
Analysing and Improving Security Code Reviews
Max Tijssen∗, Erik Poll∗, Theodoor Scholte† and Haiyun Xu†

∗Dept. of Computer Science
Radboud University Nijmegen

Nijmegen, Netherlands
Email: maxtijssen@gmail.com

erikpoll@cs.ru.nl
†SIG : Software Improvement Group

Amsterdam, Netherlands
Email: {t.scholte,h.xu}@sig.eu

Abstract—Security code reviews are an important part of many
secure code development processes [6]. This research aims to
improve this process, by means of an empirical study. The data we
looked at are reports generated by seventeen groups of students
performing a security code review, on the same system, using the
OWASP ASVS. The ASVS is a guideline produced by OWASP
which serves as a tool to help perform structured security code
reviews for web applications [18]. The document itself lists 166
different defensively worded security verification requirements.
We analyzed three different aspects. Firstly we gave a overview of
how consent was spread between different requirements. Next we
showed for which requirements tools could be used to assist, we
found this to be a small subset of requirements with most of them
still needing manual inspection. Lastly we calculated correlation
between expertise and inter-rater agreement but failed to find any
correlations strong enough to be proven by our current number
of test subjects.

I. INTRODUCTION

Security has become an increasingly important aspect of any
information system, with more being spent on it every year1.
Security code reviews have shown to be an invaluable tool [6]
to help reach the goal of creating and maintaining a secure
system. Code reviews are the process of manually analyzing
(part of) the source code of a system. To support this process
automatic tools can be used. With security code reviews this
is done mostly to find vulnerabilities such as SQL injection
or XSS vulnerable functions.

Whether done during development to stop vulnerabilities
from ever making it to release [12] or on the code of a live
system to find vulnerabilities before malicious attackers do, it
should be clear how these reviews can help make a system
more secure.

Security code reviews are for now largely done by hand.
Although there are many different static code analysis tools
(also known as source code scanners/analysers, abbreviated to
SAT) available that can scan for security vulnerabilities, these
will often only check a very specific subset of the things you
would like to have reviewed. Examples of these kinds of tools
include CheckMarx, HP Foritfy or FindBugs This means they
leave much which should be done manually [2]. Which parts

1http://www.gartner.com/newsroom/id/3135617

can and should be assisted by the use of automated tools is
something we will investigate further on in this paper.

The problem with these reviews mainly being done by hand
is that the influence of the individual reviewer on the end result
is very strong, since some of the things you check are quite
subjective (when is something secure enough?). This means
that the results will be largely irreproducible, and thus it will
also become hard to compare two different reviews with each
other.

Another common occurrence is these reviews being quite
unstructured, with reviewers simply seeing what vulnerabilities
or bad practices they can find, and reporting on these. This
further increases the role in which the individual reviewer
influences the end result. This ad-hoc way a working further
increases how time consuming and error-prone the process is.

The ASVS was created as a way to bring more structure to
this process. It contains a large (166) set of security verification
requirements (simply called requirements in the rest of this
paper). These requirements describe a certain attribute that
OWASP considers a secure system should have. An example
of this is requirement V2.2 [18]: (Chapter two, requirement
two)

Verify all password fields do not echo the users
password when it is entered.

.The ASVS is divided into chapters of related requirements, for
instance requirements related to session management or access
control. Each requirement is also assigned a certain level from
one to three, which dictates how in depth the review is, with
one being most basic and three the most advanced.

In this paper our main goal is to verify the OWASP ASVS’s
effectiveness in the code review process. We explore the
security code review results of seventeen groups reviewing
the same software system using ASVS. We will first focus
on whether this process produces sufficiently reproducible
results, and which areas are the most controversial. We will
then examine how expertise and automatic tools can assist in
producing reproducible results.

II. RESEARCH QUESTIONS

The central goal of this research can be split into three
questions.

i

1) Is the OWASP ASVS a good way of producing re-
producible results, and which parts produce the most
controversy among reviewers?

2) Where can tools be used to improve the process when
using the ASVS?

3) What role does expertise play when looking at how
reproducible review results are?

