
Static Analysis for JML’s assignable Clauses?

Fausto Spoto1 and Erik Poll2

1 Dipartimento di Informatica, Verona, Italy
spoto@sci.univr.it

2 University of Nijmegen, The Netherlands
erikpoll@cs.kun.nl

Abstract The specification language JML (Java Modelling Language)
includes so-called assignable clauses, also known as modifies clauses,
for specifying which fields may change their value as side-effect of a
method. This paper uses abstract interpretation over a trace semantics
for a simple object-oriented language to define a correct static analysis
for checking the correctness of assignable clauses.

1 Introduction

JML (for Java Modeling Language) [4,5] is a specification language for Java. It
allows assertions to be included in Java code, specifying pre- and postconditions
and invariants in the style of Eiffel and the well-established design by contract
approach [9], but JML is much more expressive. For instance, a specification
of a method can also include a so-called assignable (or modifies) clause. It
specifies which locations may be changed by the method (a frame condition),
in a style similar to [6]. These locations are described through a set of fields.
JML offers a rich syntax for expressing assignable clauses. We will not concern
ourselves with this here. An example of an assignable clause for the method
update of the class myclass in Figure 1 would be

assignable this.i, this.next, b.next.next;

The information conveyed by an assignable clause is essential for reasoning
about methods. For instance, it is used in the LOOP verification tool [8].

At first sight, it seems that checking the correctness of assignable clauses
(or, better still, generating correct assignable clauses) is something that could
easily be automated. The Chase tool [1] performs a syntactical analysis to au-
tomatically check assignable clauses. Basically, the tool checks if every assign-
ment in a method is to a variable listed in its assignable clause. The assign-
ments for a method call are those listed in its assignable specification. The full
syntax of assignable specifications is allowed. Unfortunately, as the developers
of the Chase tool are well aware, the syntactic analysis it performs has its limita-
tions. Because of aliasing, assignable clauses are trickier than they may seem
at first sight. For example, the assignable clause given above for the method

? This work has been partially funded by MURST grant Abstract Interpretation, Type
Systems and Control-Flow Analysis and EPSRC grant GR/R53401.

update of the class myclass in Figure 1 is incorrect, although the Chase tool
(and the average reader?) will not spot this. Consider, indeed, what happens
during the execution of the method update if this and b are aliases (i.e. refer
to the same object) when it is invoked. We can represent this situation as

i i i i

next next next next

1 2 3 4

this

b

The assignment this.next:=b.next.next modifies the state as follows:

i i i i

next next next next

1 2 3 4

this

b

The assignment b.next.next:=b results in the following state:

i i i i

next next next next

1 2 3 4

this

b

The assignments out:=b.next; this.i:=this.i+1 result in the state (out is
not shown)

i i i i

next next next next

2 3 4

this

b
2

You can see that the modified locations are this.i, this.next (aka b.next, and
this.next.next.next (aka b.next.next.next). But the assignable clause
mentioned above does not allow this.next.next.next to be modified.

Although the syntactical analysis performed by Chase is neither sound nor
complete, it is very useful to quickly spot many potential mistakes in assignable

clauses. We go here one step beyond, by developing a sound static analysis for
checking assignable clauses. Namely, these are our contributions.

– We formalise the assignable clause of a method as an abstract interpreta-
tion A of its trace semantics.

– We show that the abstract domain A is not useful for static analysis, since
it lacks good compositionality properties. Hence we refine it into a domain
AR which features better compositionality results. The idea here is to keep
track during the analysis of which locations have been stored in each variable.
In this way, we can safely approximate the set of locations modified by an
assignment. For instance, the command a:=b copies the location l of b to a.
Since AR keeps track of this (while A does not), it is able to conclude that
a subsequent assignment a.x=6 actually changes the location of the field x

of l, and not that of the field x of the location that a originally pointed to
at the beginning of the method.

– We show that a static analysis over AR spots the erroneous assignable

clause mentioned above and accepts/computes the correct assignable clause
for update, namely

assignable this.i, this.next, b.next.next, b.next.next.next;

Proofs of the theoretical results can be found in [13].

class myclass : class subclass extends myclass :
field i : int field j : int
field next : myclass method update(b : myclass) : subclass is
method update(b : myclass) : myclass is this.i := this.j + 1;
this.next := b.next.next; out := this

b.next.next := b;
out := b.next;
this.i := this.i + 1

K = {myclass, subclass} subclass ≤ myclass

F (myclass)=[i 7→ int, next 7→myclass] F (subclass)=[i 7→ int, j 7→ int, next 7→myclass]

Figure 1. A program and its static information.

2 Preliminaries

The powerset of a set S is ℘(S). A total (partial) map f is denoted by 7→ (→).
Its domain (codomain) is dom(f) (rng(f)). We denote by [v1 7→ t1, . . . , vn 7→ tn]
the map f where dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its
update is f [w1 7→ d1, . . . , wm 7→ dm], where the domain may be enlarged.

