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Abstract. We extend a Java-like language with immutability specifications and a
static type system for verifying immutability. A class modifier immutable spec-
ifies that all class instances are immutable objects. Ownership types specify the
depth of object states and enforce encapsulation of representation objects. The
type system guarantees that the state of immutable objects does not visibly mu-
tate during a program run. Provided immutability-annotated classes and methods
are final, this is true even if immutable classes are composed with untrusted
classes that follow Java’s type system, but not our immutability type system.

1 Introduction

An object is immutable if it does not permit observable mutations of its object state. A
class is immutable if all its instances are immutable objects. In this article, we present
an extension of a Java-like language with immutability specifications and a static type
system for verifying them.

For many reasons, favoring immutability greatly simplifies object-oriented pro-
gramming [BloO1]. It is, for instance, impossible to break invariants of immutable ob-
jects, as these are established once and for all by the object constructor. This is espe-
cially pleasing in the presence of aliasing, because maintaining invariants of possibly
aliased objects is difficult and causes headaches for program verification and extended
static checking tools. Sharing immutable objects, on the other hand, causes no problems
whatsoever. Object immutability is particularly useful in multi-threaded programs, as
immutable objects are thread-safe. Race conditions on the state of immutable objects
are impossible, because immutable objects do not permit writes to their object state.
Even untrusted components cannot mutate immutable objects. This is why immutable
objects are important in scenarios where some components (e.g. applets downloaded
from the web) cannot be trusted. If a security-sensitive component checks data that it
has received from an untrusted component, it typically relies on the fact that the data
does not mutate after the check. A prominent example of an immutable class whose
immutability is crucial for many security-sensitive applications is Java’s immutable
String class.

Unfortunately, statically enforcing object immutability for Java is not easy. The
main reason for this is that an object’s local state often includes more than just the
object’s fields. If local object states never extended beyond the object’s fields, Java’s
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final field modifier would be enough to enforce object immutability. However, String
objects, for instance, refer to an internal character array that is considered part of the
String’s local state. It is crucial that this character array is encapsulated and any alias-
ing from outside is prevented. Java does not provide any support for specifying deep
object states and enforcing encapsulation. Fortunately, ownership type systems come
to rescue. Ownership type systems have been proposed to better support encapsulation
in object-oriented languages, e.g., [CPN98,CD02,BLS03,MPHO1,DMO05]. In order to
permit immutable objects with deep states, we employ a variant of ownership types.
The core of our ownership type system is contained (in various disguises) in all of the
ownership type systems listed above. In addition, our type system distinguishes be-
tween read-only and read-write objects. The difference between read-only objects and
immutable objects is that the latter have no public mutator methods at all, whereas the
former have public mutator methods that are prohibited to be called. We need read-
only objects in order to support sharing mutable (but read-only) representation objects
among immutable objects. Unlike read-only references [MPHO1,BE04,TEOS], our read
restrictions for immutable and read-only objects are per object, not per reference.

Our type system guarantees immutability in an open world [PBKMO00] where im-
mutable objects are immutable even when interacting with unchecked components that
do not follow the rules of our immutability type system. The immutability type sys-
tem guarantees that unchecked components cannot break from outside the immutability
of checked immutable objects. All we assume about unchecked components is that
they follow the standard Java typing rules. Unchecked components could, for instance,
represent legacy code or untrusted code. Our decision to support an open world has
several important impacts on the design of our type system. For instance, we have to
ensure that the types of public methods of immutable objects do not constrain callers
beyond the restrictions imposed by Java’s standard type system. Technically, this is
easily achieved by restricting the ownership types of methods. Furthermore, we cannot
assume that clients of immutable objects follow a read-only policy that is not already
enforced by Java’s standard type system. For this reason, we define read-only types in
context world to be equivalent to read-write types.

A difficulty in enforcing object immutability is that even immutable objects mutate
for some time, namely during their construction phase. This is problematic for several
reasons. Firstly, Java does not restrict constructor bodies in any way. In particular, Java
allows passing self-references from constructors to outside methods. This is undesirable
for immutable objects as it would allow observing immutable objects while they are still
mutating. Moreover, the rules that control aliasing for constructors should be different
from the rules that control aliasing for methods. Constructors should be allowed to pass
dynamic aliases to their internals to outside methods as long as these methods do not
store any static aliases to the internals. Methods, on the other hand, must be disallowed
to leak dynamic aliases to internals, if our goal is immutability in an open world.

2 A Java-like Language with Immutability

In this section, we present Core Jimuva, a core language for an immutability extension
of Java. We use the same syntax conventions as Featherweight Java (FJ) [IPWO1]. In
particular, we indicate sequences of X’s by an overbar: X. We assume that field declara-



tions F, constructor declarations K, method declarations M and parameter declarations
fyx do not contain duplicate declarations. We also use some regular expression syntax:
X? for an optional X, X* for a possibly empty list of X’s, and X | Y foran X ora Y.
For any entity X (e.g., X an expression or a type), we write oids(X) for the set of object
identifiers occurring in X and vars(X) for the set of variables occurring in X (includ-
ing the special access variable myaccess). For a given class table ¢, we write C ext z:D
whenever fincaclassCextD{..} € ¢. The subclassing relation <:; is the reflexive,
transitive closure of ext ;. We omit the subscript ¢ if it is clear from the context. Like
in FJ, we assume the following sanity conditions on class tables ¢: (1) subclassing <:z
is antisymmetric, (2) if C (except Object) occurs anywhere in ¢ then C is declared in ¢
and (3) ¢ does not contain duplicate declarations or a declaration of Object.

Core Jimuva — a Java-like Core Language with Immutability Annotations:

I
C,D,E < Classld class identifiers (including Object)

f,g € Fieldld field identifiers

m,n € Methld method identifiers

k,l € Consld constructor identifiers

0,p,q,r € Objld object identifiers (including world)
x,y,z € Var variables (including this, myowner)
ca ;= immutable? class attributes

ea ::= anon? rdonly? wrlocal? expression attributes

ar = rd | rdwr | myaccess access rights for objects

fm ::= final? final modifier

u,v,w € Val ::= null |o|x values

ty € ValTy == C<ar,v> | void value types

T € ExpTy ::= eaty expression types

¢,d = fmcaclassCextD{F K M} class declaration (where C # Object)
F = C<ar,v>f; field

K = eaC.k(fyx){e} constructor (scope of X is e)

M = fm<y>T m(iyx){e} method (scope of ¥ is (T, 7y,e), of X is €)
ec Exp:= expressions and statements

v|v.f|v.f=e|v.m<i>(€) | newC<ar,v>.k(€) | letx=eine | (C)e | C.k(€)

Derived Forms:
I

Ife ¢ Val,x ¢ vars(e,e,7,¢): e.f=letx=einx.f e.f=¢/=1letx=einx.f=¢
e.m<i>(&) = let x=e inx.m<i>(e) IfxZvars(e'): e;¢ =letx=eine
skipénull e; ée;skip letx,¥=e,eine = letx=einletf=cine

em(e) = em<>(@)  fmTm(iyx){e} = fm<>T m(fyx){e}

C<ar> 2% C<ar,world> Ca> = C<rdwr,v> C £ C<world>
L I

Core Jimuva extends a Java core language by immutability specifications: the class
attribute immutable specifies that all instances of a class are immutable objects, i.e.,
their object state does not visibly mutate.

The other Java extensions are auxiliary and specify constraints on objects and meth-
ods that immutable objects depend on: Ownership types are used to ensure encap-
sulation of representation [CPN98,CD02,BLS03]. The rdonly-attribute (read-only)



is used to disallow methods of immutable objects to write to their own object state.
The wrlocal-attribute (write-local) is used to constrain constructors of immutable ob-
jects not to write to the state of other immutable objects of the same class. Vitek and
Bokowski’s anon (anonymous) attribute [VBO01] is used to constrain constructors of im-
mutable objects not to leak references to this. For a given class table with immutable-
specifications, these additional expression attributes can be automatically inferred, but
we prefer to make them syntactically explicit in this paper.

Object types are of the form C<ar,v>, where ar specifies the access rights for the
object and v specifies the object owner. Omitted access rights default to rdwr, omit-
ted owners default to world. The expression newC<ar,v>.k(€) creates a new object of
type C<ar,v> and then executes the body of constructor C.k() to initialize the new ob-
ject. Access rights and ownership information have no effect on the dynamic behaviour
of programs.

Access rights specify access constraints for objects (in contrast to Java’s access
modifiers protected and private, which specify access constraints for classes). The
access rights are rdwr (read-write, i.e., no constraints) and rd (read-only). Read-only
access to o forbids writes to o’s state and calls to o’s non-rdonly methods. Objects are
implicitly parameterized by the access variable myaccess, which refers to the access
rights for this. Consider, for instance, the following class:

class C ext Object {
C<myaccess,myowner> X;
wrlocal C.k(C<myaccess,myowner> x){ this.set(x); }
rdonly C<myaccess,myowner> get(O{ x }
wrlocal void set(C<myaccess,myowner> x){ this.x = x; } }

If, for instance, o is an object of type C<rd, p>, then access to o is read-restricted. Fur-
thermore, access to all objects in the transitive reach of o is read-restricted, too: o.get(),
o.get().get(), etc., all have type C<rd, p> and therefore permit only rd-access. The
following example shows how C can be used:

class D ext Object {
C<rd,this> x; C<myaccess,myowner> y; C<rdwr,this> z;

void m() {
x = new C<rd,this>(new C<rd,this>(null)); // legal
y = new C<myaccess,myowner>(new C<myaccess,myowner>(null)); // legal
z = new C<rdwr,this>(new C<rdwr,this>(null)); // legal
new C<rd,this>(new C<myaccess,myowner>(null)); // illegal
x.get(); y.get(); z.get(); y.set(null); z.set(null); // legal
x.set(null); // illegal call of non-rdonly method on rd-object }
rdonly void n() {
y.set(aull); // illegal call of non-rdonly method } }

It may perhaps be slightly surprising that the call y . set (null) inm() is legal, although
the access variable myaccess may possibly get instantiated to rd. This call is safe,
because it is illegal to call the non-rdonly method m() on a rd-object and, hence, the
call y.set (null) inside m() is never executed when myaccess instantiates to rd.
Ownership types. Objects of type C<ar,o0> are considered representation objects
owned by o, that is, they are not visible to the outside and can only be accessed via 0’s



interface. Objects without owners have types of the form C<ar,world>. The special
variable myowner refers to the owner of this. Our type system restricts myowner and
world to only occur inside angle brackets <->. The myowner variable corresponds to
the first class parameter in parametric ownership type systems [CD02,BLS03] and to the
owner ghost field in JML’s encoding of the Universe type system [DMOS5]. Furthermore,
the Universe type system’s rep and peer types [MPHO1] relate to our types as follows:
repC corresponds to C<rdwr,this>, and peer C to C<rdwr,myowner>.

Jimuva has owner-polymorphic methods: In a method declaration <y> T m(fyx){e},
the scope of owner parameters y includes the types 7', fy and the method body e. The type
system restricts occurrences of owner parameters to inside angle brackets <->. Owner
parameters get instantiated by the values v in method call expressions u.m<v>(€).

Owner-polymorphic methods permit dynamic aliasing of representation objects.
Consider, for instance, a method of the following type:

<x,y> void copy(C<x> from, C<y> to)

A client may invoke copy with one or both of x and y instantiated to this, for in-
stance, copy<world,this>(o,mine), where mine refers to an internal representation
object owned by the client. Dynamic aliasing of representation objects is often danger-
ous, but can sometimes be useful. For immutability, dynamic aliasing is useful during
the object construction phase, but dangerous thereafter. For instance, the constructor
String(char[] a) of Java’s immutable String class passes an alias to the string’s
internal character array to a global arraycopy () method, which does the job of defen-
sively copying a’s elements to the string’s representation array. Our type system uses
owner-polymorphic methods to permit dynamic aliasing during the construction phase
of immutable objects, but prohibit it thereafter. The latter is achieved by prohibiting
rdonly-expressions to instantiate a method’s owner parameters by anything but world.

For String to be immutable, it is important that the arraycopy () method does not
create a static alias to the representation array that is handed to it from the constructor
String(char[] a).Fortunately, owner-polymorphic methods prohibit the creation of
dangerous static aliases! This is enforced merely by the type signature. Consider again
the copy () method: From the owner-polymorphic type we can infer that an implemen-
tation of copy does not introduce an alias to the to-object from inside the transitive
reach of the from-object. This is so, because all fields in from’s reach have types of
the form D<ar,x> or D<ar,from> or D<ar,world> or D<ar,0> where o is in from’s
reach. None of these are supertypes of C<y>, even if D is a supertype of C. Therefore,
copy’s polymorphic type forbids assigning the to-object to fields inside from’s reach.

Let-bindings. Unlike FJ [IPWO01] but like other languages that support ownership
through dependent types [CD02,BLS03], we restrict some syntactic slots to values in-
stead of expressions, for instance, v.f instead of e. f. This is needed for our typing rules
to meaningfully instantiate occurrences of this in types. We obtain an expression lan-
guage similar to FJ through derived forms, see above. An automatic typechecker for
full Jimuva will work on an intermediate language with let-bindings.