With the answer to the first question you can make sure that
the most controversial requirements are tackled by reviewers
with more knowledge or experience. It might also assist writers
of future versions of the ASVS or similar documents take a
look at where the most controversy is currently found. The first
part of the question might also help prospective user decide
whether they want to use the ASVS as the basis for their
reviews.

The answer to the second question can help reviewers have
a good idea of where static analysis tools are beneficial and
where there is potential for automation.

The last question can of course help with the setup of the
code review process, by making sure that the reviewers you
have available are assigned in the most efficient way.

III. METHODS

A. Data collection

The data used for this research was collected by having
seventeen groups of three to four Master students in Computer
Science do a security code review of the same code using the
OWASP ASVS (2014 version).

For the purpose of this research the groups were asked to
check all level two requirements and lower, and disregard
chapters 11 and 13 (since these were not relevant for the
system). Groups were free to also check level three require-
ments, but the verdicts for these requirements were discarded
for the purposes of this research. This left 107 requirements
to evaluate.

The system under question is the same as the one used by
Edumdson et al [1] in their research, which is a modified ver-
sion of the Anchor CMS called TestCMS. The modifications
basically come down to re-introducing security vulnerabilities
which were fixed in the CMS but that were there originally,
in order to make sure there were significant vulnerabilities
to find. The reasons for using this system are basically the
same as described in [1] (known vulnerabilities, small size and
permissive license) and also simply because it was available
to us.

The students were instructed to atleast try out some of the
static code analysis tools (SATs) provided (RATS2, RIPS3 and
two large commercial SATs) and otherwise use them as they
saw fit.

The reviews produced a report consisting of a verdict per
requirement of the ASVS, with an argumentation, and a
reflection consisting of their experiences with the reviewing

2https://code.google.com/p/rough-auditing-tool-for-security/
3http://rips-scanner.sourceforge.net

process itself and using the static code analysis tools. The
possible verdicts were the following:

• Pass: The requirement is met by the system.
• Fail: The system fails the requirement.
• NA: The requirement is not relevant to the system.
• Don’t Know: Due to either time constraints or lack of

knowledge the students were unable to reach a verdict.
Some students added their own verdicts as specializations of
these, but for the purpose of the research these are ignored.

Prior to the review each group was also asked to fill out a
questionnaire where the individual members were asked to rate
their expertise levels in web application development, PHP,
web application security and penetration testing on a scale of
one to five (one being the lowest and five the highest amount
of expertise).

This way each group produced two documents to be pro-
cessed:

• A review consisting of a list of requirements with the
verdict the reviewers found, along with an explanation of
how they came to this verdict and a reflection on both
the usage of tools and the process of using the ASVS.

• A questionnaire where each group member indicated
their expertise level in four areas. This questionnaire was
simply four closed questions with a scale from 0 to 5
indicating knowledge.

B. Processing

As described in section II. there are three questions we wish
to answer with this data, each will have it’s own processing.

a) Consensus:
In order to measure reproducibillity of certain requirements we
will use consensus. If there is a lot of consensus about what
a certain requirement should be, then it logically follows that
a different reviewer reviewing this same requirement would
come to the same verdict. Here we will use a consensus
measure to measure how much different groups agree with
each other with regard to the validation of requirements. The
consensus factor is the following:

max(Pass, Fail,NA)

sum(Pass, Fail,NA)
(1)

where Pass, Fail and NA are the number of occurrences of
Pass, Fail or NA as a verdict respectively. The function max()
takes the value of the maximum number of the same verdict
given, while sum() sums up all verdicts. Note that sum is not
necessarily seventeen, since groups could also indicate ”don’t
know”, which are thus not taken into account in this measure.

For example, if seven groups gave a Pass, four a fail, and
six a NA then this measure will give the following.

max(7, 4, 6)

sum(7, 4, 6)
=

7

17
= 0.41 (2)

This measures how large a segment of groups chose the
majority verdict. The measure ranges from 0.33 (perfect distri-
bution between the three verdicts) to 1 (complete consensus).
We feel this is a useful measure since it gives a good overview

ii

of the maximum amount of groups that agreed with one
another.

b) Tool Usage:
In order to find out which parts of the review might be
improved by using static analysis tools we will tally up all uses
of the tools per requirement, giving a good overview of where
tools can be used. We will also calculate the consensus that the
tool documenting groups had on these different requirements,
to see if this differs from the other requirements.

c) Expertise:

For the third question we will first need to compute a
perceived expertise level for each of the groups. For this
we will use two different measures, the average expertise of
the group members and the maximum value that any group
member reported. Depending on these two measures we will
try to find out if there is a significant correlation regarding
how many other groups agree with their verdict.