The two components of a pair are separated by ?. A definition of S such as
S =a?b, with a and b meta-variables, silently defines the pair selectors s.a and
s.b for s∈S. For instance, Definition 5 implicitly defines o.κ and o.φ for o ∈ Obj .

We recall now the basics of abstract interpretation [2]. Let C?≤ and A?� be
two partially ordered sets (or posets, the concrete and the abstract domain). A
Galois connection is a pair of monotonic maps α : C 7→ A and γ : A 7→ C such
that γα is extensive and αγ is reductive. An abstract operator f̂ : An → A is
correct w.r.t. f : C n → C if αfγ � f̂ (here f is applied pointwise).

3 The Framework of Analysis

We build on a denotational trace semantics which interprets every expression or
command as a map from input states to traces of states (see [12,11]).

A type environment assigns types to a finite set of variables. From now on,
every τ will implicitly denote a type environment.

Definition 1. Let Id be a set of identifiers, K a finite set of classes ordered by
a subclass relation ≤ such that K?≤ is a poset. Let Type be the set {int} + K.
We extend ≤ to Type by defining int ≤ int. Let Vars ⊂ Id be a set of variables
such that {out, this} ⊆ Vars. We define the set of type environments

TypEnv ={τ :Vars→Type |dom(τ) is finite, if this∈dom(τ) then τ(this)∈K}.

Expressions and commands are given in Definition 2. They specify a simple
object-oriented language (used for instance in Figure 1) which can be considered
as the kernel of real-world object-oriented languages.

out

this

l

l 2

frame

variables

values

memory

1

l2

1l

l3

locations objects

b

nil
i

.myclass

i

i

.myclass

next

.subclass 0j

3

4

2

next

next

3l

o

o

o

1

2

3l 2

l2

Figure 2. State φ1?µ1 for τ = [b 7→ myclass, out 7→ myclass, this 7→ myclass].

Definition 2. Expressions E and commands C are defined by the grammar

e ::= i | v | nil | e bop e | is nil(e) | new κ | e.f | e.m(v1, . . . , vn)

c ::= (v′ := e) | (e.f := e) | c; c | let v′ : t in c | if e then c else c

with bop is a generic binary operation, t ∈ Type, κ ∈ K, i ∈ Z, f, m ∈ Id,
v, v′, v1, . . . , vn ∈ Vars and v′ 6= this. The operators = and + work over integer
expressions only. Note that we distinguish between variables, which are identifiers
local to a method, and fields, which are identifiers local to an object.

A class contains fields and functions called methods. A method has a set
of input/output variables called parameters, including a special parameter out,
which holds the result of the method, and this, which is the object on which
the method has been called. Fields is a set of maps which bind each class to the
type environment of its fields. The variable this cannot be a field.

Definition 3. Fields ={F :K 7→ TypEnv | this 6∈dom(F (κ)) for every κ ∈ K}.

The static information of a program is used by a static analyser.

Definition 4. The static information of a program consists of a poset K?≤ and
of a map F ∈ Fields.

An example program and its static information are shown in Figure 1.

We define a frame as a map that assigns values to variables. These values
can be integers, locations or nil where a location is a memory cell. The value
assigned to a variable must be consistent with its type. For instance, a class
variable should be assigned to a location or to nil . A memory is a map from
locations to objects where an object is characterized by its class and the frame
of its fields. Figure 2 illustrates these different concepts.

Definition 5. Let Loc be an infinite set of locations and Value = Z + Loc +
{nil}. We define frames, objects and memories as

Frameτ =






φ ∈ dom(τ) 7→ Value

∣
∣
∣
∣
∣
∣

for every v ∈ dom(τ)
if τ(v) = int then φ(v) ∈ Z

if τ(v) ∈ K then φ(v) ∈ {nil} ∪ Loc







Obj = {κ?φ | κ ∈ K, φ ∈ FrameF (κ)}

Memory = {µ ∈ Loc → Obj | dom(µ) finite} .

Example 1. Let τ = [b 7→ myclass, out 7→ myclass, this 7→ myclass] be the
type environment inside the method update of the class myclass (Figure 1). Let
l1, l2 ∈ Loc. Frameτ contains φ1 = [b 7→ l1, out 7→ nil , this 7→ l2] (Figure 2).

Example 2. Objects of class myclass (consistent with F (myclass) in Figure 1),
are o2 = myclass?[i 7→ 4, next 7→ l2] and o3 = myclass?[i 7→ 3, next 7→ l2]. An
object of class subclass (consistent with F (subclass)) is o1 = subclass?[i 7→
2, j 7→ 0, next 7→ l3]. Memory contains µ1 = [l1 7→ o1, l2 7→ o2, l3 7→ o3] (Fig-
ure 2).

A notion of type correctness φ?µ : τ , with φ ∈ Frameτ and µ ∈ Memory ,
constrains locations to contain objects allowed by τ (see [11,12] for details). Note
that we require this to be bound.