Constructors. Our language models object constructors. This is important, as object
construction is a critical stage in the lifetime of immutable objects: during construc-
tion even immutable objects still mutate! For simplicity, Core Jimuva’s constructors
are named. Moreover, we have simplified explicit constructor calls: instead of calling



constructors using super () and this (), constructors are called by concatenating class
name C and constructor name k, i.e., C.k(). Constructors C.k() are only visible in C’s
subclasses. We allow direct constructor calls C.k() from constructors, and even from
methods, of arbitrary subclasses of C. That is more liberal than real Java, but unprob-
lematic for the properties we care about.

Protected fields. Jimuva’s type system ensures that fields are visible in subclasses
only. This is similar to Java’s protected fields.* Our reason for using protected
instead of private fields is proof-technical: a language with private fields does not
satisfy the type preservation (aka subject reduction) property. On the other hand, sound-
ness of a type system with private fields obviously follows from soundness of our less
restrictive type system with protected fields.

3 Operational Semantics

Our operational semantics is small-step and similar to the semantics from Zhao et
al [ZPV06]. However, in contrast to [ZPV06], we also model a mutable heap. The op-
erational semantics is given by a state reduction relation & :: s —z A’ :: ', where h is
a heap, s a stack and ¢ the underlying set of classes. We omit the subscript ¢ if it is
clear from the context. Stack frames are of the form (eino), where e is a (partially exe-
cuted) method body and o is the this-binding. Keeping track of the this-binding will
be needed for defining the semantics of immutability. The world identifier is used as
a dummy for the this-binding of the top-level main program. Evaluation contexts are
expressions with a single “hole” [ ], which acts as a placeholder for the expression that
is up for evaluation in left-to-right evaluation order. If & is an evaluation context and e
an expression, then &'[e] denotes the expression that results from replacing &”s hole by
e. Evaluation contexts are a standard data structure for operational semantics [WF94].

Runtime Structures:
I

state ::= h: s € State = Heap x Stack states

h ::= obj € Heap = Objld — (Fieldld — Val) heaps

obj ::= o{f =7} € Obj= Objld x (Fieldld — Val) objects

s == fr € Stack = Frame* stacks

fr :== eino € Frame = Exp x Objld stack frames

& = []|v.f=& | vm<i>(¥,8,¢€) | newC<ar,v>.k(v,&,€) | evaluation contexts

letx=&1ine | (C)& | Ck(V,8,e)

We assume that every object identifier o # world is associated with a unique type
ty(o) of the form C<ar, p> such that p = world implies ar = rdwr and C is immutable
implies p = world. We define rawty(o) 2¢,if ty(o) = C<ar, p>.

We use substitution to model parameter passing: Substitutions are finite functions
from variables, including myaccess, to values and access rights. We let meta-variable
o range over substitutions and write (¥<v) for the substitution that maps each x; in X to
the corresponding v; in v. We write id for the identity. We write e[o] for the expression
that results from e by substituting variables x by o (x). Similarly for types, T[c]. The
following abbreviations are convenient:

4 Java’s protected fields are slightly more permissive and package-visible, too.



self (u,ar,v) = (this,myaccess,myowner<u,ar,v)
0, 5—7 = (%,7—i,v), if 6 = (f—i) and TNy = 0
We use several auxiliary functions that are exactly as in FJ [IPWO1]: The func-

tion mbody;(C,m) looks up the method for m on C-objects in class table ¢. Similarly,
cbody;(C.k) for constructors. The function fdz(C) computes the field set for C-objects
based on class table ¢. These functions are defined in Appendix B. We omit the subscript
¢ if it is clear from the context.
State Reductions, state —; state':
I
(Red Get) h=1HW,o{.f=v.}

h:s,&lo.flinp — h:s,&V]inp
(Red Set)

hyo{f =u,g =w} :s5,&o.f=v]inp — h,o{f =v,g=w}:5,E]inp
(Red Call) s=5",&lo.m<ii>(¥)]inp ty(o) = C<ar,w> mbody(C,m) = <y5>(¥)(e)

h:s — h:s,e[self(o,ar,w),y—i,x—v]ino
(Red New) s=35',&newC<ar,w>k(¥)]inp o¢&dom(h) ty(o)=C<ar,w> fd(C)=1ff

his — ho{f =null}::s,Ck(¥);0in0
(Red Cons) s=s",&[C.k(¥)]inp cbody(C.k)=(X)(e) ty(p)=D<ar,w>

h:s — h:s,efself(p,ar,w),x—7v]inp
(Red Rtr) e = g.m<ii>(V) or e = newC<ar,u>.k(v) or e = C.k(V)

h:s,(&elino), (vinp) — h:s,&v]ino
(Red Let)

h:s,&letx=vine|inp — h: s, Eefx—v]]inp
(Red Cast) v =null or rawty(v) <: C

h:s,E[(C)vlinp — h:s,&E]inp

4 Semantic Immutability

Intuitively, an object o is immutable in a given program P, if during execution of P no
other object p can see two distinct states of 0. A class is immutable if all its instances
are immutable in all programs.

In order to formalize this definition, we have to describe the meaning of the phrase
“p sees o0’s state”. The object p can read o’s fields directly or it can call o’s methods
and observe possible state changes that way. Thus, if 0’s object state is always the same
on external field reads and in the prestate of external method calls on o, we can be sure
that no object p ever sees mutations of 0’s state.

Definition 1 (Visible States). A visible state for o is a state of the form (h:: s, &[o. f]in p)
or (h::s,&o.m<i>(V)]in p) where p # o.

We also have to formalize what o’s object state is. Just including the fields of an
object is often not enough, because this only allows shallow object states. We interpret
the ownership type annotations on fields as specifications of the depth of object states:
if a field f’s type annotation has the form C<ar, this> then the state of the object that f
refers to is included in this’s state; if f’s type annotation has the form C<ar,myowner>
then the state of the object that f refers to is included in myowner’s state. This is for-
malized by the following inductive definition:



Definition 2 (Object State). For any heap #, the binary relation _ € state(h)(_) over
Obj x Objld is defined inductively by the following rules:

(@) If o f =7} € h, then o{f = v} € state(h)(0).

(b) Ifo{..f =¢q..} € hand C<ar,this> f € fd(rawty(0))
and obj € state(h)(q), then obj € state(h)(o).

(c) If p#£oand p{..f = q..} € state(h)(0) and C<ar,myowner> f € fd(rawty(p))
and obj € state(h)(q), then obj € state(h) (o).

Let state(h) (o) = {obj| obj € state(h)(0)}.
Example 1 (Object State).

class C ext Object { D<..,this> x; D<..,world> y; constructors methods }
class D ext Object { E<..,myowner> x; E<..,this> y; constructors methods }
class E ext Object { Object<..,myowner> x; constructors methods }

Let c{x =d|,y = dz}, di{x = e1,y = ez}, e;{x = 01}, ea{x = 02} be instances of
C, D, E in heap h. Then state(h)(e;) consists of (the object whose identifier is) e;;
state(h)(ez) consists of e;; state(h)(d) consists of d},ez,0,; and state(h)(c) consists
of C,d1,€1,01782702.

Definition 3 (Immutability in a Fixed Program). Suppose P = (C;e) is a Jimuva-
program and C is declared in ¢. We say that C is immutable in P whenever the following
statement holds:

If0::eginworld —} hyisy —% hy s,
and h; :: 51 and hy :: 5o are visible states for o,
and rawty (o) <: C, then state(h; )(0) = state(h)(0).

This immutability definition disallows some immutable classes that intuitively could be
allowed, because the last line requires state(h;)(0) and state(hy) (o) to be exactly iden-
tical. A more liberal definition would allow object state mutations that are unobservable
to the outside. For instance, immutable objects with an invisible internal mutable cache
for storing results of expensive and commonly called methods could be allowed. How-
ever, standard type-based verification techniques would probably disallow unobservable
object mutations. Because our primary goal is the design of a sound static type system,
we do not attempt to formalize a more permissive definition of immutability up to a
notion of observational equivalence of object states, but instead work with our strict
definition that is based on exact equality of object states.

We are interested in immutability in an open world, where object immutability can-
not be broken by unchecked components. To formally capture the open world model,
we define a type erasure mapping |- | from Jimuva to Core Java, see Appendix G for
details. This mapping erases ownership information, access rights, expression attributes
and class attributes. The operational semantics, —java, and typing judgment, tj,y,, for
Core Java are defined in Appendix G. The Jimuva typing judgment, i, will be defined
in Section 6. A Java-program is a pair (¢;e) such that (jaya € : 0k) and (Fjavac € : ty)
for some Java-type ty. The semantics of Jimuva and Core Java are related as follows:

— If (- ¢: ok), then (state — state’) iff (|state| —,a ¢ |state']).



— If (F ¢: ok), then (Fjava |€] : Ok).
There is also an embedding e that maps a Jimuva class table ¢ and a Java class table d
(which refers to |€]) to a Jimuva class table e;(d) such that |ez(d)| = d, see Appendix G
for details. This embedding inserts the annotations rdwr and world wherever access or
ownership parameters are required. One can think of a Java-class as a Jimuva-class
without any Jimuva-specific annotations. The embedding e inserts Jimuva-defaults
where Jimuva-annotations are syntactically required.

Our type system is sound in an open world with legal subclassing. That is, we
assume that unchecked classes do not extend Jimuva-annotated classes or override
Jimuva-annotated methods. We could easily modify our system to guarantee immutabil-
ity in an open world without this subclassing restriction, by requiring Jimuva-annotated
classes and methods to be final. We choose not to, because we find that a bit too
restrictive. Note, in this context, that Java’s Extension Mechanism already supports
sealed optional packages, which cannot be extended from outside the JAR file that con-
tains them.” It would be nice if there was also a way to mark public classes as sealed,
in order to prohibit subclassing from outside their containing JAR file.

Jimuva-annotated classes and methods: A field declaration C<ar,v> f is Jimuva-
annotated if ar # rdwr or v # world. A method fim<y>eaty m(fyx){e} is Jimuva-
annotated if y, ea or vars(ry',iy) is non-empty. A class fimcaclassCextD{..} is
Jimuva-annotated, if it contains Jimuva-annotated field declarations or ca is non-empty.

Legal subclassing: A Java class table d legally subclasses a Jimuva class table ¢, if
no class declared in d extends a Jimuva-annotated class and no method declared in d
overrides a Jimuva-annotated method.

Definition 4 (Immutability in an Open World). Suppose C is declared in Jimuva-
class-table ¢ and (- ¢: ok). We say that C is immutable in ¢ whenever C is immutable
in (¢,ez(d);ez(e)) for all Java-programs (|¢|,d;e) where d legally subclasses ¢.

Let us say that a class table ¢ is correct for immutability whenever every class that
is declared immutable in ¢ is in fact immutable in ¢. Jimuva’s type system is sound in
the following sense:

Theorem 1 (Soundness). If (- ¢ : ok), then ¢ is correct for immutability.

5 The Immutability Type System — Informally

The simplest example of an immutable class is:°

immutable class ImmutableInt ext Object {
int value;
anon wrlocal ImmutableInt.k(int i) { this.value=i; }
rdonly int get() { this.value } }

Here the state of an ImmutableInt object just consists of its instance field value. For
more complicated immutable objects, ownership annotations are needed to specify if
objects referenced by instance fields are part of the (immutable) state:

5 An attempt to extend a sealed optional package results in a SecurityException at runtime.
6 For readability, keywords that could be left implicit are written in italics.



class Mutable ext Object {
int value;
anon Mutable.k(int i) { this.value=i; }
rdonly int get() { this.value }
void set(int i) { this.value=i; } }

immutable class EncapsulatedMutable ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable.k(Mutable m) {
this.m = new Mutable<this>.k(m.get()); }
rdonly int get(){ this.m.get() } }

Here the annotation <this> on the type of field m declares that the state of the ob-
ject referenced by m is considered part of the state of an EncapsulatedMutable ob-
ject. The type system enforces that constructor EncapsulatedMutable.k(m) makes
a defensive copy of m to prevent representation exposure. Technically, this is achieved
because m’s type Mutable, which is short for Mutable<world>, is not a subtype of
Mutable<this> and, thus, a direct assignment to the field this.m is disallowed.

Restrictions on methods with rdonly. Obviously, methods of an immutable object
should not modify their object state. One could try to ensure this by requiring that
methods of immutable objects are side-effect free. However, ensuring side-effect free-
ness is not so simple, because even side-effect free methods must be allowed to call
constructors that write to the heap. Limiting constructor writes for side effect freeness
in a practical and safe way requires alias control [SR0O5]. Therefore, instead of requiring
side-effect freeness, Jimuva uses a weaker restriction that is simpler to enforce on top
of the ownership infrastructure.

rdonly: An expression is read-only, if it (1) contains no field assignments, (2)
all its method calls have the form v.m<ii>(¢) where either (a) m is rdonly or
(b) it = world and v has a type C<ar,wor1ld>, and (3) all its new-calls have the
form newC<ar,world>.k(é).

rdonly-methods are guaranteed to not write to the state of immutable receivers. The
rdonly-restriction allows important side-effecting methods. For instance, the method
getChars(int srcBegin,int srcEnd,char[] dst,int dstBegin) from Java’s
immutable String class writes to the array dst (owned by world). It is an example of
a rdonly method that is not side-effect free.