Next we will for each group calculate how many of the
other groups agreed with their verdict for each requirement
(the inter-rater agreement), and calculate an average over all
ASVS requirements. This will yield a rough estimate of how
reproducible their results are, since it shows how much of the
other groups on average agreed with them.

For example, if for a requirement the groups gave the
following verdicts: seven Pass, four Fail, six NA. A group
that gave Pass, will have an inter-rater agreement of seven for
this requirement, while one that give Fail will have a score of
four.

These different knowledge factors are then correlated with
the inter-rater agreement to find out whether these are in fact
correlated with each other.

IV. RESULTS & ANALYSIS

A. Consensus

Table I shows the average consensus factor as described
in section IV.B for both chapters and the ASVS as a whole.
Table II show how the individual requirement’s consensus is
distributed, note that due to rounding these do not add up to
100. Figure 1 shows a boxplot of how the consent of different
requirements is distributed.

As can be seen in table I the overall consensus of the ASVS
is 0.69, meaning that about 69% of groups agreed with each
other on a arbitrary requirement. While this is not particularly
low it should be kept in mind that only three different verdicts
were counted to come to this consensus factor, which naturally
increases consensus. Figure 1 and Table II also show that many
of the requirements score far below this average.

From this figure we feel that there is plenty of room
for improvement in both the ASVS and the security review
process in general.

The per chapter consensus factor as seen in Table I varies
between 0.52 and 0.81. Respectively these two chapters
are,V16: Files and Resources Verification Requirements and
V3: Session Management Verification Requirements.

TABLE I
AGREEMENT PER CHAPTER

Chapter Mean Standard
Deviation

Overall 0.69 0.19
2 0.78 0.21
3 0.81 0.14
4 0.69 0.19
5 0.62 0.14
7 0.63 0.23
8 0.71 0.16
9 0.66 0.19
10 0.73 0.13
11 0.65 0.19
15 0.70 0.15
16 0.52 0.08

As can be seen in the table most other chapters either
show a mean quite close to the overall mean, or have a
standard deviation such that there is little point speaking on a
per chapter basis. There is little point since the requirements
within chapters differ so widely that it makes a lot more sense
to look at individual requirements. This is further compounded
by Figure 1 which shows that the chapters (apart from three
and sixteen) have similar wide distributions.

The trend we do notice on a per requirement basis is that
scope is very often a problem when it comes to consensus.
When it is hard to judge whether a certain requirement is
(partially) in scope of the system then groups tend to have
different approaches. Some will indicate a hard NA, otherwise
will make it a implicit pass (if they don’t use it they don’t
need to protect it) while others might think it was in scope
and simply give a Fail. See V2.16,V16.6 or V4.4 for examples.

Wording that can be interpreted multiple ways can be
another problem. An example of this is requirement V16.9
[18]:

Verify the application code does not execute up-
loaded data obtained from untrusted sources.

which also has a very low consensus of 0.41. You need a
very specific definition of trusted sources, which will not
always be the case. Furthermore there is no solid definition
of executing code. When talking about about web applications
it can be argued that any HTML outputted is executed code
(on the client side) while it might also be interpreted only as
explicitly executed PHP code. Which of these interpretations
is technically correct is irrelevant, since this very discussion
decreases consensus.

There are of course many different interpretations why cer-
tain chapters or requirements produce more disagreement then
others, none of which this current data can fully (dis)prove.

B. Tool Usage

The usage of tools by the different groups per requirement
can be found in Table III. It is important here that there has
been made no distinction between which tools were used, even
if they were not one of the four presented, as long as they were
static analysis tools.

iii

TABLE II
DISTRIBUTION OF REQUIREMENTS PER CONSENSUS LEVEL

Consensus % of requirements
1 8%
0.8 up to 1 25%
0.6 up to 0.8 26%
0.4 up to 0.6 37%
0.4 and lower 2%

Fig. 1. Boxplot of consent in individual chapters.