Definition 6. We define the states Σ = ∪{Στ | τ ∈ TypEnv}, where

Στ =

{

φ?µ

∣
∣
∣
∣

φ ∈ Frameτ , µ ∈ Memory , φ?µ :τ
this ∈ dom(τ) entails φ(this) 6= nil

}

.

A state φ1?µ1 ∈ Στ is shown in Figure 2. We define now the traces of states.
This definition will be refined in Definition 13, in order to ban traces which do
not represent the execution of any expression or command. This will be needed
in the correctness proofs for Section 6.

Definition 7. The set T of traces over Σ is the set of non-empty sequences in
Σ. In particular,

– a convergent trace σ1 → · · · → σn represents a terminated computation,
– a divergent trace σ1 → · · · → σn → · · · represents a divergent computation.

The first state of t ∈ T is fst(t). By div(t) we mean that t is divergent. If ¬ div(t),
the last state of t is lst(t). We define the set Tτ of traces which, if they are not
divergent, end with a state in Στ . Namely, Tτ = {t ∈ T | if ¬ div(t) then lst(t) ∈
Στ}.

Expressions and commands are denoted by a map from an initial state to a
trace t. If the execution terminates then t is convergent. Otherwise it is diver-
gent. A special variable res holds the value v of an expression i.e., if ¬ div(t)
then lst(t)(res) = v. We will often identify a command or expression with its
denotation (see for instance Example 8).

Definition 8. We define the denotations

Dτ,τ ′ = {d ∈ Στ 7→ Tτ ′ | for every σ ∈ Στ we have fst(d(σ)) = σ} .

Here τ refers to the beginning of the computation, and τ ′ to its end.

A denotational semantics over the denotations of Definition 8 is defined
in [12,11]. For reasons of space, we just say here that its main operations are an
operator ⊗ for sequential composition of denotations i.e., the denotation of the
command c1; c2 is the application of ⊗ to the denotations of c1 and c2; an opera-
tor ⊕ for the disjunctive composition of denotations (at the end of a conditional
or among the different targets of a virtual method call). Note that a while loop
can be interpreted as a fixpoint. Although a bytecode granularity is considered
in [12,11], for simplicity we consider a high-level approach here, and we do not
introduce the explicit construction of the semantics.

4 The Property A

We define here a formal semantics of assignable clauses as a property (an
abstract interpretation) of denotations.

A path is a period-separated non-empty sequence of identifiers.

Definition 9. A path for τ of length 1 is every v ∈ dom(τ). We let typeτ (v) =
τ(v). One of length i ≥ 2 is p.f , where p is a path of length i−1, type τ (p) = κ ∈ K
and f ∈ dom(F (κ)). We let typeτ (p.f) = F (κ)(f). The paths for τ of positive
length are denoted by Pathsτ . Those of length at least 2 by Paths ′τ .

Example 3. Let τ = [b 7→ myclass, out 7→ myclass, this 7→ myclass] (Example
1). Then Pathsτ ⊇ {b, out, this, b.i, b.next, out.i, b.next.i, this.next.next}
and Paths ′τ ⊇ {b.i, out.i, out.next, b.next.i, this.next.next} but b 6∈ Paths ′

τ .

A handle specifies a position in the memory or the frame where the value of a
field or variable is stored. It is a pair consisting of the location of an object o

and of an identifier. If the location is nil , the value of the handle is that of a
variable in the frame, otherwise it is that of a field of o.

Definition 10. A handle is an element of the set H = (Loc ∪ {nil}) × Id. The
value ν(h, σ) of a handle h ∈ H in a state φ?µ ∈ Στ is defined as

ν(〈nil , v〉, φ?µ) = φ(v) (undefined if v 6∈ dom(φ))

ν(〈l, f〉, φ?µ) = µ(l).φ(f) (undefined if l 6∈ dom(µ) or f 6∈ dom(µ(l).φ)).

Example 4. In Figure 2, the value 2 of the field i of o1 is accessible through the
handle 〈l1, i〉. The value l2 of the variable this through the handle 〈nil , this〉.

We define a handle which allows us to access the value of a path in a state.

Definition 11. Let p ∈ Pathsτ and σ ∈ Στ . The handle [[p]]σ of p in σ is

[[v]]σ = 〈nil , v〉, [[p.f]]σ =

{

〈ν([[p]]σ , σ), f〉 if [[p]]σ is defined, ν([[p]]σ , σ) ∈ Loc

undefined otherwise.

The map [[]] is pointwise extended to ℘(Pathsτ). Given p1, p2 ∈ Pathsτ , if [[p1]]σ =
[[p2]]σ then we say that p1 and p2 are aliases in σ (they refer to the same handle).

Example 5. Consider again the state σ1 in Figure 2. We have [[b]]σ1
= 〈nil , b〉,

[[b.i]]σ1
= 〈l1, i〉 while [[out.next]]σ1

is undefined. Moreover, [[b.next.next.next]]σ1

= 〈l2, next〉 = [[this.next]]σ1
, hence b.next.next.next and this.next are aliases.

A location is reachable from P ∈ ℘(Paths τ) if it is stored in a state at a
position that a path in P points to.

