
JML: notations and tools
supporting detailed design in Java

Gary T. Leavens, K. Rustan M. Leino, Erik Poll,
Clyde Ruby, and Bart Jacobs

TR #00-15
August 2000

Keywords: Behavioral interface specification language, detailed design notation, Java language, JML language, ESC/Java,
LOOP.
1999 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications — languages, tools, JML, ESC/Java,
LOOP; D.2.4 [Software Engineering] Software/Program Verification — Class invariants, correctness proofs, formal methods,
programming by contract, reliability, tools, JML; D.2.7 [Software Engineering] Distribution, Maintenance, and Enhancement
— Documentation; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs —
Assertions, invariants, logics of programs, pre- and post-conditions, specification techniques;

To appear in OOPSLA 2000 Companion, Minneapolis, Minnesota, October 2000.

Copyright c© 2000 ACM. Permission to make digital or hard copies of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA

JML: notations and tools
supporting detailed design in Java

Gary T. Leavens
∗

Clyde Ruby
Iowa State University

Ames, Iowa, USA

{leavens,ruby}@cs.iastate.edu

K. Rustan M. Leino
Compaq Systems Research

Center
Palo Alto, California, USA

rustan.leino@compaq.com

Erik Poll
Bart Jacobs

University of Nijmegen
Nijmegen, The Netherlands

{erikpoll,bart}@cs.kun.nl

ABSTRACT
JML is a notation for specifying the detailed design of Java
classes and interfaces. JML’s assertions are stated using a
slight extension of Java’s expression syntax. This should
make it easy to use. Tools for JML aid in static analysis,
verification, and run-time debugging of Java code.

Keywords
Behavioral interface specification language, detailed design
notation, Java language, JML language, ESC/Java, LOOP.

1. INTRODUCTION
JML [8, 7], which stands for “Java Modeling Language,”
is useful for specifying the detailed design of Java classes
and interfaces. It can be used to specify the details of the
interface and behavior of such Java modules including pre-
and postconditions for methods and class invariants.

JML is a cooperative, open effort. The notation and tools
are currently being developed at Compaq Systems Research
Center, the University of Nijmegen, and Iowa State Uni-
versity. However, we welcome participation by others who
wish, for example, to extend it for new uses, perform case
studies, develop tools, or work on semantic issues.

2. EXTENDED STATIC CHECKER
At Compaq Systems Research Center, the Extended Static
Checker (ESC) project [9] uses a subset of JML as an anno-
tation language for its ESC/Java tool. This tool can auto-
matically check for certain kinds of common errors in Java
code, such as dereferencing null or indexing an array outside

∗The work of both Ruby and Leavens was supported in part
by the US National Science Foundation under grant CCR-
9803843.

Permission to make digital or hard copies of this work for personal or
classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
To appear inOOPSLA 2000 CompanionMinneapolis, Minnesota, October
2000.
c© Copyright ACM 2000 1-58113-307-3/00/10...$5.00

its bounds. These checks are done statically and automati-
cally; the checking is done without running the code and the
user does not intervene other than to supply annotations in
the code. ESC/Java takes the provided annotations into
account to suppress spurious warning messages.

For example, in the following, the lightweight JML anno-
tation that starts with //@ contains a single precondition.
This precondition says that the formal parameter, descript,
may not be the null reference.

//@ requires descript != null;

public String deleteAtAfterNl(String descript)

{ /* ... */ }

The annotations provided also cause ESC/Java to perform
additional checks. For example, ESC/Java would warn if an
actual parameter to the above method could be null. Thus
adding JML annotations helps give better quality warnings,
use of ESC/Java fosters more annotations, and in turn these
annotations help the tool do a better job of checking code
for potential errors.

3. JML CHECKER
At Iowa State University, tools are being developed that use
JML annotations in generating HTML documentation [12],
and that use JML annotations for run-time debugging [1].

The HTML pages generated from JML annotated specifica-
tions are similar to those produced by Javadoc [3]. However,
the documents also contain information from JML annota-
tions, including method specifications, class invariants, etc.

The prototype tool that uses JML annotations for run-time
debugging can automatically check preconditions of meth-
ods. It can also automatically check whether a class in-
variant holds at run-time. It does this by generating Java
source code that contains the additional checks at the begin-
ning of each method body. As in Eiffel [10], this capability
helps in debugging code. Unlike Eiffel, the tool cannot yet
check postconditions. However, the JML checker can han-
dle annotations in Java interfaces (where no code can be
directly added) and JML’s model (specification-only) fields.

1

Model fields are important for the specification of Java in-
terfaces, and also allow more complete specification of col-
lection classes than is easy to do in Eiffel.