Another important note to make here is that only half of
the groups actually documented for which specific requirement
they used tools, so the numbers in the table reflect a population
of eight groups, instead of the seventeen in the rest of the
research.

Also included in the table is the average consensus of the
eight tool using groups on these requirements.

A first important observation from the table is just where
tools can be used. For instance, for requirement V5.16 six
out of eight tool registering groups indicated tool usage.
This would indicate that requirement V5.16, and similar
requirements, would be prime candidates for tool usage. The
requirement reads [18]:

Verify that all untrusted data that are output to
HTML (including HTML elements, HTML attributes,
JavaScript data values, CSS blocks, and URI at-
tributes) are properly escaped for the applicable
context.

This basically means to check whether XSS attacks are
possible. Although this requirement sounds a lot like require-
ment V16.9 ,discussed in section VI.B., this requirement asks
whether a specific protection is in place. This leads to a much
more objective requirement, which in turn creates a higher
consensus. V5.10, which has five indicated uses, similarly asks
to reviewer to check whether SQL injection is possible.

The other requirements follow a similar trend as these two,
asking to check whether certain technical flaws are present in
the code, or if the needed protection is in place. From our

TABLE III
NUMBER OF GROUPS INDICATING TOOL USAGE PER REQUIREMENT

Groups Requirements Avg consensus
6 5.16 1
5 5.10 0.875
3 3.14 1
2 2.13, 5.12, 7.2, 7.6, 7.7, 9.1 0.75
1 2.2, 3.3, 4.8, 5.3, 5.11, 0.626

5.18, 5.19, 10.6, 11.8,
11.9, 11.10, 15.5, 16.9

results it can be concluded that reviewers found tools to be
helpful in these cases.

As you can see from Table III, only quite a small subset
of requirements has actually been tackled using tools (see
Table V and VI for all requirements). Only for 22 out of 107
(21%), requirements tools were used, when looking at only
3+ groups per requirement this fall even further, 3 out of 107
(3%). Meaning that most of the requirements must still be
checked by hand. This is also found in the reflection parts
of the reviews. Here nine out of seventeen groups indicated
that the tools were a good complementary resource to give
quick insight, but not to judge individual requirements. This
is further compacted by five groups explicitly indicating that
they regret the tools can only be used for few verdicts.

Another interesting observation is about how tool usage
impacts the consensus of requirements. The consensus of
requirements where three or more groups indicated tool usage
have much higher consensus then average (0.70 for tool
documenting groups), with only one group deviating from the
verdicts the others gave in V5.10. This seems to indicate that
using tools, wherever possible, (as you would expect) would
be a good way to increase reproducibility.

C. Expertise

Table IV contains the correlation of the different knowledge
areas with the inter-rater agreement. The table also contains
the p-values, obtained by using a Chi-squared Test of Inde-
pendence, with null-hypothesis that the knowledge area and
inter-rater agreement are not correlated.

The correlations shows that for a few areas there is a
correlation as high as 0.48. These areas are Buidling Web
Application Max and PHP Max. This would indicate that, apart
from Penetration Testing knowledge which generated quite
low results, the knowledge areas tested positively contribute
to creating more reproducible results.

Furthermore we can see that in three out of four knowl-
edge areas the maximum amount of knowledge in a group
contributes more then the average. This would mean that it
would be beneficial to pair spread out your highest knowledge
reviewers as much as possible, in order to maximize this value
among different groups.

A glaring problem here is the p-value generated by doing
a Chi-squared Test of Independence. The p-value has a range
from about 0.2 to 0.4, significantly higher then the standard
measure of 0.05, meaning that we cannot make statistically
sound conclusions from this data. This can be explained by

iv

TABLE IV
CORRELATION OF KNOWLEDGE WITH INTER-RATER AGREEMENT

Knowledge area Correlation p-value
Building Web Application Average 0.31 0.21
Building Web Application Max 0.48 0.22
PHP Average 0.40 0.28
PHP Max 0.48 0.32
Web Application Security Average 0.29 0.35
Web Application Security Max 0.10 0.40
Pen Testing Average 0.00 0.26
Pen Testing Max 0.16 0.38

the relatively low test population. With only seventeen groups
the chances to create an equally extreme data set are of course
quite high.