Definition 12. Let P ∈ ℘(Pathsτ), σ ∈ Στ and l ∈ Loc. We say that l is
reachable in σ from P if there exists p ∈ P such that ν([[p]]σ , σ) = l.

We restrict the set of denotations to ban meaningless cases. For instance, only
reachable locations can be updated. This is essential for Definition 14.

Definition 13. We say that φ1?µ1 ∈ Στ1
follows φ2?µ2 ∈ Στ2

if

1. dom(µ1) ⊆ dom(µ2) and for every l ∈ dom(µ1) we have µ1(l).κ = µ2(l).κ
(locations do not disappear and objects cannot change class);

2. if l ∈ dom(µ1) and l is reachable in φ2?µ2 then l is reachable in φ1?µ1

(reachability of non-fresh variables cannot be forged);

3. if l ∈ dom(µ1) is not reachable in φ1?µ1 then µ1(l) = µ2(l) (unreachable
objects are not updated).

We modify Definition 8 by requiring that σ′ ∈ c(σ) follows σ for every σ ∈ Στ .

To formalise the notion of update along a trace t, we say that the value
of a given handle, read in different states of t, is different. A “benevolent” or
“temporary” change is considered as an update by this definition. If we do not
like this, we should compare the value of the handle in the first and the last
states of t only.

Definition 14. Let h ∈ H, σ1 ∈ Στ and σ2 ∈ Στ ′ be such that σ2 follows σ1. We
define assigned(h, σ1, σ2) if and only if ν(h, σ1) is defined and ν(h, σ1) 6= ν(h, σ2).
assigned is extended to t ∈ T as the set of handles that change along t i.e.,
assigned(t) = {h ∈ H | there exists σ2 ∈ t such that assigned(h, fst(t), σ2)}.

We want to approximate every command c with a set P ⊆ Paths ′
τ whose

locations are allowed to be assigned in the traces of the denotation of c.

Definition 15. We define γτ,τ ′ : ℘(Paths ′τ) 7→ ℘(Dτ,τ ′) such that γτ,τ ′(P) con-
tains the denotations that modify only handles in P i.e., γτ,τ ′(P) = {d ∈ Dτ,τ ′ |
for every σ ∈ Στ we have assigned(d(σ)) ⊆ [[P]]σ}.

Example 6. Consider c = (this.next := b.next) and its denotation d. The ex-
ecution of c from the state σ1 in Figure 2 is the trace d(σ1) = σ1 → σ2

where σ2 = φ1?[l1 7→ o1, l2 7→ myclass?[i 7→ 4, next 7→ l3], l3 7→ o3]. Then
assigned(〈l2, next〉, σ1, σ2) since the field next of this has been updated. Since
c changes only this handle, we have d ∈ γτ,τ ({this.next}).This does not mean
that this.next is the only field which can be modified by c, but that it covers
all the handles whose values can be modified by c. For instance, the execution
of c from a state where b and this are aliases also modifies b.next, but it is an
alias of this.next.

Aliasing allows different paths to have the same handle. Hence there is not
always a best (canonical) P ∈ ℘(Paths ′) which approximates a given command.

Example 7. Let c = (if this = b then this.i := 3). Every trace in the deno-
tation d of c can change only a location pointed by both this and b. Hence
d ∈ γτ,τ ({this.i}) and d ∈ γτ,τ ({b.i}). There is no motivation for choosing
this.i instead of b.i as the property we are looking for.

Thus some commands do not have a best approximation in ℘(Paths ′). To solve
this problem, we consider ℘℘(Paths ′) as the property we are looking for.

Definition 16. Let Aτ,τ ′ = ℘℘(Paths ′τ) ordered as A1 ⊆ A2 if for every P2 ∈
A2 there is P1 ∈ A1 such that P1 ⊆ P2. Moreover, let γτ,τ ′ : Aτ,τ ′ 7→ ℘(Dτ,τ ′) be
such that γτ,τ ′(A) = ∩{γτ,τ ′(P) | P ∈ A}. So γτ,τ ′(A) contains the (denotations
of) those commands that, for every P ∈ A, modify only handles in P .

The ⊆ ordering in Definition 16 is just a preorder. Hence we implicitly consider
an element of A as standing for its ⊆ equivalence class.

Example 8. Let a command stand for its denotation. In Example 6 we have
c ∈ γτ,τ ({{this.next}}). In Example 7 we have c ∈ γτ,τ ({{this.i}, {b.i}}).

Proposition 1. The map γτ,τ ′ : Aτ,τ ′ 7→ ℘(Dτ,τ ′) of Definition 16 is the con-
cretisation map of a Galois connection from ℘(Dτ,τ ′) to Aτ,τ ′ .

A is theoretically interesting since it is the reference for comparing static
analyses for assignable clauses. But it is useless for a real analysis, since it
induces a very imprecise abstract composition of commands, as we show now.