Restrictions on constructors with wrlocal and anon. A constructor of an im-
mutable object typically will have side-effects to initialize the object state. We have
to restrict constructors of immutable objects for two reasons: (i) we have to prevent
them from modifying other objects of the same class, (ii) we have to prevent them from
leaking the partially constructed this [Goe02].

Issue (i) stems from the fact that visibility modifiers in Java constrain per-class, not
per-object, visibility. So it is possible for a constructor of an immutable object to see
and modify other immutable objects of the same class. For example:

immutable class Wrong {
Mutable<this> m;
rdonly int get(){ m.get() }
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anon wrlocal Wrong.k(Wrong o) {
this.m = new Mutable<this>.k(o.get());
o.m.set(23); /* unwanted side-effect on other object! */ } }

To prevent such immutability violations, we require constructors of immutable objects
to be write-local in the following sense:

wrlocal: An expression is write-local, if (1) all its field assignments have the
form v. f=e where either v = this or v has a type C<rdwr,this> and (2) all
its method calls have the form v.m<ii>(€) where either (a) m is rdonly or (b)
m is wrlocal and v = this or (c) v has a type C<rdwr,this> or (d) v is has
a type C<ar,world>.

To prevent constructors of immutable objects from leaking this, we use Vitek et al’s
notion of anonymity of [VB0O1,ZPV06]:

anon: An expression is anonymous, if it (1) is not this, (2) does not pass this
to foreign methods, (3) does not assign this to fields, and (4) all its method
calls have the form v.m<ii>(&) where either v or m is anon.

Owner-polymorphic methods. The example below uses an owner-polymorphic method
to permit dynamic aliasing of the representation object this.m during object construc-
tion. As explained in Section 2, the polymorphic type of copy () prevents this method
from creating a static alias to its parameter to. This example is a small model of Java’s
String constructor String(char[] a), which gives an alias to a representation ob-
ject to a global arraycopy () method.

class Utilities ext Object {
Utilities.k(){ skip }
<x,y> void copy(Mutable<x> from, Mutable<y> to){ to.set(from.get()); } }

immutable class EncapsulatedMutable2 ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable2.k(Mutable m) {
this.m = new Mutable<this>.k(null);
new Utilities.k().copy<world,this>(m,this.m); }
rdonly int getO{ m.get() } }

Now is a good point to present the subtyping relation: Subtyping is defined against

a type environment I” that assigns types to variables. The following function is used in
its definition:

atts(Object) = 0 atts(C) = ca, if fimcaclassCext D{..} atts(void) = 0

atts(C<ar,v>) = atts(C)U{ar} atts(eaty) = eaUatts(ty) atts(o) = atts(ty (o))
We interpret expression attributes ea as subsets of {anon,rdonly,wrlocal} ordered
by set inclusion.
Subtyping, ' T < U:
I
(Sub Rep) I'lar,v,v' : ok (Sub World)

C<:C' ed Cea I'Far,ar :ok ed Cea C<:C

I'FeaC<ar,v> < ed' C'<ar,v> I eaC<ar,world> < ea’' C'<ar’ ,world>
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(Sub Void) (Sub Share) ea’ Cea C<:C'
ed Cea I'tvy :D,D inworld immutable € atts(D)Natts(D’)

I'Feavoid < ed’ void I'FeaC<rd,v> < ea' C'<rd,V'>
L 1

The interesting rules are (Sub Share) and (Sub World). The former allows flows of
read-restricted objects with immutable owners into locations for read-restricted objects
of other immutable owners. That is, our type system permits sharing representation
objects among immutable objects as long as those are read-restricted. The rule (Sub
World) expresses that ownerless objects do not have to follow access policies. It is
needed to ensure that our type system is sound in an open world that includes clients that
do not follow Jimuva-policies. Compared to type systems with read references, e.g., the
Universe type system [MPHO1], it is noteworthy that we do not allow upcasting read-
write objects to read objects. Allowing this would lead to an unsoundness in our system.
This means that read-restricted objects have to be created as read-restricted objects. Of
course, we then must allow constructors of read-restricted objects to initialize their own
state. This is safe, as long as constructors of read-restricted objects are wrlocal.

Sharing mutable representation objects. This example illustrates sharing of mutable
representation objects. The subtyping rule (Sub Share) is used to upcast o.m’s type
from SharedRepObject<rd, o> to SharedRepObj<rd,this> so that the assignment
to this.m becomes possible.

immutable class SharedRepObject ext Object {
Mutable<rd,this> m;
rdonly int get(O){ m.get() } }
anon wrlocal SharedRepObject.k1(int i) {
this.m = new Mutable<rd,this>.k(i); }
anon wrlocal SharedRepObject.k2(SharedRepObject o) {
this.m = o.m; } /* sharing of mutable representation object */ }

6 The Immutability Type System — Formally

A type environment I' = (Icc,Iown, Ival) is a triple of partial functions I3 € {myaccess}—
{e}, Iywn € VarUObjld — {e} and I, € Var UObjld — ExpTy. If v & dom(I4) U

{null}, we define I 4,v: T 2 LU {(x,T)}. Similarly, for I} and I5y,. We de-

fine I',v: T 2 (Tice, Town, (Inat,v 2 T)). Similarly, for Iec and Igun. We often write
I'(v) = T as an abbreviation for I, (v) = T. Similarly, for I3 and I;,,,. We define

dom(I') 4 dom () Udom(Igwn) Udom(Iy,)).

Substitution Application for Environments, '[c]:
I

F[G] = (ECC[G]vl—éwn [G}al—\‘/al[c}) R/al[o-} = {(VvT[GD ‘ (va) 61—\‘/a|}
Ticc[o] = {(ar[o],e)|ar € dom(I3cc)} N {(myaccess, o)}
Town[o] = {(v[c],®)|v € dom(Iown)} N (Var U Objld) x {e}

In addition to subtyping, there are judgments of the following forms:

Fc:ok “c is a good class declaration”
I'e:Tinvar “if this = v and v has access rights ar, then e has type T
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In useful judgments (I' - e : T in v,ar), the this-binding v is either this itself or an
object identifier. For type-checking class declarations, it is sufficient to consider judg-
ments where dom(I") C VarU {world,myaccess} and v = this. We allow arbitrary
object identifiers in type environments and as this-binders, so that we can type runtime
states, which is needed for proving type soundness.

The typing judgments are defined with respect to an underlying class table. This
class table remains fixed in all typing rules and we leave it implicit. In contexts where
we want to explicitly mention it, we subscript the turnstyle: (I' bz e : T in v,ar). We use
auxiliary functions ctype(C.k) and mtype(C,m) that compute the types of constructors
and methods based on the underlying class table. These are essentially as in FJ [IPWO1].
Method subtyping treats methods invariantly in the parameter types and covariantly in
the result type. See Appendix B for more details.

Auxiliary Predicates and Judgments:
I

eaC<ar,v> legal 2 (v =myowner < ar = myaccess) eavoid legal £ true
C<ar,v> generative = (immutable € atts(C) = v = world and v = world = ar = rdwr)
(ea,u,ar,,v,) wrloc in v = (u=v,wrlocal € ea) or (ary,v,) = (rdwr,v)

ar wrsafe in ar’ = (ar = rdwr or ar’ = rd or ar = ar’)

(F&:ok) = (Ve € &)(F c: ok) (T'Fe:T) = (I'+e: T inmyaccess)
(Cke:Tinar)=(CFe:Tinthis,ar) (Cke:Tinv)=(TFe:Tinv,rdur)
(F'tée:T,Tinviar)=(T'+é:TinvarandT'Fe: T inv,ar)
(CTFe:T=<Uinvar)=(C+Fe:Tinvarand [T < U)

(I' F o) = (world € dom(Ipwn) and (Vv € dom(I4))) (v # world and I F Iy (v) : ok))
(CFv:e)=(T'Foand'(v)=e) (['Fv:ok)= (I'+oandvedom(I)U{null})
(I' Far:ok) = (I' - and ar € dom(I") U {rdwr,rd})

(I' F eavoid : ok) = (I' - o) (I' - eaC<ar,v> : ok) = (I' - ar: ok and I" - v : ok)
|(F F 1y legal) = (I bty : ok and 1y legal)

Good Class Declarations, - ¢ : ok:

I

(Cls Dcl) Disnotfinal I’ = (world,myowner,myaccess,this:e)

ca# 0= (atts(D) #0or D=0bject) atts(D)#0 = ca#0

I',this : rdonly wrlocal C<myaccess,myowner> - F,K,M : ok inC
FfincaclassCext D{F K M} : ok

(Fld Del)
CextD= f¢fd(D) E<ar,v>legal I'ar:ok I'kv:e

I'FE<ar,v>f:okinC

(Cons Dcl) 7y legal this ¢ vars(fy)
atts(C) # 0 = anon,wrlocal €ea I',x:anonrdonlywrlocalfyl e:eavoid

I'k eaC.k(fyx){e} :0kinC
(Mth Dcl) CextD =T F mtype(m,C) < mtype(m,D) atts(C) # 0 = rdonly € atts(7)
ar =myaccess or ({rdonly,wrlocal}Nea =0, ar =rdwr) © = (myaccess«ar)
I'[o],7: e, x:anonrdonly wrlocaliy[o]t e[o]: T[o]inar #y,T legal this & vars(iy,T)
I'F fm<3>T m(fyx){e} : okin C
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Well-typed Expressions, ' Fe: T inv,ar:

I

(Var) I'(x)=T (Obj) I'(fo)=T (Sub)
I'tar,,v:ok,e ea={anon|o#p} I'kar,,p:oke I'te:T=<Uinv,ar,

I'tx:Tinvar, I'o:eaT in p,ar, I'ke:Uinv,ar,

(Null) (Let) I'Fe:eaety,invar, x¢&vars(ty,)

't T,ar,,v:ok,ok,e [ x:eapty, e :eayty, invar, ea=)(ea,ea,)
I'Fnull:Tinv,ar, I'+letx=eine :eaty, inv,ar,

(Cast) C declared (Get) tyf efd(Cy) o =self(u,ary,vy)
I'e:ea,Ce<are,ve> inv,ary, I' - u,v:ea,Cy<ary,v,> Cy<ar,,wy,>in v,ar,

I't (C)e:earC<are,ve>inv,ar,  I'Fu.f:anonrdonly wrlocalty[o]inv,ar,

(Set) tyfefd(Cy) I'kv,:e
ea =(\({xaswrlocal|({x},u,ary,v,) wrlocin v}U{anon},ea,) ar, wrsafeinar,
L't u,v,e: ea, Cy<ary,v,> Cy<ary,,wy> eaety[o] inv,ar, o = self(u,ar,,vy)

I'Fu.f=e: eaty[o]inv,ar,

(Call) mtype(m,C,) = fm<y>fy —eanty
(rdonly € eay,) or (ar, wrsafe in ar,) o =self(u,ary,v,),y—w
ea = éaz N J( {anon} N (ean Ueay), {x as rdonly|x € eay,, or v,,w = world},
{wrlocal|(eay,u,ary,v,) wrlocin v or rdonly € eay,, or v, = world} )
I' Fu,e: ea, Cy<ary,v,>,éazty[c]invar, I'-w:e (ar,=rdorl Fv,:e)

'+ u.m<w>(é) : eaty'[o] inv,ar,

(New) ctype(C.k) =fy—eayvoid (ar=rdur)or (wrlocal,anon € eqy)
ea =(\({rdonly|w =world}U{wrlocal,anon},éaz) Ik ar,w:ok,e
I'tée: éazty[o]inv,ar, o =self(null,ar,w) C<ar,w> generative

I' - newC<ar,w>.k(€) : eaC<ar,w>in v,ar,
(Cons) ctype(C.k) =fy—eayvoid o = self(v,ary,w,)
I'ke,v: éazfy[o],C<ary,wy>inv,ar, ea=\(eay,éaz)
I'Ck(é) : eavoidinv,ar,

7 Conclusion

More on related work. We have already referenced and compared to some related work
throughout the text and have no space to repeat all of that. Ernst et al’s Javari lan-
guage [BEO4,TEOS] statically checks reference immutability, i.e., read-only references.
They report an impressive implementation. They do not support object immutability
in an open world, like we do. In particular, their system does not fully prevent repre-
sentation exposure. Pechtchanski et al [PS05] and Porat et al [PBKMOO] present im-
mutability analyses for Java. Their analyses are implementation driven and are not de-
signed against a formal semantics like ours. Parts of our formal type system are inspired
by similar informal static rules from Jan Schifer’s masters thesis [Sch04]. Clarke and
Drossopolous [CD02] and Lu and Potter [LPO6b,LP06a] combine ownership type sys-
tems with systems to control write- and/or read-effects. In spirit, this is similar to our
system which contains a write-effect analysis (for rdonly and wrlocal) on top of an
ownership type system. In contrast to the above mentioned systems, our sytem supports
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an open world and treats object constructors. Our system does not control read-effects.
However, a read-effect analysis would be desirable, because for many applications of
immutability, e.g., thread safety, it is important that immutable objects do not read from
mutable state. We expect that we could combine our system with a variant of [CD02]’s
read effect analysis to achieve this.

Summary. We have presented a core Java language with statically checkable im-
mutability specifications in the form of a type system, which has been proved sound
w.r.t. a formal semantic definition of object immutablity. The system is quite flexible
and employs, for instance, owner-polymorphic methods to permit dynamic aliasing
during object construction, and read-only objects to permit sharing of mutable repre-
sentation objects among immutable objects of the same class. We view this paper as the
careful design for a sound, type-based immutability analysis and plan to implement an
immutability checker for Java based on this system.