Despite this we do feel this does show some interesting
facts, even if only to stimulate further research with a larger
group of test subjects.

V. RELATED WORK

Firstly the most relevant paper for this research is a paper
by Edmundson, et al [1]. It could be said that their research
was the starting point of our own. In this paper they hired
thirty developers to do a code review of a small web system
they supplied, the same system used in this research. They
also asked the reviewers to rate a few different factors which
they hypothesized might predict their effectiveness. From these
reviews and effectiveness factors they drew a few conclusions.
Firstly that no reviewer found all vulnerabilities in the system.
Next that predicted effectiveness does not seem to increase
the amount of vulnerabilities found. Lastly that there was a
significant correlation between the number of correct vulnera-
bilities found and the number of incorrect ones reported. Our
research differs in a few key areas. Firstly the reviewers from
the 2013 research were tasked to find concrete vulnerabilities,
while our students will pass verdicts on a set of more abstract
set of requirements (the ASVS). Next, where the research by
Edmundson et al focused on the amount of vulnerabilities
found (correctness) ours focuses on reproducibillity. In this
way (see the research questions) our goals differ quite a bit
from this earlier research.

Code reviews, both security focused and general, have seen
quite some research the last few years, because of their earlier
described importance. This research has taken many different
directions. For some examples see [5], [8], [11], [14], [16],
[17].

The usage of tools within this process in particular has also
received a fair share of attention. See [2], [3], [10], [13], [15].

VI. DISCUSSION

We feel the results of research answer most of the re-
search questions. The major caveat is the question regarding
expertise, unfortunately our sample size is to low generate
any meaningful conclusions about statistical correlation. This
could be due to either to a correlation that is to weak to be
proved by our test size or simply a lack of correlation. Refer

to the section Results & Analysis to see how our results fulfill
the other research questions.

We did also get some interesting insights not directly per-
taining to the research questions. One of them is the way the
ASVS is worded versus the way that the static analysis tools
work. The ASVS is very much worded in a defensive way (see
V5.16 for a good example), where they note which defenses
should be in place, while the tools are very aggressively
oriented, where they actively try to find vulnerabilities.

To our knowledge this research is the first to take a look
at the reproducibility of the OWASP ASVS, so these findings
can not be compared to other research.

Our findings regarding tool usage however can be compared
quite closely. The presentation by OWASP regarding manual
versus automatic code review [2], agrees that for using the
ASVS you should use a combination of manual inspection
with tools wherever possible. We also see similar results as
them regarding what requirements can be checked using tools.
For instance V5.16, one of the requirements they give as an
example, where six of our eight tool documenting groups
indicated they did indeed use tools. Our findings do not
completely agree with their view of where tools can not be
used however. V2.13, about password hashing and salting, for
instance they give as an example of a requirement that cannot
be checked using a tool, while two of our groups did indicate
that they did this. A possible explanation for this is that
this presentation stems from 2009, and tools have developed
further in this time.

Our research results regarding the effect of knowledge and
experience can be compared to [1]. In this work they found
there to be no correlation between Web development, while
in our research we did find one of 0.48. In their research
they use a high p-value (0.88 compared to our 0.40) to
dismiss this correlation, while we feel that with a larger
set of test subjects there is a correlation to be found and
proven. An important distinction though is that their research
correlates this experience with correctness, while ours focuses
on reproducibility.

Another interesting comparison can be made by a research
from 2007 by Hatton [17]. Here it was found that checklists
during code reviews offered no significant advantage over a
more ad-hoc approach when it came to finding faults within
code. The ASVS in our research fills a similar purpose as
this checklist, only on a more high level, so requirements and
not individual faults. It would of course not be possible to
compare the results of groups using the ASVS with groups
simply looking for vulnerabilities but it would be interesting
to do some research regarding just how much value such a
structured approach brings.