Example 9. Consider the method update of the class myclass in Figure 1. Let α

be the abstraction map induced by the map γ of Definition 16. The abstraction
α(this.next := b(.next)i) does not depend on i ≥ 0, since only and always
this.next is modified. Let us denote the optimal abstract counterpart of ⊗ by
⊗ itself. We would like that α(this.next := b.next.next)⊗α(b.next.next := b)
correctly approximates A = α(this.next := b.next.next; b.next.next := b) =
{{this.next, b.next.next, b.next.next.next}} (Section 1). We have

α(this.next := b.next.next) ⊗ α(b.next.next := b)

= α(this.next := b(.next)i) ⊗ α(b.next.next := b)

(∗) ⊇ α(this.next := b(.nexti); b.next.next := b)

(∗∗) ⊇ {{this.next, b(.next)i+1}}

for every i ≥ 0. Point ∗ follows by the correctness of the abstract ⊗. Point
∗∗ by considering a starting state where b and this are bound to the same
arbitrarily long list of distinct objects (see the pictures in Section 1). Hence
α(this.next := b.next.next) ⊗ α(b.next.next := b) ⊇ {{this.next} ∪
{b(.next)i+1 | i ≥ 0}}, a correct but very imprecise approximation of A.

The problem in Example 9 is that A says which fields have been modified, but
it does not say anything about the variables nor about what has been put inside
those fields. This information is vital for a precise abstract ⊗. For instance, if
in Example 9 we knew that this.next has been modified with b.next.next, we
could conclude that b.next.next := b can only modify the fields b.next.next

and b.next.next.next (when this and b are aliases). From another perspective,
we can say that Example 9 shows that in some cases the property A is too
weak to allow for its modular verification. It is not easy to tell if this means
that A (i.e., the assignable specifications that JML currently provides) are
not powerful enough for their modular verification. A practical evaluation of the
precision of A is needed here. Anyway, we want to solve the problem shown
by Example 9. Hence, in Section 5, we consider a refinement AR of A which
contains the information that A is missing.

5 The Refined Domain AR

We add to A information about how each variable and field of the last state of
a trace t can be covered (Definition 18) by the values of some paths in the first
state of t. This allows us to define a precise abstract ⊗ (Definition 22).

Definition 17. Let τ = ∪{F (κ) | κ ∈ K} be the type environment of all the
fields. This definition is sensible if we assume that fields are distinguished through
their fully-qualified name. We define the domain COVτ,τ ′ of coverings as

COVτ,τ ′ = {E?M | E : dom(τ ′) 7→ ℘℘(Pathsτ), M : dom(τ) 7→ ℘℘(Pathsτ)}

and the refinement ARτ,τ ′ = Aτ,τ ′ × COVτ,τ ′ ordered by pointwise ⊆ (Defini-
tion 16).

Example 10. In Figure 1 we have τ = [i 7→ int , j 7→ int , next 7→ myclass]. Let
τ = [b 7→ myclass, out 7→ myclass, this 7→ myclass]. An element of COV τ,τ is

C =

[
b 7→ {{b}}, out 7→ {{b.next}}
this 7→ {{this}}

]

?

[
i 7→ {∅}, j 7→ {∅}
next 7→ {{b.next.next}}

]

.

We want C to mean that, at the end of the execution, b and this did not change
their binding or are bound to fresh locations (the result of a new command). The
variable out, instead, at the end of the execution must be bound to the location
b.next was bound to at its beginning, or to a fresh location. Moreover, at the
end of the execution, the fields next of every object did not change their binding
or are bound to fresh locations or to the location b.next.next was bound to at
the beginning of the execution. We formalise this idea now.

Definition 18. Let A ∈ ℘℘(Pathsτ), σ ∈ Στ and l ∈ Loc. We say that A covers
l in σ if, whenever l is reachable in σ from Pathsτ (Definition 12), l is reachable
in σ from every P ∈ A.

Example 11. Let σ1 be the state in Figure 2. Then A = {{this}, {b.next.next, b}}
covers l2 in σ1 since l2 is reachable in σ1 from this and b.next.next. Let l4 ∈ Loc
be such that l4 6= li for i = 1, 2, 3 (a fresh variable w.r.t. σ1). Then A covers l4
in σ1 since l4 is not reachable in σ1 from Pathsτ . Similarly, {∅} covers l4 in σ1.

We extend Definition 18 to E?M ∈ COV , which says how variables and fields
are covered. Variables and fields are treated asymmetrically, since a variable v

stands for a single value, while a field f stands for every field f in all objects.
Then, we require that v is covered by E while f is covered by M or has not
changed.

Definition 19. We say that E?M ∈ COVτ,τ ′ covers σ′ ∈ Στ ′ in σ ∈ Στ if

– ∀v ∈ Pathsτ such that l = ν([[v]]σ′ , σ′) ∈ Loc, E(v) covers l in σ;
– ∀p.f ∈ Pathsτ such that l = ν([[p.f]]σ′ , σ′) ∈ Loc, M(f) covers l in σ or if

l′ = ν([[p]]σ′ , σ′) is reachable in σ then ν(〈l′, f〉, σ) = ν(〈l′, f〉, σ′).