Appendix

A More Examples

Building Immutable Objects from Immutable Objects. Jimuva supports building im-
mutable objects from immutable objects. This is a good way of building immutable
objects from scratch.

immutable class IntList ext Object { }

immutable class ConsList ext IntList {
Int val;
IntList t1;
anon wrlocal ConsList.k(Int val, IntList t1) {
this.val = val; this.tl = tl;

}
}

immutable class NilList ext IntList {
anon wrlocal NilList.k(){ skip }

}

Access Right Parametricity for Flexible Sharing. Our final example shows an im-
mutable list constructed by encapsulating a mutable one. To avoid extensive copying,
mutable list nodes can be shared. First we present a simple implementation of a muta-
ble linked list class Node. The method deepcopy builds a read-restricted Node object.
To make deepcopy more generic, it may be desirable to parameterize it on the access
rights for the constructed Node. We believe that access parametricity for methods would
be sound and useful, but decided not to support this in order to make the system not too
complex.

class Node ext Object { // this class fakes a Java interface
wrlocal void setVal(int val){ skip }
wrlocal void setNext(Node<myaccess,myowner> next){ skip }
rdonly int getVal(){ 0 }
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}

rdonly Node<myaccess,myowner> getNext(){ null }
<x> Node<rd,x> deepcopy(){ new NilNode<rd,x>.k() }

class ValNode ext Node {

}

int val;
Node<myaccess,myowner> next;

wrlocal ValNode.k(int val, Node<myaccess,myowner> next){
this.setVal(val); this.setNext(next); }

wrlocal void setVal(int val){ this.val = val; }

wrlocal void setNext(Node<myaccess,myowner> next){ this.next = next; }
rdonly int getVal(){ val }

rdonly Node<myaccess,myowner> getNext(){ next }

<x> Node<rd,x> deepcopy() {
new ValNode<rd,x>.k(this.val, this.next.deepcopy<x>()) }

class NilNode ext Node {

}

wrlocal NilNode.k(){ skip }

The class IntList2 has three constructors. Typechecking the constructor IntList2.tl
requires that the type Node<rd, cons> of hd is a subtype of the type Node<rd,this>
of this.hd, which holds by (Sub Share). In IntList2.cons, we need to instanti-
ate the myaccess-parameter of ValNode. Note that we would not be able to type
IntList2.cons without access parametricity for classes.

immutable class IntList2 ext Object {

Node<rd,this> hd;

anon wrlocal IntList2.k(Node hd){
this.hd = hd.deepcopy<this>();
}

anon wrlocal IntList2.t1(IntList2 cons) {
let /*Node<rd,cons>*/ hd = cons.hd in this.hd = hd.getNext();
}

anon wrlocal IntList2.cons(int hd, IntList2 t1) {
let /*Node<rd,tl>*/ tl = tl.hd
in this.hd = new ValNode<rd,this>.k(hd,tl);

}

rdonly int hd(){ hd.getVal() }
rdonly IntList2 t1(){ new IntList2.tl(this) }
rdonly IntList2 cons(int hd){ new IntList2.cons(hd,this) }
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B Auxiliary Definitions

In the following definitions, we omit the underlying class table ¢. For instance, we
write cbody(C.k) instead of cbody:(C.k) and fincaclassCext D{F K M} instead of
fmcaclassCextD{F KM} € ¢.

Field Lookup, fd(C) = iy f:
I
(Fields Base) (Fields Ind)
fimcaclassCextD{iyf KM} fd(D) =1y fo
fd(Object) =0 fd(C) =g foiy f

Constructor and Method Lookup:
I

cbody(C.k) = (¥)(e) if Ikup(C.k) = eaC.k(fy%){e}
mbody(m,C) = <3>(%)(e) if Ikup(m,C) = fm<y>T m(iyx){e}
ctype(C.k) = iy—eavoid if lkup(C.k) = eaC.k(iy%){e}
mtype(m,C) = fm<y>iy—T if lkup(m,C) = fin<y> T m(iy%){e}
(Clkup) C # 0Object (Clkup Obj)
fmcaclassCextD{..eaC.k(fyx){e}..} ea = anon rdonly wrlocal
lkup(C.k) = eaC.k(fyx){e} Ikup(Object.k) = eaObject.k(){skip}
(Mlkup Base)

fincaclassCext D{..fi' <y>T m(fyx){e}..}
lkup(m,C) = fm' <y>T m(iyx){e}
(Mlkup Ind)
fmcaclassCext D{F K M} mnotdefinedin M Ikup(m,D) = mdef
Ikup(m,C) = mdef

Method Subtyping, I" - fin<y>iy— T = fi' <y'>iy — T':

I
(Meth Sub)

finalgfi’ I,j:e-T =T’
Tk fin<y>fy—T =< f' <y>iy— T’
L

Definitions for Environments:

ISa.turated Environments:
I is saturated = I + o and dom (Iwn) € dom(I3,)) U {world}
Closed Environments:
I is closed = dom(I") C Objld and I is saturated
Environment Containment:
rcr' = (Gee CI,

— ~acc

and Iown © l—gwn and I s € 1—\‘,/3|)
Domain Restriction:
fI5 = {(vf(v))|v € dom(f) N7}

Environment Restriction:
F|‘7 = (l—éco Fownw: Ral‘v)
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Environment Modification:
aitlyy) = {nT)|(vantT) € La} anl” = (Tace; Town, att L))
Global type environment induced by the class map ty:

env(ty) = rdonly wrlocal (0, {(world,e)}, ty)
!

C General Properties

Lemma 1 (Good Environments and Types).

(a) If (I' ko), then (I' - I'(x) : ok) for all x in dom(I,,)).

() If (T'+T:ok), (I'kFv:ok), (I'Fv:e)or (It ar:ok), then (I' - o).

©) If(C'ET RU), then (I' = T,U : ok).

(@) If (¢ : ok) and (I' bz e : T in v,ar), then vars(e) C dom(I") and (I' - T,ar,v :
ok, ok, e).

Lemma 2. The subtyping relation = is a partial order:

- If(C'+T:ok), then (IT'+T <T).
- If('ET2U)and (T'FU =XV), then (' =T <V).

Proof. Reflexivity is obvious. For transitivity, one inspects all possible reasons for
('FT <U)and (I' U = V). The following table summarizes the proof.

reason for (I' = T < U) |reason for (I' - U < V)|reason for (' T < V)
(Sub Void) (Sub Void) (Sub Void)
(Sub Void) other than (Sub Void) premise impossible
other than (Sub Void) (Sub Void) premise impossible
(Sub Rep) (Sub Rep) (Sub Rep)
(Sub Rep) (Sub Share) (Sub Share)
(Sub Rep) (Sub World) (Sub World)
(Sub Share) (Sub Rep) (Sub Share)
(Sub Share) (Sub Share) (Sub Share)
(Sub Share) (Sub World) premise impossible
(Sub World) (Sub Rep) (Sub World)
(Sub World) (Sub Share) premise impossible
(Sub World) (Sub World) (Sub World) O

Part (e) of the following Lemma 3 is important. We make extensive use of it in the
type preservation proof. This is the technical reason why we require that field types,

method types and constructor types are legal (see typing rules (Fld Dcl), (Cons Dcl)
and (Mth Dcl)).

Lemma 3 (Subtyping Properties).

(@) (I't+eaty < ed' ty') ifand only ifed’ C ea and (I' Fty < 1y).
(b) If (' +C<ar,v> < C'<ar',v'>), then C <: C'.
(©) If (T - C<ar,v> X C'<ar’ \V'>)and D <: D/,
then (I - D<ar,v> <X D'<ar’ ,Vv'>).
@) If (I k- Ci<ary,vi> = Ca<ary,vp>),
then (I' - Cy<ary,v2> <X Ca<ary,vi>)
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(e) If (' Ci<ary,vi> =X Co<ary,v2>), (I F ty legal),
(I' - o(x) : ok) for all x in dom(0) and myaccess,myowner ¢ dom(0), then
(I' F ty[o,myaccess,myowner«ar;,v|| = ty[0,myaccess,myowner«ary,vy|).

Proof. Parts (a) through (d) are straightforward to prove by inspection of the subtyping
rules. We prove part (e):

(1) I'=C<ary,v1> =X C<ary,vp> assumption
2) T+ 1ty legal assumption
(3) myaccess,myowner ¢ dom(o) assumption
(4) I'F o(x) : ok for all x in dom(0o) assumption
5) o = O,myaccess,yowner<«—ary, vy abbreviation
6) oy £ O,myaccess,myowner<«—ary,v; abbreviation

Case 1, ry = void: Then ry[o;] =ty = ty[o2].

Case 2, ty = C3<ars3,v3>: By part (c) of this lemma, we get:
(2.1) I' - Cs<ary,vi> = Cz<ary,vy>

Case 2.1, ar; =myaccess,v3 =myowner: Then I b 1y[c)] = Cs<ary,vi> < C3<ary,vy> =
1y[o2], by (2.1).

Case 2.2, ary # myaccess or v3 # myowner: Then both ar; # myaccess and
v3 # myowner, because ty is legal. Then ty[o]] = ty[o] = ty[02]. O

We use the meta-variable _# to range over right-hand-sides of judgments, i.e., over
the forms o, (ar: ok), (v:e), (v:ok), (T :0k), (T = U), and (e: T inv,ar).
Lemma 4 (Weakening). If (I' = _#), (I’ CI'') and (I'' o), then (I'' = 7).
Lemma 5 (Type Specialization). If (I",v:UF #)and (I',v:T+T <U), then (I',v:
TH 7).

Recall that I' is called saturated iff (I" - ¢) and dom(Igy,) C dom(I5,) U {world}.
The next lemma captures that for some judgments the owner component I, of sat-
urated environments I" does not matter. In particular, this is is the case for subtyping
judgments.

Lemma 6 (Independence of I...). Suppose 7 is o, (ar:ok), (v:ok), (T :ok), (T =
U) or (v: T inworld,ar). Then the following holds: If (' - _#), I',I"" are saturated,
Lee=I) and L, =TI, then (I''+ 7).
For att € {anon,rdonly,wrlocal}, we define:

att (eaty) = (eaU{att}) 1y (eaty) —att = (ea— {att})ty

Lemma 7 (Monotonicity of Union and Difference).

(@ If(CET 2U), then (I' - antT <X attU) and (I' =T — att KU — arr).
®) If T,u:Tke:Tinv,ar), then (I'yu:T —attte: T —arttinv,ar).

Lemma 8 (Independence of this-Binding and Access for Values).
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(@) If (CFv:Tinw,ar)and (I & ar' : ok), then (' Fv: T inw,ar).
() If(C'Fv:Tinw,ar) and (I' - u: ok), then (I' v : (T —anon) in u,ar).
(©) If(CEv:Tinwar), then (C't-v:Tinworld).

Lemma 9 (Substitutivity). If (- ¢ : ok), (I'[x«v] F v : T[x<V] in u[x<v],ar) and
(yx: Tt _Z), then the following statements hold:

(@) If # isoor(ar:ok)or (v:e)or(v:ok)or(U:ok)or(U=V),
then (I' [x«v] F _# [x—v]).
) If 7 is(e:Uinu,ary,), then (I' [x«v] F elx—v] : Ulx<V| in ulx—v],ar,).

Proof. By inductionon (I",x: T F _#)’s derivation:

(1) Fc:ok assumption
(2) 0= (xv) abbreviation
(3) I'l[o]Fv: Tlo]inu[o],ar assumption
@ I'"=(T,x:T) abbreviation

Case 1, (Var), y € Var — {x}:

I''(y) = eaC<ary,vy> It ary,u:ok,e

I'"by:eaC<ary,vy>inu,ar,

(1.1) I'lo] - ary,u[o] : ok, e by i.h.
(1.2) (I'lo])(y) = (I'(y))[0] = eaC<ary,vy[o]>
(1.3) I'[o] -y : eaC<ary,vy[c]> in u[c],ar, by (Var)

Case 2, (Var), y =x:

I''(x) = eaC<ary,vy> Tt ar,u:ok,e

I'' - x:eaC<ary,vy>inu,ary,
We have T = eaC<ar,,vy>=1I"(x) and x[G] = v. Therefore, (I'[0] F x[0] : eaC<ary,vi[0]> inu[o],ar),
by assumption (3). By Lemma 8, we obtain (I"[c] - x[0] : eaC<ary,vi[C]> in u[C],ary).
Case 3, (Sub Share):

ed Cea C<:C'
I'"tu :D,D inworld immutable € atts(D)Natts(D’)

I''FeaC<rd,u> < ea’ C'<rd,u'>

(3.1) I'lo] Fv: T[o] in world = world[o] by assumption (3) and Lemma 8
(3.2) I'[o] t-u[o],¥/[0] : D,D' in world by i.h.
(3.3) I'[o] - eaC<zrd,u[o]> =< ed' C'<xd,u'[o]> by (Sub Share)

All other proof cases are straightforward. (]

Lemma 10 (Owner Substitutivity). If - ¢ : ok, (I'[x—7] v :e), N dom(Ia) =0,
and (I',x: e 7)) then (I'[x—V| & _# [%—)).