This research has in our opinion helped in increasing the
insight in where the major points of contention lie when con-
ducting security code reviews, by showing where consensus
is lowest. This knowledge can be applied to both the ASVS
specifically as well as code reviews in general. Furthermore we
have increased the knowledge about possibilities of automation
and tool usage when conducting security code reviews. Lastly

v

it has provided further evidence that it is hard to produce
reproducible results when conducting security reviews, even
when using a structured approach such as the ASVS. This
shows that verdicts regarding security requirements do heavily
depend on the reviewer.

VII. RECOMMENDATIONS

A. Practitioners

Based on this research we give the following recommen-
dations to security code reviewers and their managers. Please
note that this research was done using the ASVS 2014 version,
if you wish to apply it to other version that refer to OWASP’s
change log to see how certain requirements have changed.

Firstly, we highly recommend to usage of static analysis
tools, wherever they can be used. We have shown that when
judging code using these tools, verdicts given show much
higher consensus. It is on the other hand very important to
remember that these tools should serve as a complementary
resources, and that the majority of the work will have to be
done by hand, until the tools undergo some major changes.
This way of working was also indicated by our test subjects
as most beneficial, and other research backs this up [2].

Next we have some recommendations regarding the distri-
bution of knowledge and experience between review groups.
Making sure the maximum knowledge within each group is
as high as possible has been shown to produce the most inter-
group agreement, and thus reproducibility.

Furthermore we heartily recommend looking at Tables V
and VI to see which requirements have the lowest consensus,
and creating strict guidelines within your group of reviewers
about when these should pass or fail. Furthermore you might
wish to assign you most knowledgeable people to these
requirements, in a hope of increasing consensus.

B. Researchers

We recommend future researchers we are interested in
doing empirical research regarding (security) code reviews the
following. A document such as the ASVS is a great way to
get data subjects which might not have done code reviews
before to produce usable reviews. Of course some technical
knowledge of the subjects is necessary, but experience with
doing reviews is not a requirement.

We found our used consensus measure to be easy to
understand, use and analyze, and would recommend it for
similar research.

Furthermore we recommend any people looking to improve
the ASVS or similar documents to take a look at the consensus
results we found, to see where there is still a lot of controversy
regarding requirements.

VIII. LIMITATIONS OF RESEARCH

This research faces a limitations which we will discuss in
this section. We will discuss internal validity limitations, which
are threats to the correctness of conclusions drawn from this
research, as well as external validity, which are threats in how
far this research can be generalised to other examples.

A. Internal Validity

One possible shortcoming is the selection of subjects. Since
there has been no prior screening to the students (other then
that they were for computer science master students) they
might have very different previous experiences. Picking a
group of subjects with more closely spread experience levels
might have produced more consensus within the requirements.
A mitigating factor here is that experience in real world
reviewers will vary at least as much.

The program we had our groups review can also be seen as
a threat to internal validity. The program was quite small, due
to time constraints of the reviewers, and large scale projects
might generate quite different results. The programming lan-
guage this program was in (PHP) will also have influenced the
reviews, with more modern languages possibly being harder
or easier to verify. Similar research on other languages might
shed some interesting light on this.

The program is also a threat in another way, due to certain
vulnerabilities (not) being present. This means that tools were
able to track these vulnerabilities and report on them, thus
increasing tool usage numbers for the relevant requirement.
If this vulnerability was not present the tool usage would be
much lower, since you cannot use tools to prove the absence
of something.

Lastly the limited population size presents a very real threat
to internal validity. As can especially be seen in table II our
population size makes for quite high p-values. For this reason
this research might benefit a lot from being repeated with more
data subjects.

B. External Validity

Our usage of students for this research presents a few more
threats to external validity.

Firstly most obvious one is selection bias. Since our popu-
lation is entirely made up of students there is no way to prove
that a more general group of reviewers will behave similarly.

Another threat is in how far participation to this research
was voluntary and accordingly how much effort was put in.
As a part of the course it was mandatory that the students do
the review. This might have led students to simply put in the
minimum amount of effort to generate the reports, while paid
reviewers might be motivated to put in more time.

Our knowledge measurement presents another problem.
Both by being only perceived expertise and focusing on four
quite specific areas this measure might not be usable for a
wider area.

IX. CONCLUSION AND FUTURE WORK

Our research has produced some interesting and useful
results, both for future researchers in the area of (security)
code reviews and for practitioners using the ASVS or similar
resources.