Definition 20. We define γτ,τ ′ : COVτ,τ ′ 7→ ℘(Dτ,τ ′) as

γτ,τ ′(E?M) =

{

d ∈ Dτ,τ ′

∣
∣
∣
∣

∀σ ∈ Στ s.t. ¬ div(d(σ))
E?M covers lst(d(σ)) in σ

}

and γτ,τ ′ : ARτ,τ ′ 7→ ℘(Dτ,τ ′) as γτ,τ ′(a?E?M) = γτ,τ ′(a) ∩ γτ,τ ′(E?M).

Example 12. Let c1 = (this.next := b.next.next), c2 = (b.next.next := b),
c3 = (out := b.next) and c4 = (this.i := this.i+ 1) be the four commands of
the method update of myclass in Figure 1. They are approximated, respectively,
by (i.e., their denotations belong to γ of)

{{this.next}}?

[
b 7→ {{b}}, out 7→ {{out}}
this 7→ {{this}}

]

?

[
i 7→ {∅}, j 7→ {∅}
next 7→ {{b.next.next}}

]

{{b.next.next}}?

[
b 7→ {{b}}, out 7→ {{out}}
this 7→ {{this}}

]

?

[
i 7→ {∅}, j 7→ {∅}
next 7→ {{b}}

]

{∅}?

[
b 7→ {{b}}, out 7→ {{b.next}}
this 7→ {{this}}

]

?

[
i 7→ {∅}, j 7→ {∅}
next 7→ {∅}

]

{{this.i}}?

[
b 7→ {{b}}, out 7→ {{out}}
this 7→ {{this}}

]

?

[
i 7→ {∅}, j 7→ {∅}
next 7→ {∅}

]

.

Proposition 2. The map γτ,τ ′ : ARτ,τ ′ 7→ ℘(Dτ,τ ′) of Definition 20 is the
concretisation map of a Galois connection from ℘(Dτ,τ ′) to ARτ,τ ′.

We could define now the approximation of every bytecode defined in [12,11]
and of the sequential and disjunctive composition of bytecodes ⊗ and ⊕. How-
ever, since we plan to use our analysis for high-level source codes, we prefer to
approximate every high-level constructs in Definition 2. Hence the next section
explains how approximations like those in Example 12 can be automatically
constructed for the commands and expressions in Definition 2.

6 The Analysis

We discuss here a static analysis which uses the domain AR i.e., we explain
how to mechanically construct the approximation of the denotations of single
commands (like those in Example 12) and how to combine them into an approx-
imation of their sequential (⊗) or disjunctive (⊕) composition.

The analysis we are going to define always uses a singleton set of sets of paths
to represent how some value can be covered. For instance, for Example 7 it com-
putes {{this.i, b.i}} instead of the more precise information {{this.i}, {b.i}}.
Hence, we simplify the notation from now on, by removing one level of bracketing.
Note that this does not contradict our reasonings in Section 4. We just observe
here, a posteriori, that some theoretically possible precision does not come out
from the analysis. This does not mean that the property we are looking for (i.e.,
A) must be defined differently.

Assume that a value is covered by a path p in σ (Definition 18). How can
that value be covered if we do some computation, covered by some E?M ∈ COV ,
before σ? To answer this question, we use the following operation •.

Definition 21. Let p ∈ Pathsτ and E?M ∈ COVτ,τ ′ . We define the update
(E?M) • p of p w.r.t. E?M as

(E?M) • v = E(v)

(E?M) • p.f = {p′.f | p′ ∈ (E?M) • p} ∪ M(f) .

This operation is pointwise extended to sets and then to functions into sets.

Example 13. Let E?M be the approximation of s1 given in Example 12 (remem-
ber that we forget about a level of bracketing now). We have

(E?M) • b.next = {p′.next | p′ ∈ (E?M) • b} ∪ {b.next.next}

= {p′.next | p′ ∈ {b}} ∪ {b.next.next}

= {b.next, b.next.next} .

We can now define the abstract sequential and disjunctive composition.

Definition 22. Let a1?E1?M1 ∈ ARτ,τ ′ and a2?E2?M2 ∈ ARτ ′,τ ′′ . We define
(a1?E1?M1) ⊗ (a2?E2?M2) ∈ ARτ,τ ′′ as

(a1 ∪ ((E1?M1) • a2))?((E1?M1) • E2)?(M1 ∪ ((E1?M1) • M2)) .

Example 14. Let ai?Ei?Mi be the denotation of the command ci in Example 12,
for i = 1, 2, 3, 4. An approximation of c1; c2 is (a1?E1?M1) ⊗ (a2?E2?M2) i.e.,

X =







this.next

b.next.next

b.next.next.next






?





b 7→ {b}
out 7→ {out}
this 7→ {this}



 ?





i 7→ ∅

j 7→ ∅

next 7→ {b, b.next.next}



 .