Proof. By induction on (I",X: e = _#)’s derivation. O
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Lemma 11 (Access Right Substitutivity). [f ar € {rdwr,rd} and (I',myaccess: e+
J), then (I'myaccess«ar] - ¢ [myaccess«ar]).

Proof. By induction on (I",myaccess : ® - _¢)’s derivation. The only typing rules
that inspect the access rights in an interesting way are the subtyping rules and (Set)
and (Call). The proof cases for (Set) and (Call) “go through”, because the predicates
“ar wrsafe in ar’” and “(ea,u,ar,,v,) wrloc in v’ are designed to be closed under access
right substitutions. (]

Lemma 9 is meant to deal with method calls in the type preservation proof. How-
ever, Lemma 9 alone is not quite good enough for this purpose, because there is a
mismatch between types of actual and formal method parameters: whereas formal pa-
rameters are assumed to have anonymous types, actual parameters are not. In fact, re-
quiring types of actuals to be anonymous in order to match types of formals would
not make sense, because anonymity is relative to the this-binding, which changes at
method calls. To deal with this difficulty, we need another substitutivity lemma that
permits such mismatches between types of substituting values and substituted variables
and adjusts types of substitution bodies to make up for the mismatch. The following
operation for deanonymizing types is useful:

T —anon ifb
T if —b

deanon(T : ExpTy,b: Bool) = {
Lemma 12 (Anonymous Substitutivity). Suppose - ¢ : ok.
If (Clx<o]to: T[x«o]in p,ar’) and (I",x : anonT +e: U in p,ar),
then (I'[x—o] F e[x—o] : deanon(U[x<o],0 = p) in p,ar).

Proof.

(1) Fc:ok assumption
(2) 0 = (xo0) abbreviation
(3) I'lo|Fo:T[o]in p,ar assumption
4) I'yx:anonT Fe:Uin p,ar assumption

Case 1,0 # p: Weinvert (I'[o]F o: T[o]in p,ar’) and obtain a type T’ such that:
(1.1) T = anon(I'[0])(0)
(1.2) I'lo]to:T"in p,ar

[
(1.3) I'lo]-T' < T]o]
(1.4) I'[o]+T' = anonT’ < anonT|0]| by (1.3), Lemma 7
(1.5) I'[o]+0:anonT|[o]in p,ar by (1.2), (1.4), (Sub)
(1.6) I'lo] Fe[o] : Ulo] in p,ar by (1.5), (4), Lemma 9

This is what we want, because deanon(U[c],0 = p) = U|[0]

Case 2, 0 = p: From (4) we obtain (I',x: T +e: (U —anon) in p,ar), by Lemma 7.
Then (I'[o] F e[o] : (U[o] —anon) in p,ar), by (3) and value substitutivity (Lemma 9).
This is what we want, because deanon(U[c],0 = p) = U[0] — anon. O

Lemma 13 (Inversion Lemma for Contexts). If (I' - &[e] : T in p,ar), then there
exists a type U such that (I' e :Uin p,ar) and (I',x: U &k &[x] : T in p,ar). Moreover,
U can be chosen such that (I' - e : U in p,ar)’s type derivation does not end in (Sub).

Proof. By induction on the structure of & O
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D Well-typed States
The top-level judgment for well-typed states has the following form:

“o are immutable objects under construction,

ot state: T .
and state evaluates to a T-value

Well-typed States, 6 - state : T

I

(State)

I'isobh:ok I'sobs:T 6 Cdom(Iy,) Iya =rdonly wrlocalty|dom(Iy,))
oFh:s:T

Well-typed Heaps, I';0 - & : ok:

I
(Hp Obj) I'(p)=eaC<ar,q> ty(p)=C<ar,q> C<ar,q>generative
fd(C) =7 f o=self(p,ar,q) T'Fv:f/[c]inworld vNo=0

;6 p{f="v}:0k

(Hp)
(Vobj € h)(I';0 & obj : ok)
I';o0F h:ok

For the stack judgments, we sometimes need to record whether a frame has been created
as the result of a method call or a new-call. For this reason, we introduce frame kinds:

K € FrmKind ::= call | new frame kinds
We have two judgments for stacks:

I';obs: T  “sevaluates to a T-value”

_ _ . “(I'cotF s:T), and s needs a top frame
F;O'_(SIT)H(F/;OI |_K T/Inp) {Ogtype (FIOJFK T/ inp)” p

In order to get an intuition for the purpose of the two environments I" and I"' in the
second stack judgment, we describe how we will manipulate them in the upcoming
type preservation proof: The environment I” is the global type environment, whose
domain equals the domain of the current heap. I" records the types that object identifiers
were generated with (i.e., their dynamic types). I" and I'” always agree on their value
component, i.e., Iy = I7,. However, they differ on their owner component: Whereas
Lown is always {(world,e)}, I, records those object identifiers that may be used
as owner parameters. I =~ differs for each stack frame. When a method is entered,
I}, for the new stack frame contains world plus the objects that instantiate this,
myowner and the method’s owner parameters. I}, remains fixed during the lifetime
of a stack frame. Keeping track of permitted owner parameters is important, so that
the type preservation proof can exploit the restrictions that the system imposes on the
owners of write-references.

Corresponding to the two stack judgments, there are two judgments for stack frames.
Let a call frame be a frame of the form (&’[¢]ino), where e is a method call, new-call or
constructor call, i.e., e has the form g.m<ii>(¥) or newC<ar,u>.k(v) or e = C.k(¥).
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C;0F%fr:Tinp “frisaframe”

/ “fri 11 frame that
T35 (fr:Ti 5K Ty | TTiSaca ,
oS (fr:Tinp) — (0 in p') {needs atop of type (o' = T in p')”

Well-typed Stacks, [';6-5 s: T and I';6 -5 (s: T) — (I';6' H* T in p):
I

(Stk Push)

;0 (s:T)«— (I'";0' ¥ T in p) e =5fr:T'inp
;o Fsfr:T

(Stk Nil)

iob(e:T)«— (I'";0-%Tinp)

(Stk Call) I'” closed 7 =1,

;o (s:T)— (I'",6 ¥ T in p) I8 FX (fr:T'inp) — (8" F< T" inp)
[0 b (s, fr:T) — (I":6" HX T in p')

Perhaps the most interesting rules are the ones for well-typed stack frames, because
these formalize crucial invariants. To state these invariants, we need the following func-
tions:

acc(eaC<ar,0>) = ar  acc(p) = acc(ty(p)) acc(world) = rdwr
owner(eaC<ar,0>) = o owner(p) = owner(ty(p))
imm = {o|immutable € atts(0)} eatts(T) = atts(T) N {anon, rdonly,wrlocal}
Lemma 14 (Ownerless Objects Have rdwr Access).
(a) If owner(o) = world, then acc(o) = rdwr.
(b) If (I' F C<acc(0),owner(0)> < D<rdwr,v>), then acc(o) = rdwr.

Proof. Here we need our requirement on ty, namely, that it maps to types of the form
C<ar, p> such that p = world implies ar = rdwr. O

Lemma 15 (Immutable Objects are Ownerless). If o € imm, then owner(0) = world.

Proof. Here we need the other requirement on ty, namely, that it maps to types of the
form C<ar, p> such that immutable € atts(C) implies p = world. O

Inside, inside(a), Outside, outside(d), and Owner Scope, scope(0):

I
(Just Inside) (Strictly Inside)

. - A . o . -
R owner{p) € inside(5) outside () N Objld —inside(a)
R S scope(o) = {o,owner(0),world}
0 € inside(0) p € inside(0)

Here are some obvious facts that follow from these definitions.

Lemma 16 (Inside and Outside).

(a) If owner(p) € inside(a), then p € inside(d).
(b) If p € outside(0), then owner(p) € outside(0).
(c) If p € inside(0) — o, then owner(p) € inside(d).
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(d) If owner(p) € outside(d), then p € outside(o) Ua.

Lemma 17 (The Inside of Mutables is Mutable). If o & immU {world}, then inside(o) N
(immU{world}) =0.
Proof. By induction on inside(0) using Lemma 15. O
We define vals(e) as the set of all values that occur within e in value positions. Value
positions are positions outside angle brackets. (Positions inside angle brackets could be
termed access right positions, respectively, owner positions, but we will not use these
terms in this paper.) Technically, vals(e) is defined by induction on the structure of e as
follows:
vals(ey,...,e,) = vals(e;)U---Uvals(e,) vals(v) = {v} vals(v.f) = vals(v)
vals(v.m<ii>(€)) = vals(v,é) vals(newC<ar,b>.k(¢)) = vals(é) vals((C)e) = vals(e)
vals(v.f=e) = vals(v,e) vals(letx=eine') = vals(e,e’) vals(C.k(&)) = vals(é)
Lemma 18 (Value Occurrences).
(@) If (' Fe:Tinv,ar), then vals(e) C dom(Iy, ) U{null}.
(b) vals(e[o]) C {o(x)|x e vals(e)}U{v|v € vals(e) — dom(o)}.
Well-typed Frames, [ ;0 =% fr: T in p:
I

(Frm)
I't¥e:Tinp,acc(p) vals(e)No C{p} I';ot eatts(T)okinp oCimm

I';oF%einp:Tinp

(Frm Imm Cons) dom(Iown) C {p,world}
p€d owner(p) =world anon€ea {rdonly,urlocal}Nea 0

I';oeaokinp

(Frm Rdwr) dom(Igwn) C outside(imm) Uinside(a)
p & o,imm p € outside(imm)Uinside(d) acc(p) = rdwr or wrlocal € ea anon ¢ ea

I';soFeaokinp

(Frm Rdonly) (Mth Frm Body)

p¢ 0 rdonly € ea anon¢ ea I'te:Tinp,ar
I';oeaokin p re@e:Tinp,ar

(New Frm Body) (New Frm Done)

I'te,p:eavoid,(ea—anon)tyinp,ar I'tFp: (T —anon)in p,ar

I'F"" e;p: (ea—anon)tyin p,ar " p:Tinp,ar
| |

Well-typed Call Frames, ;6% (fr: T in p) — (&' ¥ T'in p/):

I

(Call Frm) I';6F% (&lelinp):Tinp  e:(ak p) — (3 F* p)

I,x:eardonly wrlocalT'+ &[x|:Tinp,acc(p) I'HT':ok ea= {anon|p+#p'}
;0% (&lelinp:Tinp) — (@ H< T inp')

(Call Frm Mth) (Call Frm Cons) (Call Frm New) o C &'
e = p/,m<17>(ﬁ) e = Ck(ﬁ) e = newc<ar7w>.k(ﬁ) p/ ¢ p75
e:(oFp)—(aF@p) e:(aF p)— (6= p) e: (61 p)— (& FMew p!)
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E Type Preservation

To state the type preservation theorem, we label state reductions with write effects. Here
is the intuition:

state > state’  “state reduces to state’ writing to fields of &”

Instrumented State Reductions, state — state':

I(RedSet)
ho{f =u,g=w}:s,Eo.f=v]inp > ho{f =v,g=w}:s,&V]inp

All other reductions are labeled with the empty set.
| |

The reflexive, transitive closure of instrumented state reductions is defined as the least
relation state = *state that satisfies the following two rules:

5 5 5 6.5
state > *state state > *state’ state’ s state” = state 2 * state”

Theorem 2 (Type Preservation).
If(6Fhzs:T)andh::s 2 state, then p C outside(imm)Uinside(6) and there exists &'
such that (0’ \- state : T) and (0’ — ) Ndom(h) = 0.

The type preservation proof is lengthy. We postpone it to Section H.

F Immutability in a Closed World

As a corollary of type preservation, we can show that immutable classes are immutable
in a closed world. In Section G, we will lift this result to an open world.

Definition 5 (Jimuva Programs). A Jimuva program is a pair P = (C;e) such that
(- ¢:ok) and (world: et e: T inworld) for some T.

Theorem 3 (Immutability in a Closed World). Let P = (;e) be a Jimuva program,
C be declared in ¢ and immutable € atts(C). Then C is immutable in P.

To prove this theorem we first need to establish some facts about the topology of
well-typed heaps. Because our system allows sharing of read-only objects, we have
to deal with the fact that object states may overlap. This differs from a strict owner-
as-dominator discipline, where two object states only overlap if one of them is fully
included in the other one.

Example 2 (Overlapping Object States). Consider the well-typed heap h = {o{f =
r}, o'{f =r}, r{}}, where:

0,0’ € imm rawty(o) =rawty(o’) =C  fd(C) = {Object<rd,this> [}
ty(r) = Object<rd,o’>

Our definitions of object states and insides yield:

state(h) (o) = {o{f =r}, r{}} inside(0) = {o}
state(h)(o) ={o'{f =r}, r{}} inside(o’) = {0, r}
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Note that the object states of 0 and o’ overlap: state(h) (o) Nstate(h')(o’) = {r{}}. Note
also that the domain of 0’s object state is not contained in o’s inside: r € dom(state(k)(0)) —
inside(0).

Lemma 19 (States of Mutable Objects are Inside Themselves). If (I';+ & : ok) and
o ¢ immU {world}, then dom(state(h)(0)) C inside(0).

Proof. By induction on the definition of state(k).

(1) I';Eh:ok assumption
(2) o ¢ immU{world} assumption
(3) p{..} €state(h)(o) assumption
(4) p €inside(o) goal

We distinguish cases by the three possible reasons for (3). The proof case where this
reason is rule (a) from Definition 2 is trivial. The proof case for rule (b) uses that subtyp-
ing leaves mutable owners fixed, i.e., a subtype of C<ar, 0>, where o € immU {world},
is of the form D<ar,o0>.

