // In the LoadFrom context , l oad ing the same assembly from d i f f e r e n t

l o c a t i o n s r eu s e s the f i r s t one loaded
2
3 us ing System ;
4 us ing System . Re f l e c t i o n ;
5
6 pub l i c c l a s s C l i en t {
7 pub l i c s t a t i c void Main ( S t r ing [ ] a rgs ) {
8 Assembly a = Assembly . LoadFrom(@”C:\ s c ena r i o5 \hidden1\ Server . d l l ”) ;
9 Console . WriteLine ( a+” at ”+a . Locat ion ) ;

10 Console . WriteLine ( a . GetHashCode ( ) ) ;
11
12 Assembly b = Assembly . LoadFrom(@”C:\ s c ena r i o5 \hidden2\ Server . d l l ”) ;
13 Console . WriteLine (b+” at ”+b . Locat ion ) ;
14 Console . WriteLine (b . GetHashCode ( ) ) ;
15
16 AppDomain currentDomain = AppDomain . CurrentDomain ;
17 Assembly [ ] assems = currentDomain . GetAssemblies ( ) ;
18 fo r each ( Assembly assem in assems ) Console . WriteLine (” Loaded : ”+ assem

+” ”+assem . Locat ion ) ;
19 }
20 }

However, since the assembly’s strong name is identical in both locations, the second LoadFrom
merely receives the same Assembly object as the first (evidenced by the same hash code, 2).

For good measure, the client prints out all assemblies loaded in the appdomain, regardless of
context. We see that only one Server assembly is loaded, namely the first.

1 C:\ s cenar io5 >c l i e n t
2 Server , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17aa5269acb19216 at

c :\ s c ena r i o5 \hidden1\ s e r v e r . d l l
3 2
4 Server , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17aa5269acb19216 at

c :\ s c ena r i o5 \hidden1\ s e r v e r . d l l
5 2
6 Loaded : mscor l ib , Vers ion =1 .0 . 5000 . 0 , Culture=neutra l , PublicKeyToken=

b77a5c561934e089 c :\windows\mic ro so f t . net \ framework\v1 . 1 . 4322\ mscor l ib .
d l l

7 Loaded : Cl ient , Vers ion =0 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=nu l l C:\
s c ena r i o5 \Cl i en t . exe

8 Loaded : Server , Vers ion =1 . 0 . 0 . 0 , Culture=neutra l , PublicKeyToken=17
aa5269acb19216 c :\ s c ena r i o5 \hidden1\ s e r v e r . d l l
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