Both of these tools handle JML’s specification inheritance
[2]. That is, they combine specifications from superclasses
and superinterfaces and use those to form a complete spec-
ification of a class [13].

4. LOOP TOOL
The University of Nijmegen’s LOOP tool [5] translates JML
annotations into proof obligations. These proof obligations
are used in an interactive theorem prover (PVS or Isabelle)
to verify the correctness of a Java implementation. The
translation from JML to formal proof obligations has re-
quired the Nijmegen group to formalize many details of Java
and JML’s semantics. Interactive theorem proving is labor-
intensive, but allows verification of more complicated prop-
erties than can be handled by static checking. The two ap-
proaches (static and semantic checking) are complementary.

As a serious case study, the Nijmegen group is applying JML
and the LOOP tool to Java smart cards [11]. The Java
Card language is a good target for this study, because it
is a simple subset of Java that does not contain complex
features as threads and dynamic loading.

5. THE JML NOTATION
JML is also interesting as a specification language.

JML blends the Eiffel [10] and Larch [4] traditions (and oth-
ers which space precludes mentioning). Because JML sup-
ports model (specification-only) fields in classes, specifica-
tions can be more precise and complete than those typically
given in Eiffel. However, because, like Eiffel, it uses Java’s
expression syntax in assertions, JML’s notation is easier for
programmers to learn than one based on the Larch Shared
Language (LSL). On the other hand, to allow specifications
to use mathematical theories like those that would be spec-
ified in LSL, JML includes several such theories, such as
sets and sequences, but hides them behind a facade of Java
classes. This allows these theories to be used in assertions
as if they were a set of Java classes.

As in the Larch family, JML method specifications have a
frame axiom (the modifiable clause), which says what fields
a method may assign to. JML also allows various forms of
redundancy in method specifications, including the state-
ment of properties that are implied by the specification and
examples that illustrate how a method can be used [4, 6, 14].
These can be used to call the reader’s attention to various
properties. A theorem prover could also use them as proof
obligations, which could help debug the specification. The
examples can also be used as method test cases.

6. REFERENCES
[1] A. Bhorkar. A run-time assertion checker for Java

using JML. Technical Report 00-08, Department of
Computer Science, Iowa State University, 226
Atanasoff Hall, Ames, Iowa 50011, May 2000.

Available by anonymous ftp from ftp.cs.iastate.edu or
by e-mail from almanac@cs.iastate.edu.

[2] K. K. Dhara and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. In
Proceedings of the 18th International Conference on
Software Engineering, Berlin, Germany, pages
258–267. IEEE Computer Society Press, Mar. 1996.

[3] L. Friendly. Design of Javadoc. International
Workshop on Hypermedia Design ’95, 1995.

[4] J. V. Guttag, J. J. Horning, et al. Larch: Languages
and Tools for Formal Specification. Springer-Verlag,
New York, NY, 1993.

[5] B. Jacobs, J. van den Berg, M. Huisman, M. van
Berkum, U. Hensel, and H. Tews. Reasoning about
Java classes (preliminary report). In OOPSLA ’98
Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 329–340. ACM, Oct. 1998.

[6] G. T. Leavens and A. L. Baker. Enhancing the pre-
and postcondition technique for more expressive
specifications. In J. M. Wing et al., editors, FM’99 —
Formal Methods: World Congress on Formal Methods
in the Development of Computing Systems, Toulouse,
France, volume 1709 of Lecture Notes in Computer
Science, pages 1087–1106. Springer-Verlag, 1999.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer
Academic Publishers, Boston, 1999.

[8] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report 98-06i, Iowa State
University, Department of Computer Science, Feb.
2000. See www.cs.iastate.edu/~leavens/JML.html.

[9] K. R. M. Leino et al. Extended static checking. At
http://research.compaq.com/SRC/esc/Esc.html,
2000.

[10] B. Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.

[11] E. Poll, J. van den Berg, and B. Jacobs. Specification
of the JavaCard API in JML. In Fourth Smart Card
Research and Advanced Application Confernce
(CARDIS). Kluwer Academic Publishers, 2000.

[12] A. D. Raghavan. Design of a JML documentation
generator. Technical Report 00-12, Iowa State
University, Department of Computer Science, July
2000.

[13] A. D. Raghavan and G. T. Leavens. Desugaring JML
method specifications. Technical Report 00-03a, Iowa
State University, Department of Computer Science,
July 2000.

[14] Y. M. Tan. Formal Specification Techniques for
Engineering Modular C Programs, volume 1 of Kluwer
International Series in Software Engineering. Kluwer
Academic Publishers, Boston, 1995.

2