Let’s do the proof case for rule (c) in more detail. In this case, the reason for (3) is
the following rule:

g#o q{.f=r.}estate(h)(0o) C<ar,myowner>f € fd(rawty(q)) p{..} € state(h)(r)
p{..} € state(h)(o)
By induction hypothesis, we know that:
(5) g € inside(o)
Moreover, because (I";F £ : ok), we have:
(6) I' - Cy<acc(r),owner(r)> =< C<..,owner(g)>

Because g € inside(0) and g # o, we have:

(7) owner(q) € inside(0)
By Lemma 17, we get:
(8) owner(g) € immU {world}

We now inspect the subtyping rules for possible reasons for judgment (6). Because we
know (8), we find that:

(9) owner(q) = owner(r)

By induction hypothesis, we have:

(10) p € inside(r) C inside(owner(r)) = inside(owner(g))

From (10) and (7), we obtain p € inside(0), by transitivity. O
Lemma 20 (Outside Objects are Inside Rd-Objects). If (I';F & : ok) and p{..} €
state(h)(0), then one of the following statements holds:

(a) p €inside(o)
(b) (3r € dom(state(h)(0)))(acc(r) =rd A owner(r) € imm A p € inside(r))
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Proof. By induction on the definition of state(h).

(1) I';Eh:ok assumption
(2) p{..} €state(h)(o) assumption

In case 0 = world, we have p € inside(world) = inside(0), and we are done. So let’s
assume:

(3) 0 #world assumption
We distinguish cases by the three possible reasons for assumption (2).

Case 1, the reason for (2) is rule (a): In this case p = o € inside(0).
Case 2, the reason for (2) is rule (b):

of..f=q..} €h C<ar,this> f € fd(rawty(0)) p{..} € state(h)(q)
p{..} € state(h)(o)

From (I';+ h : ok) we obtain:
(2.1) I = Cy<acc(g),owner(q)> < C<..,0>

On the other hand, by induction hypothesis we know that p € inside(q) or (3r)(acc(r) =
rd A owner(r) €imm A p € inside(r)). In the latter case, we are done. So, let’s suppose:

(2.2) p €inside(q)

We now distinguish cases by the possible reasons for subtyping judgment (2.1).

Case 2.1, (Sub Rep): In this case, we have owner(g) = o. From this, we obtain
p € inside(q) C inside(owner(g)) = inside(0).

Case 2.2, (Sub World): In this case, we have o = world, in contradiction to as-
sumption (3).

Case 2.3, (Sub Share): In this case, we have acc(g) = rd and owner(g) € imm.
By (2.2), we also have p € inside(q). Moreover, we have ¢{..} € state()(g), by rule (a)
from Definition 2, and then ¢{..} € state(h)(0), by rule (b). Thus, condition (b) holds
and we are done.

Case 3, the reason for (2) is rule (c):

qg#o q{.f=q.}¢cstate(h)(o) C<ar,myowner>f € fd(rawty(q)) p{..} € state(h)(q)
p{..} € state(h)(o)

Because we assume that the underlying class table is legal, we know that ar =myaccess.
From (I';+ h : ok) we obtain:

(3.1) '+ Cy<acc(q'),owner(g')> < C<acc(g),owner(g)>

We apply the induction hypothesis to the second rule premise and obtain:

(3.2) g € inside(0) or (3r € dom(state(h)(0)))(acc(r) = xd A owner(r) €imm A g €
inside(r))

Because g # o, statement (3.2) can only hold if owner(g) # world. Then g & imm,
because immutable objects are owned by world. Applying Lemma 19, we obtain:
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(3.3) dom(state(h)(q’)) C inside(q)
By the last rule premise, we know that p € dom(state(h)(q’)). So we have:
(3.4) p € dom(state(h)(q')) C inside(q’)

Suppose that the reason for subtyping judgment (3.1) is (Sub Share). Then we have
acc(q') = rd and owner(q') € imm. Furthermore, we have p € inside(q’), by (3.4), and
q' € dom(state(h)(0)), by rules (a) and (c) from Definition 2. Thus, we have established
condition (b). The reason for subtyping judgment (3.1) cannot be (Sub World), because
owner(p) # world as we have already established. The remaining case is where the
reason for subtyping judgment (3.1) is (Sub Rep). In this case, we have:

(3.5) acc(q’) = acc(q) and owner(q') = owner(q)

We get:

(3.6) p €inside(q’) C inside(owner(q')) = inside(owner(q))

Now, we distinguish cases by the two possible disjuncts in statement (3.2).

Case 3.1, g € inside(0): Because g # o, we know owner(g) € inside(o). From p €
inside(owner(q)) and owner(g) € inside(0), we obtain p € inside(o), by transitivity.

Case 3.2, r € dom(state(h)(0)) A acc(r) =rd A owner(r) € imm A g € inside(r):

Case 3.2.1, owner(g) € inside(r): From p € inside(owner(g)) and owner(g) €
inside(r), we obtain p € inside(r), by transitivity.

Case 3.2.2, g = r: In this case, we have acc(q') = acc(q) = acc(r) = rd and
owner(q') = owner(g) = owner(r) € imm and p € inside(q’). Moreover, we obtain
g € dom(state(h)(0)), by rules (a) and (c) from Definition 2. Thus, we have estab-
lished condition (b).

t

Lemma 21 (States of Immutabe Objects are Inside the Immutable World). If (I';+
h:ok) and g{..} € state(h)(imm), then g € inside(imm).

Proof. This is a direct corollary of Lemma 20. (|

Lemma 22 (Object State Invariance Under New Allocation).

(@) If h C I, then state(h)(o) C state(h')(0).

(b) If h= (I',0bj) and obj & state(h)(o), then state(h)(o) = state(h')(0).

(c) If p{f =} € state(h)(0), then p=o0or h= (W ,q{..g = p..}) for some I, g,q.

(d) If T';- h: ok, o € dom(h) and p ¢ dom(h), then state(h, p{f = null})(o) =
state(h) (o).

Proof. Part (a) is shown by induction on the definition of state(/). One inclusion of
part (b) is a consequence of part (a), the other inclusion is shown by induction on the
definition of state(h). Part (c) is shown by induction on the definition of state(k). For
part (d), note that p ¢ dom(h) and and h = (h',q{..g = p..}) is impossible in a well-
typed heap. Therefore p{f = null} ¢ state(h)(o), by part (c). Then state(h, p{f =
null})(o) = state(h)(o) is a consequence of part (b). O
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Lemma 23 (No Writes to Fully Constructed Immutable Objects). If (0 F h; ::s; :
T), 0 € (imm—a)Ndom(h;) and hy :: s1 — hy :: 52, then state(h;) (o) = state(hz)(0).

Proof. Suppose (0F hy ::s1:T), 0 € (imm—a)Ndom(hy) and hy =2 sy — hy 2 sp. If
the reason for A :: 51 — hy :: 52 is (Red New), then state(h;)(p) = state(hz)(p) holds
by Lemma 22(d). If the reason for k4 :: s1 — hy :: s> is any other rule, except (Set), then
hy = hy and state(h;)(0) = state(h;)(0) trivially holds. So the only interesting case is
the following:

Case 1, (Red Set):

hog{f=u,g=w}:s,&Eq.f=v]inp 4 hog{f =v,§ =w} :s5,EV]inp

(LD hi =h,q{f =u,g=Ww}
(1.2) 51 =s,&q.f=v]inp
(1.3) hy=h,q{f =v,g=w}
(1.4) s, =5,&v]inp

If we can show g{f = u,g§ = w} ¢ state(h;)(0) and g{f = v,g§ = W} & state(hz)(0)
then we can apply Lemma 22 to get state(h;)(0) = state(h)(0) = state(hz)(0).

(1.5) g{f =u,g =w} & state(h)(o) goal
(16) qlf = v,g = w} ¢ state(hn)(0) oal

It turns out that the proof of goal (1.5) does not depend on the identity of u. So the
proof of goal (1.6) is essentially identical to the proof of goal (1.5) and we only prove
goal (1.5):

(1.7 ¢{f =u,§ =w} € state(h;)(0) assumption towards contradiction
By type preservation (Theorem 2), we know:

(1.8) g € outside(imm) Uinside(d)

By Lemma 21, we have:

(1.9) g € inside(imm)

From (1.8) and (1.9), we get:

(1.10) g € inside(o’) for some o' € &

By assumption, we have o ¢ 6. Therefore:

(1.11) 0o # 0’

Because 0,0’ € imm, we know that neither o € inside(o’) nor o’ € inside(0). It follows
that inside(o) Ninside(o’) = 0. Then g ¢ inside(0), because we know that g € inside(o’).
Therefore we have:

(1.12) g € dom(state(h)(0)) —inside(0)
By Lemma 20, there exists an r such that:

(1.13) r € dom(state(h)(0)) A acc(r) =rd A owner(r) € imm A g € inside(r)
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Because A :: 51 writes to r’s inside and acc(r) = rd, we know that r must still be under
construction.” On the other hand, we know that o’s constructor has terminated, because
o records the immutable objects under construction and o ¢ 0. Because constructor calls
are properly nested, we know that r did not exist yet when o’s constructor terminated.
Therefore, r € dom(state(h;)(0)) is impossible, because o’s state did not change after
termination of its constructor, by o’s immutability. But by (1.13), we also have r €
dom(state(h;)(0)). A contradiction.

O

Lemma 24 (No Writes to Fully Constructed Immutable Objects, Transitive Ver-
sion). If (01 F hy 251 :T), o € (imm—2a;)Ndom(hy) and hy :: 51 —* hy :: s, then
state(h)(p) = state(h2)(p), (02 & hy :: 52 : T) for some 0, such that o & o.

Proof. Follows from Lemma 23 and type preservation (Theorem 2), by induction on
the length of the state reduction sequence. O

Proof of Theorem 3. Let P = (C;e) be a Jimuva program, C be declared in ¢ and
immutable € atts(C). Then C is immutable in P.

Proof. Let P = (C;¢p) be a Jimuva program, C declared in ¢ and immutable € atts(C).
Then (F ¢: ok) and (world: eF e: T inworld) for some 7. Then (world:er 0 :
epinworld : T), by (State).

(1) 0::eginworld —* hy sy —* hyiiso assumption
(2) hy :: sy and hy :: sy are visible states for o assumption
(3) rawty(o) <:C assumption

By type preservation, there exists 0; such that:
@ oyFhys T

Because rawty(o) <: C, we have o € imm. Because state(h;)(s;) is a visible state for
o0, we have o € 0. Therefore, state(h)(o) = state(hy)(0), by Lemma 24. O

G Immutability in an Open World
G.1 Core Java

Core Java is obtained from Core Jimuva by erasing all non-Java-annotations, namely,
owner and access right parameters, as well as expression and class attributes:

Core Java — a Java-like Core Language:

I
c,d = fmclassCextD{F KM}  class declaration (where C # Object)

F =Cf field

K == C.k(fyx){e} constructor (scope of X is e)

M = fmtym(fyx){e} method (scope of X is e)

ty € ValTy = C|void value types

u,v,w € Val ::= null |o|x values

ec Exp:= expressions and statements
... | vm(e) | newC.k(€) | ... other forms like in Jimuva

7 Unfortunately, from this point on the proof gets a bit hand-wavy. A cleaner proof would keep
track of additional information in the typing judgments for well-typed states.
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The operational semantics of Core Java is almost identical to Core Jimuva’s oper-
ational semantics, except that it does not track owners and access rights:

State Reductions, state — iy, ; state’:

I

(Red Call) s=ys",&lo.m(¥)]inp rawty(o) =C mbody(C,m) = (¥)(e)
h:s — h:s,e[this,X—o,V]ino

(Red New) s=¢,&newC.k(¥)]inp ogdom(h) rawty(o)=C fd(C)=0f
his — ho{f =null}:s Ck(V);0ino

(Red Cons) s=s',&[C.k(¥)]inp cbody(C.k)=(¥)(e) rawty(p)=D
h:s — h:s,e[this,X—o,V]inp

All other reductions are like in Jimuva.
L 1

The type erasure mapping |- | from Core Jimuva to Core Java is Core Jimuva to Core
Java erases ownership information, access rights and expression and class attributes
from Jimuva-programs. It is defined by induction on the syntax in the obvious way. We
state the following lemma without proof.

Lemma 25 (Type Erasure Preserves and Reflects Reductions). Suppose ¢ is a Jimuva
class table and state a Jimuva state such that (& ¢ : ok) and (0 & state : ok). Then
(state —; state') iff (|state| —aya || |state’|).

The “preserves” part of this lemma holds, because in well-typed Jimuva class tables the
variables myaccess and myowner and the owner parameters for methods never occur
outside angle brackets within method and constructor bodies. Therefore, Jimuva’s op-
erational semantics never propagates the actual access rights and owners that initialize
these parameters into the “Java-part” of the language. The “reflects” part of Lemma 25
holds, because well-typed Jimuva programs do not get stuck.