Firstly we have shown how consent is distributed over
the ASVS, with some requirements having perfect consensus,
and others nearing total disagreement. We have given some

vi

possible reasons requirements produce a certain consensus, but
there is still a lot more work to do in this area.

Next we have shown where SATs can be used when using
the ASVS. Unfortunately the SATs could only be used on quite
a specific subset of requirements, although our groups did
indicate they were very helpful for creating a good overview
of the system. We did also see that the requirements where
tools could be used had very high consent. This might seem
obvious but because of the extra layer of interpretation that
happens (since the ASVS is defensively worded and the tools
aggressively) it is still a good idea to check this.

Lastly when looking at expertise we were unfortunately not
able to find sufficiently strong correlation factors for the size
of our data set.

These results combined can help practitioners allocate their
resources in a efficient way and possible improve the ASVS
or the usage of it. Furthermore we have shown that there is
still more work to be done in this area, in order to improve
security code reviews.

Currently another batch of students are following the same
course that produced the reviews used for this research. These
students will similarly to the subjects of this research produce
reviews of the same program.

This means that for further research of size of our data
set will be effectively doubled. A change with the current
approach is that students are explicitly asked to fill in a
data sheet with their verdicts, argumentation and whatever
tool they used to get this verdict. This way our amount of
tool documenting groups will effectively triple (since currently
only half of the groups did this).

Besides simply running the same research with a larger set
of test subjects we are also planning to do some more in depth
research about why certain requirements produce less consent
then other. Here things like wording, length of requirements
and how specific the requirements are could be analyzed, along
with their consent.

Our consensus measure colour the results in a significant
way. Our consensus measure will only reach under 0.5 when
groups doubt whether the requirement is within scope or not
(since there can otherwise only be a spread between Pass
and Fail). This means that requirements where scoping is not
entirely clear have a tendency to have much lower consensus.
Future research that wishes to place less emphasis on scoping
issues could decide to use a different measure.

ACKNOWLEDGMENT

The authors would firstly like to thank the students who
produced the reviews for our research. Next we would like to
thank Georgios Gousios for his valuable input on empirical
research. We would also like to thank the Software Improve-
ment Group (SIG) for the use of their material, space and time
for the writing of this paper and Berkeley University for the
use of their testCMS system as a case study.

REFERENCES

[1] Edmundson, A., Holtkamp, B., Rivera, E., Finifter, M., Mettler, A., &
Wagner, D. (2013). An empirical study on the effectiveness of security
code review. In Engineering Secure Software and Systems (pp. 197-212).
Springer.

[2] Kesäniemi, A., & Oy, N. (2009). Automatic vs. Manual Code
Analysis[Pdf document, presentation slides for presentation held
2009-11-17]. Retrieved from https://austin.owasp.org/images/5/53/Ari
kesaniemi nixu manual-vs-automatic-analysis.pdf

[3] Baca, D., Petersen, K., Carlsson, B., & Lundberg, L. (2009). Static Code
Analysis to Detect Software Security Vulnerabilities-Does Experience
Matter?. In Availability, Reliability and Security, 2009. ARES’09. Inter-
national Conference on (pp. 804-810). IEEE.

[4] Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE
Security & Privacy, (6), 76-79.

[5] Da Cunha, A. D., & Greathead, D. (2007). Does personality matter?:
an analysis of code-review ability. Communications of the ACM, 50(5),
109-112.

[6] Lipner, S. (2004). The trustworthy computing security development
lifecycle. In Computer Security Applications Conference, 2004. 20th
Annual (pp. 2-13). IEEE.

[7] Van Wyk, K. R., & McGraw, G. (2005). Bridging the gap between
software development and information security. Security & Privacy,
IEEE, 3(5), 75-79.

[8] Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. P., &
Vouk, M. (2006). On the value of static analysis for fault detection in
software. Software Engineering, IEEE Transactions on, 32(4), 240-253.

[9] Rigby, P. C., & German, D. M. (2006). A preliminary examination of
code review processes in open source projects. University of Victoria,
Canada, Tech. Rep. DCS-305-IR.