An approximation of c1; c2; c3 is X ⊗ (a3?E3?M3) i.e.,

Y =







this.next

b.next.next

b.next.next.next






?







b 7→ {b}

out 7→

{
b, b.next

b.next.next

}

this 7→ {this}







?





i 7→ ∅

j 7→ ∅

next 7→ {b, b.next.next}



 .

An approximation of c1; c2; c3; c4 is Y ⊗ (a4?E4?M4) i.e.,







this.i

this.next

b.next.next

b.next.next.next







︸ ︷︷ ︸

A

?







b 7→ {b}

out 7→

{
b, b.next

b.next.next

}

this 7→ {this}







?





i 7→ ∅

j 7→ ∅

next 7→ {b, b.next.next}



 .

The set A in Example 14 shows that the domain AR does not suffer of the
imprecision problem shown for A (Example 9). Namely, our analysis computes
the correct assignable A clause for the method shown in the introduction. As
we already said, the Chase tool gives an incorrect answer for that method.

Definition 23. Let a1?E1?M1 and a2?E2?M2 in ARτ,τ ′ . We define (a1?E1?M1)⊕
(a2?E2?M2) ∈ ARτ,τ ′ as (the operation ∪ is applied pointwise to functions here)

(a1 ∪ a2)?(E1 ∪ E2)?(M1 ∪ M2) .

Example 15. Example 14 shows an approximation of the method update of the
class myclass in Figure 1. An approximation of the method update of the class
subclass can be computed similarly. It is

{this.i}?

[
b 7→ {b}, out 7→ {this}
this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ ∅

]

.

If we want an approximation of a call to the method update, but we do not
know which of the two alternatives the late binding mechanism will choose, we
can use ⊕ over the approximation of the two alternatives and obtain







this.i

this.next

b.next.next

b.next.next.next







?







b 7→ {b}, this 7→ {this}

out 7→







this

b, b.next

b.next.next













?





i 7→ ∅

j 7→ ∅

next 7→ {b, b.next.next}



 .

We can now define an approximation of expressions and commands. Recall
that the special variable res holds the value of an expression (Section 3) and that
method call is an expression in our language. We first define the empty covering
E⊥?M⊥. It expresses the fact that no variable or field has changed. We also
need to auxiliary maps that remove the result (res) of an expression and store
a covering set into a variable, respectively.

Definition 24. Let v ∈ dom(τ), f ∈ dom(τ), a?E?M ∈ AR and

E⊥(v) =

{

∅ if τ(v) = int

{v} otherwise
M⊥(f) = ∅

xa?E?My = a?E|−res?M (a?E?M)r
v = a?E[v 7→ r]?M .

We define ιτ as (τ will be usually omitted)

ι(i) = ι(nil) = ι(new κ) = (∅?E⊥?M⊥)∅

res

ι(v) = (∅?E⊥?M⊥){v}
res

ι(e1 bop e2) = xι(e1)y ⊗ ι(e2)

ι(is nil(e)) = ι(e)∅

res

ι(e.f) = ι(e){p.f |p∈E(res)}∪M(f)
res

with ι(e) = a?E?M

ι(e.m(v1, . . . , vn)) =



A ⊗



⊕






dm′

∣
∣
∣
∣
∣
∣

m′(w1 : t1, . . . , wn : tn) : t

can be called here and
a?E?M is its denotation















where A = xι(e)
E′(res)
this

y with ι(e) = a′ · E′ · M ′

and dm′ = (a?E⊥?M)E(out)
res

[w1 7→ v1, . . . , wn 7→ vn] .

The above renaming operation at method call substitutes actual arguments for
formal ones. The information about the covering for the value of e flows inside
the method call through the this variable. At the end, the variable res takes
the covering information of out, hence the result of the method is available as
the value of the method call expression. We use E⊥ there, so that changes to
the parameters of the method are not observable outside it.

The denotation considered for method call can be that computed at the pre-
vious iteration step or one provided by the user. The first choice can be used to
actually compute assignable clauses for a program through an iteration to the
fixpoint, while the second one can be used for checking that given assignable

clauses are correct. In this second case it is enough to check that the new de-
notation is ⊆ (Definition 17) than that given by the user. In such a case, the
user has provided a post-fixpoint of the abstract immediate consequence opera-
tor induced by ι, and post-fixpoints are a correct approximation of the minimal
fixpoint [14]. Note that, in this case, the user must specify an assignable clause
(an element of A) together with the extra covering information (Definition 17)!

Example 16. Consider the expression b.next.next from the method update of
the class myclass in Figure 1. We have

a?E?M = ι(b) = ∅?

[
b 7→ {b}, out 7→ {out}
res 7→ {b}, this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ ∅

]

.

Hence

a′?E′?M ′ = ι(b.next) = ι(b){p.next|p∈E(res)}∪M(next)

= ∅?

[
b 7→ {b}, out 7→ {out}
res 7→ {b.next}, this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ ∅

]

and ι(b.next.next) is

ι(b.next){p.next|p∈E′(res)}∪M ′(next)

= ∅?