Next we present Core Java’s type system. Here, I” ranges over functions from Var U
Objld — {world} to ValTy. The this-binding in typing judgment (I" Fjaya € : ty in v)
could, alternatively, be replaced by the class C of this: (I" Fjaya € : ty in C). The class
of this is needed, because we support protected fields, unlike some other Java-like
language, e.g. FJ, where fields are public. We choose to keep track of the this-binding
instead of only its class, because this relates more tightly to the Jimuva-type system.

I'tv:ok = (v&dom(I") or v = world)

Good Class Declarations, 5, ¢ : ok:

I
(Cls Dcl) Disnot final (Fld Dcl)
this:CHF,K,M:okinC CextD = f &€ fd(D)

FfmclassCextD{F K M} I'FEf:okinC

(Cons Dcl) (MthDcl) T',%: fye: 1y inthis

I' x:fyFe:voidinthis  CextD = I+ mtype(m,C) =< mtype(m,D)
'+ C.k(fyx){e}:okinC T'tfmty m(fyx){e} : okinC

L
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Well-typed Expressions, I" i,,, ¢ : T invy:
I

(Var) (Obj) (Sub)
I'(x)=C vedom(I') v € dom(IN) Cke:tyiny T'ky<:ty
TC'kx:Cinv T'to:T(o)inv Fte:pinv
(Null) (Let) (Cast) C declared
I'Fv:ok I'kFe:tyinv I''x:Ckeé':tyiny I'Fe:Dinvy
Ibtnull:zyiny 't letx=eine :ty'inv I'+(C)e:Cinv
(Get) (Call)
CfefdlD) I'tu,v:D,Dinv  mtype(m,D)=fy—ty [tué:D,fyinv
'tuf:Cinv I'tum(e):tyinv
(Set) (New)
Cfefd(D) I'tu,ve:D,D,Cinv ctype(C.k)=fy—void I'Feé:fyinv
I'tu.f=e:Cinv I'FneuC.k(e):Cinv
(Cons)

ctype(C.k) =fy—void I'tkeéev:fy,Cinv
'k Ck(e):voidinv

Without proof we state that type erasure maps well-typed Jimuva class tables to
well-typed Java class tables. This holds, because the Java typing rules have been ob-
tained from Jimuva’s rules by stripping off all Jimuva-related restrictions.

Lemma 26 (Type Erasure Preserves Typings). If ¢ is a Jimuva class table and (- ¢ :
ok), then (Fjava || : Ok).

G.2 Embedding Java into Jimuva

We sketch an embedding e that takes a Jimuva class table ¢ and a Java class table d
(which refers to |¢]) and returns a Jimuva class table ez(d) such that |ez(d)| = d. This
embedding inserts into d the annotations rdwr and wor1d wherever access or ownership
parameters are required. Our Jimuva type system is designed so that (¢,ez(d);ez(e)) is
a well-typed Jimuva-program, provided (|¢|,d;e) is a Java-program and no class or
method from d extends or overrides a Jimuva-annotated class or method from d.

We omit the full definition of the embedding. Here are a few selected clauses:

For class declarations:
ec(fimclassCext D{F K M}) = fmclassCext D {es(F) ez(K) ez(M)}
For method declarations:
ec(fmtym(iyX){e}) = fin<>ex(ty) m(ez(iy) ¥){ecr(e)}
For types:
es(C) £ C<rdwr,world>
For expressions:
eer(x.m(e)) 2 x.m<world,...,world>(es(2)) ifI'(x)ec
where mtype(C,m) = fm<y>fy—T and |y| = |world,...,world|
ecr(x.m(€)) = x.m<>(ezr(2)) ifI"'(x)&c¢
ez (newC.k(e)) = newC<rdwr,world>.k(ez (€))
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We state the following lemma without proof:

Lemma 27 (Java-Programs are Jimuva-Well-Typed). Suppose ¢ is Jimuva class
table and (F ¢ : ok). If (|¢|,d;e) is a Java-program and d validly subclasses ¢, then

(¢,ez(d);ez(e)) is a Jimuva-program.

It is obvious that Lemma 27 needs the restriction that d validly subclasses &. For
instance, the embedding maps a (possibly mutable) Java-class in d that extends an
immutable class from ¢ to a class without immutable-annotation, in violation to
Jimuva’s rule that subclasses of immutable classes must be immutable. For Lemma 27
to hold, it is important that Jimuva’s typing rules do not restrict Java-clients of Jimuva-
classes. This is the technical reason, why we need the typing rule (Sub World), which
permits to ignore access right restrictions in context world, and the requirement that
parameter and return types of methods do not mention this.

G.3 Immutability in an Open World

Proof of Theorem 1 (Soundness). If (- ¢ : ok), then ¢ is correct for immutability.

Proof. Suppose (- C: ok) and C is declared in ¢. Suppose Java class table d validly sub-
classes ¢ and (|¢[,d;e) is a Java-program. Then (¢,ez(d);ez(e)) is a Jimuva-program,
by Lemma 27. Then C is immutable in (¢,ez(d);ez(e)), by Theorem 3. O

H The Type Preservation Proof

Lemma 28 (Construction Set Grows with Stack).
(@) IfT;0FH (e:Tinp) — (65 T'inp'), then3 C &
(b) If;0-% (s:T) — (I'';0 < T in p), then Cd'.

Proof. By inspection of the last rule. O

Lemma 29 (Weakening Construction Set for Heap). If (I';o+ h : ok) and ' C o,
then (I';0' + h : ok).

Lemma 30 (Heap Extension). Let o & dom(I") and T = rdonly wrlocalty(o). Then
the following statements hold:
(@) If (T;0+ h: ok) and fd(rawty(0)) = &y f,
then (I',0: T;0,0+ h,o{ f =null} : ok).
(b) If (T;0-%fr:Uinp), then (I'yo:T;0 =% fr:Uin p).
©) IfT:6 -5 (fr:Uin p) — (&' < U’ in p'),
thenT,0:T;6+5 (fr:Uin p) — (&' F< U’ in p').
d) fr0b (s:U) — (I';0' =5 U in p),
then,0:T;oF (s:U) «— (I",0:T;0' =¥ U’ in p).
(e) If(I';obs:U), then (I'yo:T;oks:U).

Let us say that e is a call whenever e has the form 0.m<v>(i1) or C.k(it) or new C<ar,w>.k(i).

Lemma 31 (Return Lemma). Suppose I" and I'' are closed, I, =I_"

val Erdonly wrlocalty
and e is a call.
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IfT:6H5 (Ele]inp) : T in p) — (3 ¥ T'in p')
and (I';0' X (vinp') : T in p'), then (I';0H% (&[v]inp) : T in p).

Proof.

(1) I', I’ are closed assumption
(2) o =1, C rdonly wrlocalty assumption
(3) eisacall assumption
@) ;0% ((&lelinp) : Tinp)«— (0'H< T'inp') assumption
(5) I';6' < (vinp'): T'in p/ assumption

By inverting judgment (4), we obtain:

6) I';o=* (Elelinp):Tinp

(7) e:(akp)— (@ p)

(8) ea={anon|p#p'}

(9) U £ ea rdonly wrlocalT’ abbreviation
(10) I'yx:UF*&[x]: T in p,acc(p)

(11) T'+=T': ok

By further inverting judgment (6), we obtain:

(12) vals(&le])na C {p}
(13) I';0F eatts(T) ok in p
(14) 6 Cimm

(15) deanon(T,p ¢ o)=T

By inverting judgment (5), we obtain:

(16) I'"F*v: T in p’,acc(p’)
(17) vals(v)na' C {p'}

Case 1,v=null: Then (I'Fv:U in p,acc(p)), by (Null). We apply substitutivity
(Lemma 9) to this judgment and judgment (10) to obtain:

(1.1) '+ &[] : T in p,acc(p)
From (12) and v = null, we get:
(1.2) vals(&v))no C {p}

We obtain (I';0 H* (&[v]inp) : T in p,acc(p)) by applying (Frm) to (1.1), (1.2), (13)
and (14).

Case 2, v # null: We abbreviate:
(2.1) U' £ U — anon abbreviation
By inverting judgment (16), we obtain:
2 I'-r'(v) U’
By Lemma 6 and I, =TI/

val>» WE obtain:
23) I'EIL(v)=U’
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By (Obj) and (Sub), we obtain:
(2.4) T'Fv:deanon(anonlU’,v = p) in p,acc(p)

We want to prove (I';0 -5 (&[v]inp) : T in p). By (Frm), we need to show the follow-
ing:

(2.5) C'EX &[] : T in p,acc(p) goal
(2.6) vals(&[v))no C {p} goal
(2.7) I';o - eatts(T) ok in p goal
(2.8) 6 Cimm goal

Goals (2.7) and (2.8) are exactly (13) and (14).
Proof of goal (2.5):

Case 2.1, p = p’ and anon ¢ atts(7’): Then anon ¢ atts(U), by definition of U,
see (9), (8). Then, I' - deanon(anonU’,v = p) = deanon(anon (U — anon),v = p) =
deanon(anonU,v = p) = U. By applying substitutivity (Lemma 9) to judgments (2.4)
and (10), we obtain (I' - &[v] : T in p,acc(p)).

Case 2.2, p = p’ and anon € atts(T”): Because p = p/, the reason for judgment (16)
cannot be (New Frm Done). Therefore (I' v : T’ in p’,acc(p’)). Because anon €
atts(7’), the judgment (I'" v : T" in p’,acc(p’)) is only derivable if v # p’. So we
have v # p’. We also have v # p, because p = p’. Then I I deanon(anonlU’,v =
p) = anonlU’ = anon (U — anon) < U. By applying substitutivity (Lemma 9) to judg-
ments (2.4) and (10), we obtain (I' =X &[v] : T in p,acc(p)).

Case 2.3, p # p’: Applying anonymous substitutivity (Lemma 12) to judgments (2.4)
and (10) results in:

(2.3.1) ' =X &[v] : deanon(T,v = p) in p,acc(p)

We are done, if we can show the following:

(2.3.2) I'+deanon(T,v=p) =T goal
By (15), it suffices to show the following:

(2.3.3) IT' Fdeanon(T,v = p) < deanon(T,p & ) goal

It suffices to show the following:

234) v=p=pgo goal
There we go:
235 v=p assumption

Suppose towards a contradiction that p € 6. By inspecting the last rule for judgment (7),
we obtain ¢ C ¢'. Thus, p € ¢'. We also have p = v € vals(v). By (17), we obtain p = p/.
But that contradicts assumption p # p'.
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Proof of goal (2.6): By (12), we already know that vals(&) N C {p}. Therefore,
it suffices to show ({v} —vals(&))nao C {p}.

(2.9) v¢vals(&) assumption
2.10) v=p or v¢€ao goal

By (17), we know that:
Q1) v=porvegd
We now distinguish cases by the last rule for judgment (7).

Case 2.4, (Call Frm New): In case v = p/, we obtain v = p’ € o by premise of (Call
Frm New). In case v ¢ &', we obtain v & o because & C o' by premise of (Call Frm
New).

Case 2.5, (Call Frm Cons): In this case, p = p’ and 6 = &'. Therefore, our goal (2.10)
is identical to fact (2.11).

Case 2.6, (Call Frm Mth): In this case, 0 = ¢’ and p’ € vals(e). If v & 9, we are
done. So suppose v € 6. Then v = p/, by (2.11). Because p’ € vals(e), we get p’ = p, by
(12). We have established that v = p’ = p. O

We now present some corollaries of the substitutivity lemmas from Section C. They
customize these earlier lemmas to the form that we need in the type preservation proof
to deal with method, new- and constructor calls.

Lemma 32 (Customized Owner Substitutivity). If I" is closed, (I' -6 : o), |X| = |0],
(I'x:e,5:0F1fy:0k), xNZ=0and (I',X:0,5:07:0y 7), then (I',y:,7:
fy[x—ol - 7 [x—a]).

Proof.

(1) I is closed assumption
2)I'ko:e assumption
3) |x| =9 assumption
4) I''x:e,y:0Ffy:ok assumption
5) I''x:0,5:0,7:y ¢ assumption
(6) 0= (x—0) abbreviation

By weakening judgment (2), we obtain (I",y: e - 6 : ). By applying Lemma 10 to this
judgment and judgment (4), we obtain (I",y: @ - fy[c] : ok). Then (I",y: e,Z: fy[C] ).
Then (I',7: o,Z: fy[o] I 0 : ok), by weakening judgment (2). By applying Lemma 10
to this judgment and judgment (5), we obtain (I",y: ®,Z: fy[c] - _#[0o]). O

Lemma 33 (Customized Value Substitutivity). [f dom(Iow,) Uran(I,,) C Objld, (I'+
v:Uino,ar), |¥| = |9, (T~ U : ok) and ([",%: anonU e : T in o,ar), then (I I
e[x—7v] : deanon(T [¥—7V],0 € V) in 0,ar).

Proof. By induction on |7|. The base case for |v| = 0 is trivial. So let us do the inductive
case.

() v=W¥),x=(x,¥)and U = (U,U’) assumption
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2) dom(Fomin) Uran(I;,) C Objld assumption

@) I'+v:Uino,ar assumption
4) |z =19| assumption
(5) 'FU :ok assumption
(6) I',x:anonU te:Tino,ar assumption

By weakening, we obtain ([",x : anonU ¥ : U’) and (I",x : anonU I U’ : ok). By
induction hypothesis, (I',x : anonU I+ e[¥'«V'] : deanon(T [¥—V'],0 € V') in 0,ar). By
applying Lemma 9 to this judgment and (I" v : U in 0,ar), we obtain (I" - e[x—7] :
deanon(T [x—¥],0 € V) in 0,ar). O

Lemma 34 (Customized Substitutivity for Calls). If I is closed, o = (7,this,x—a, p,V),
('t0:e), ('t p,v:(U,V)[y<a]in p,ar), (I',j:etU,V:0k)and ([',y: e this:
e, this:U,x:anonV Fe: T inthis,ar), then (I’ e[o]: deanon(T[o],p € ) in p,ar).