[10] Finifter, M., & Wagner, D. (2011). Exploring the relationship between
Web application development tools and security. In USENIX conference
on Web application development.

[11] Scandariato, R., Walden, J., & Joosen, W. (2013, November). Static
analysis versus penetration testing: A controlled experiment. In Soft-
ware Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on (pp. 451-460). IEEE.

[12] McGraw, G. (2004). Software security. Security & Privacy, IEEE, 2(2),
80-83.

[13] Remillard, J. (2005). Source code review systems. Software, IEEE,
22(1), 74-77.

[14] Wang, Y., Yijun, L. I., Collins, M., & Liu, P. (2008). Process improve-
ment of peer code review and behavior analysis of its participants. In
ACM SIGCSE Bulletin (Vol. 40, No. 1, pp. 107-111). ACM. Chicago

[15] Belli, F., & Crian, R. (1996). Towards automation of checklist-based
code-reviews. In Software Reliability Engineering, 1996. Proceedings.,
Seventh International Symposium on (pp. 24-33). IEEE.

[16] Fagan, M. (2002). Design and code inspections to reduce errors in
program development. In Software pioneers (pp. 575-607). Springer
Berlin Heidelberg.

[17] Hatton, L. (2008). Testing the value of checklists in code inspections.
Software, IEEE, 25(4), 82-88.

[18] Open Web Application Security Project (OWASP) (2014) Application
Security Verification Standard Project (ASVS)[Pdf document]. Retrieved
from: https://www.owasp.org/index.php/Category:OWASP Application
Security Verification Standard Project

APPENDIX A
CONSENSUS PER REQUIREMENT

vii

TABLE V
CONSENSUS PER REQUIREMENT (V2.1 - V5.18)

Requirement Agreement
V2.1 0.53
V2.2 0.59
V2.4 0.94
V2.6 0.65
V2.7 1
V2.8 0.69
V2.9 0.53
V2.12 1
V2.13 1
V2.16 0.41
V2.17 0.88
V2.18 0.59
V2.19 0.94
V2.20 0.88
V2.21 0.41
V2.22 0.88
V2.23 1
V2.24 0.94
V2.25 0.88
V3.1 0.88
V3.2 0.65
V3.3 0.81
V3.4 0.88
V3.5 1
V3.6 0.82
V3.7 0.94
V3.8 0.88
v3.10 0.53
V3.11 0.75
V3.12 0.56
V3.14 0.88
V3.15 0.82
V4.1 0.75
V4.2 0.65
V4.3 0.53
V4.4 0.53
V4.5 0.88
V4.8 0.47
V4.9 0.44
V4.10 0.53
V4.11 0.71
V4.14 0.94
V4.16 0.94
V4.17 0.94
V5.1 0.56
V5.3 0.65
V5.4 0.59
V5.5 0.69
V5.8 0.53
V5.10 0.76
V5.11 0.6
V5.12 0.71
V5.13 0.47
V5.14 0.5
V5.16 1
V5.17 0.53
V5.18 0.53

TABLE VI
CONSENSUS PER REQUIREMENT (V7.1 - V16.10)

Requirement Agreement
V7.1 1
V7.2 0.47
V7.3 0.44
v7.6 0.71
V7.9 0.53
V8.1 0.75
V8.2 0.81
V8.3 0.82
V8.4 0.47
V8.5 0.59
V8.6 0.76
V8.8 0.76
V8.10 0.47
V8.11 0.94
V9.1 0.76
V9.3 0.88
V9.4 0.53
V9.5 0.47
V10.1 0.71
V10.3 0.6
V10.4 0.64
V10.6 0.75
V10.7 0.93
V11.2 0.69
V11.3 0.59
V11.6 0.65
V11.8 0.88
V11.9 0.35
V11.10 0.88
V11.12 0.5
V15.1 0.81
V15.2 0.47
V15.3 0.76
V15.4 0.71
V15.5 0.71
V15.6 1
V15.7 0.71
v15.8 0.59
V15.9 0.53
V15.10 0.71
V16.1 0.59
v16.2 0.47
V16.3 0.65
V16.4 0.47
V16.5 0.53
V16.6 0.38
V16.7 0.53
V16.8 0.56
V16.9 0.41
V16.10 0.59

viii