[
b 7→ {b}, out 7→ {out}
res 7→ {b.next.next}, this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ ∅

]

.

We define the approximation of the execution of a command now.

Definition 25. We define

ι(v:=e) = xι(e)E(res)
v y with ι(e) = a?E?M

ι(e1.f :=e2) = xι(e1) ⊗ (a ∪ {res.f}) · E · M [f 7→ M(f) ∪ E(res)]y

with a?E?M = ι(e2)

ι(c1; c2) = ι(c1) ⊗ ι(c2)

ι(let v : t in c) = ιτ [v 7→t](c) where every path v or v.p is removed

ι(if e then c1 else c2) = xι(e)y⊗ (ι(c1) ⊕ ι(c2)) .

Example 17. Example 16 shows an approximation of b.next.next. An approx-
imation of this is

ι(this) = ∅?

[
b 7→ {b}, out 7→ {out}
res 7→ {this}, this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ ∅

]

.

Hence ι(this.next := b.next.next) is

xι(this) ⊗ {res .next} ·





b 7→ {b}, out 7→ {out}
res 7→ {b.next.next}
this 7→ {this}



 ?

[
i 7→ ∅, j 7→ ∅

next 7→ {b.next.next}

]

y

= {this.next}?

[
b 7→ {b}, out 7→ {out}
this 7→ {this}

]

?

[
i 7→ ∅, j 7→ ∅

next 7→ {b.next.next}

]

.

Note that this is consistent with Example 12, where the same result were ob-
tained by following our intuition about the abstract domain.

Proposition 3. The map ι of Definitions 24 and 25 correctly approximates the
concrete denotation of expressions and commands.

Since paths are potentially infinite, if we want to compute assignable clauses
for a program we must cut the paths to a maximum length. Longer paths can
be approximated by introducing the JML reach clause.

7 Conclusion

We have formalised the semantics of the assignable clauses of the specification
language JML as an abstract interpretation A of trace semantics. We have shown
that a static analysis based on A can only be very imprecise, since A lacks
information useful for the definition of a precise sequential composition operator.
For the same reason, modular verification over A seems impractical. Therefore
we have refined A into a more precise property AR which does not suffer of the
same problem. We have then defined a static analysis to check, in a modular
way, the correctness of AR annotations.

To the best of our knowledge, this is the first correct static analysis to check
or compute JML assignable clauses. We have shown that it works correctly in
some cases for which the Chase tool fails. Although the analysis has not been
implemented yet, we have described in every detail its algorithmic definition
(Section 6).

As pointed out at the end of Section 4, the problem with A is that it says
which fields may be modified, but not what may be assigned to these fields. Note
that A is similar to the assignable clauses in JML in this respect! The refine-
ment AR remedies the problem by keeping track of the additional “covering”
information i.e., of what may be assigned to fields. This means that modular
checking for AR does require the user to supply the extra covering information
in addition to the assignable clauses. Note that this suggests that assignable
clauses as currently available in JML may be fundamentally unsuited for a good
– i.e., accurate and correct – static analysis. Indeed, it seems that the last word
on best way to specify side effects, by assignable clauses or other means, has not
been said, e.g. see [3], [7], or [10].

References

1. N. Cataño and M. Huisman. A Static Checker for JML’s assignable Clause.
Available from www-sop.inria.fr/lemme/Nestor.Catano/, 2002.

2. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

3. A. Greenhouse and J. Boyland. An Object-Oriented Effects System. In ECOOP’99
— Object-Oriented Programming, 13th European Conference, number 1628 in
LNCS, pages 205–229. Springer-Verlag, 1999.

4. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for Detailed Design.
In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer, 1999.

5. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. Technical report, Dept. of Comp. Sci.,
Iowa State University, 1999. Tech. Rep. 98-06.

6. K.R.M. Leino. Data Groups: Specifying the Modification of Extended State. In
OOPSLA’98, pages 144–153. ACM, 1998.

7. K.R.M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using Data Groups to Specify
and Check Side Effects. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’2002), volume 37(5), pages 246–257, June 2002.

8. The LOOP Project. www.cs.kun.nl/∼bart/LOOP/index.html.
9. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev. edition,

1997.
10. P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular Specification of Frame

Properties in JML. Concurrency and Computation: Practice and Experience, 2002.
To appear.

11. F. Spoto. Watchpoint Semantics: A Tool for Compositional and Focussed Static
Analyses. In P. Cousot, editor, Proc. of the Static Analysis Symposium, SAS’01,
volume 2126 of LNCS, pages 127–145, Paris, July 2001.

12. F. Spoto and T. Jensen. Focused Class Analyses through Abstract Interpretation
of Trace Semantics. Available from www.sci.univr.it/∼spoto/papers.html.

13. F. Spoto and E. Poll. Static Analysis for JML’s assignable Clauses. Extended
version. Available from www.sci.univr.it/∼spoto/papers.html.

14. A. Tarski. A Lattice-theoretical Fixpoint Theorem and its Applications. Pacific
J. Math., 5:285–309, 1955.