Proof.

(1) I is closed assumption
(2) 0 = (y,this,x—a,p,V) assumption
B)I'kFo:e assumption
@) I'kp,v:(U,V)[y<0]in p,ar assumption
BS) I',y:eU,V:o0k assumption
(6) I',7:e,this: e, this:ty,¥:anonV -e: T inthis,ar assumption

We apply Lemma 32 to judgments (3), (5) and (6), obtaining:
(7) T',this: e, this: U[j«d|,%: anonV [j+0| - e[yj«a] : T[y<0] in p,ar
Next we apply Lemma 9 to (I' - p : ty[j«—4] in p,ar) and (7), obtaining:
(8) I',x:anonV[y«a|t e[y, this«a, p]: T[y,this«a, p]in p,ar
Finally we apply Lemma 33 to (I" - v : V[j«0] in ar, p) and (8), obtaining:
9) T' +-e[o]:deanon(T[o],p € V) in p,ar
U

Proof of Theorem 2 (Type Preservation). If (6Fh:s:T)andh:: s L, state, then
P C outside(imm) Uinside(0) and there exists & such that (0' & state : T) and (6’ —6) N
dom(h) = 0.

Proof.
(D 6|—h::_s:T assumption
2) his L state assumption

By inverting (1), we obtain a I'" such that:

B) I';oF h:ok

@ I'sobs: T

(5) 0C dom(R/aI)

(6) I, =rdonly wrlocalty|dom(Iyal)

We distinguish cases by the possible reasons for (2).
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Case 1, (Red Rtr):

e = q.m<i>(V) or e = newC<ar,u>.k(v) or e = C.k(V)
h:s' (&le]ino),(vinp) — h: s’ &v]ino

(1.1) s=+,(&Eelino), (vinp)

(1.2) state’ =h::s',&Ev]ino

By inverting judgment (4), we obtain the following:
(1.3) I'";0 - (vinp) : T"inp

(1.4) T';0' = (s, (Ele]ino) : T) «— (I'";0 =% T' in p)
By inverting judgment (1.4), we obtain the following:
(1.5) I;0" (s : T) — ("6 H< T in o)

(1.6) T";0 ¥ ((&[e]ino) : T" ino) — (6T in p)
(1.7) I'"isclosed and I, = I,

By inverting (1.5), we obtain that I'” is closed and I}, =
Lemma 31 to (1.6) and (1.3) to obtain:
(1.8) I'";0' F¥ (&[v]ino) : T ino

From (1.5) and (1.8), we obtain (I";0' F 5", (&[v]ino) : T), by (Stk Push). Using (State),
we get (0’ - state’ : T). From judgment (1.4) we obtain o' C 9, by Lemma 28. Therefore,
(0’ —a)Ndom(h) = @Ndom(h) = 0, as desired.

Case 2, (Red Get):

I,). We can therefore apply

h=H,0{.f=v.}
h:s' Elo.flinp — h:s Ev]inp

2.1) s=5',&lo.f]inp
(2.2) state' =h:: s, E]inp

By inverting judgment (4), we obtain the following:
Q23) 0 (s":T)— (I'";6 F* T'in p)

2.4) I'';0-% (Elo.f]linp) : Tinp

By inverting judgment (2.4), we obtain:

2.5) I'"=%&o.f]: T in p,acc(p)
(2.6) vals(&o.f])No C {p}

(2.7) T'";0+ eatts(T’) ok in p
2.8) 6 Cimm

(2.9) deanon(T',p&o)=T'

By inverting judgment (3), we obtain:
(2.10) v o
From (2.6) and v ¢ 0, we obtain:

(2.11) vals(&v])Na C {p}
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If we can show that (I'";0 X &[v] : T in p,acc(p)), then we can apply (Frm) to (2.11),
(2.7) and (2.8) to obtain (I'" F* (&[v]inp) : T' in p), and then (Stk Push) and (State) to
obtain (0 I state’ : T). So we need to show the following statement:

(2.12) I'" =% &) : T in p,acc(p) goal
By Lemma 13, we obtain a type U such that:

(2.13) I, x: U F* &x]: T in p,acc(p)
(2.14) I+ o.f : U in p,acc(p)
(2.15) The last rule of (2.14)’s type derivation is (Get).

We now consider the last rule of (2.14)’s type derivation:

tyf €fd(C,) o =self(o,ary,v,)
I'"to,p:ea,Co<ary,ve> Co<acc(p),wp> in p,acc(p)

I+ o.f : anon rdonly wrlocalty[o]in p,acc(p)
(2.16) U = anon rdonly wrlocaly|o]
By inverting (I'' - 0 : ea, C,<ar,,v,>), we obtain:

(2.17) I''(0) = ed,,C <ar!,,v.,>
(2.18) I''+Cl<ar,,v,> X Cp<ary,vy>

We define:
A
(2.19) o’ = self(o0,ar,,v.,)

By inverting (3), we obtain (I" - v : ty[o’] in world). Because I, = I/, we can replace
I' by I'’ (Lemma 6) to obtain:
(2.20) I'"+v: 1y[o’] in world

By (6), I, (0) is of the form rdonly wrlocalty' for all o in dom(I7,,) and some zy'.
Using this fact, we obtain:

(2.21) I'"+v: rdonly wrlocalry[o’] in p,acc(p)

By (FId Dcl), we know that ty is legal. We apply Lemma 3(e) to obtain:
(2.22) I''+ rdonly wrlocalfy[o'] < rdonly wrlocaliy[o] = U —anon
We apply anonymous substitutivity (Lemma 12) to (2.21)/(2.22) and (2.13):
(2.23) I'" % &[v] : deanon(T’,v = p) in p,acc(p)

Using (2.10) and (2.9) we obtain:

(2.24) I'"+deanon(T',v = p) < deanon(T',p &€ o) =T’

Then proof goal (2.12) holds by (Sub).
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Case 3, (Red Set):

W,o{f=u,g=w}us Eo.f=v]inp > I o{f =v,g=w}us,&V]inp

(B.1) h=H,0{f =ug=w}

(3.2) s=+',&o.f=v]inp

(3.3) state' =h,o{f =v,g=w} 5, Ep]inp

We need to show three things: firstly, that the heap component of state’ is ok, secondly,

that the stack component of state’ has type T and, thirdly, that the write effect o is in
outside(imm) Uinside(o):

B4 I'soko{f =v,g=w}:ok goal
3.5) I';oF (5,&v]inp): T goal
(3.6) o € outside(imm) Uinside(0) goal

First, we derive some facts that are useful for several of these proof goals: By inverting
judgment (4), we obtain:

BN :T)—T0HT inp)

(3.8) IT';0 - (Eo.f=v]inp):T'inp

By inverting judgment (3.8), we obtain:

(3.9) I'"H*&lo.f=v] : T" in p,acc(p)

(3.10) vals(&o.f=v])Na C {p}

(3.11) I'";o+ eatts(T’) ok in p

(3.12) 0 Cimm

(3.13) deanon(T',p¢o)=T'

Note that rdonly ¢ eatts(7”) because if rdonly were in eatts(7”) then & [o. f=v] would
not contain a subexpression o. f=v that writes to the heap.

(3.14) rdonly ¢ eatts(T’)
By applying Lemma 13 to (3.9), we obtain a type U such that:

(3.15) I'',x: U F* &x]: T"in p,acc(p)
(3.16) I'"+o.f=v: U in p,acc(p)
(3.17) The last rule of (3.16)’s type derivation is (Set).

We spell out the last rule of (3.16)’s type derivation:

tyfefd(Cy) T'tvy:e
ea = ({xaswrlocal|({x},0,ar,,v,) wrlocin p}U{anon},ea,) ar, wrsafe in acc(p)
I'"Fo,p,v:ea,Co<ary,vy>,Co<acc(p),wp>, ea, ty[o] in p,acc(p) o =self(o,ar,,v,)

I'"Fo.f=v:eaty|o]in p,acc(p)

3.18) U = eaty|o]
By inverting (I'' v, : ®). Therefore:
(3.19) v, € dom(I},,)
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Let C), C;, be such that:

(3.20) I'"(0) = rdonly wrlocalC,<acc(p),owner(0)>
(3.21) I'/(p) = rdonly wrlocalC,<acc(p),owner(p)>

By inverting (I’ - 0, p : ea, Co<ar,,v,>,Cp<acc(p),wp> in p,ary), we obtain:
(3.22) I'" - Cl<acc(0),owner(0)> < Cp<ary,vy>
(3.23) I'" = Cj<acc(p),owner(p)> =< Cyp<acc(p), wp>
Proof of goal (3.4): By inverting judgment (3), we obtain:
(3.24) (u,w)N6="0
(3:25) fd(C) =1y f.1yg
(3.26) o' = self(0,acc(p),owner(0))
(3.27) T' Fu,w:ty[o'],iy[c’] in world
It suffices to show the following:
(3.28) vdao subgoal for (3.4)
(3.29) I'Fv:ty[o'] inworld subgoal for (3.4)

Proof of subgoal (3.28): Suppose towards a contradiction that v € 6. Then v = p,
by (3.10). The reason for (3.11) cannot be (Frm Imm Cons), because if anon were in
eatts(T’) then &[o. f=v] would not contain a subexpression o.f=v (which is identical to
o.f=p) that writes the this-binding p to the heap. Then p ¢ 6. But then v=p & 9, in
contradiction to our assumption v € 0.

Proof of subgoal (3.29): We know that (I'" - v : ry[o] in p,acc(p)), by premise of
the last rule of (I'' 0. f=v : eaty[o] in p,acc(p))’s type derivation, as displayed above.
By Lemma 8, we obtain (I'" v : ty[o] in world). It therefore suffices to show the
following:

(3.30) I'' +-1y[o] 2 1y[o] subgoal towards (3.29)
By Lemma 3(e), it suffices to show the following:
(3.31) I''+Cl<ar,,v,> <X Cp<acc(o),owner(0)> subgoal towards (3.30)

But this holds because we can swap the class parameters in subtyping judgment (3.22),
by Lemma 3(d).

Proof of goal (3.5): By the last rule of (I’ - 0.f=v : eaty[o] in p,acc(p))’s type
derivation, as displayed above, we obtain:
(3.32) I''+v:eay,ty[o] in p,acc(p)
(3.33) anon € ea = anon € ea,

/

Because I, = rdonly wrlocalty|dom(I], ), we obtain:

(3.34) I'"+v: rdonly wrlocal ea,ty[o]in p,acc(p)
Using (3.33), we obtain:
(3.35) I'" - rdonly wrlocal ea,ty[o] < eaty[c] =U

We apply substitutivity (Lemma 9) to judgments (3.34)/(3.35) and (3.15) to obtain
(I'" =% &[v] : T" in p,acc(p)). We apply (Frm) to this judgment and (3.9), (3.10) and
(3.11) to obtain:

(3.36) I';oF* (&v]inp): T inp

We then apply (Stk Push) to (3.36) and (3.7) to obtain our proof goal (3.5).
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Proof of goal (3.6): We distinguish cases by the possible reasons for (3.11). We
have already established that this is not (Frm Rdonly).

Case 3.1, (Frm Rdwr), acc(p) = rdwr: Because (ar, wrsafe in acc(p)), we have
ar, = rdwr. Then the reason for subtyping judgment (3.22) cannot be (Sub Share) and,
thus, v, = owner (o). Then, owner(0) = v, € dom(I,,,) C inside(0) Uoutside(imm), by
premise of (Frm Rdwr). Then o € inside(d) U outside(imm) Uimm. If o € inside(d) U
outside(imm), we are done. We will show that o € imm is impossible: To this end,
we assume, towards a contradiction, that o € imm. Then immutable € atts(C,). Then
immutable € atts(C, ), because superclasses (except Object) of immutable classes are
immutable. Then immutable € atts(C},), because subclasses of immutable classes are
immutable. Then p € imm, by definition of imm. But that contradicts p ¢ imm, which
is a premise of (Frm Rdwr).

Case 3.2, (Frm Rdwr), wrlocal € eatts(7T'): Because T’ is &[o.f=v]’s type, the
subexpression o.f=v must also be wrlocal. That is, wrlocal € eatts(U) = ea. By
inspecting the last rule of (I’ - o.f=v : U in p,acc(p))’s derivation, see above, we
get ({wrlocal},o,ar,,v,) wrloc in p. By definition, this means that either o = p or
(ary,vo) = (rdwr, p). If 0 = p, we get 0 = p € inside(d) U outside(imm), by premise
of (Frm Rdwr). So suppose that (ar,,v,) = (rdwr, p). Then the reason for subtyp-
ing judgment (3.22) cannot be (Sub Share) and, thus, owner(o) = v,. So we have
owner(0) = v, = p. By premise of (Frm Rdwr), we have p € inside(d) Uoutside(imm).
So owner(o0) = p € inside(d) Uoutside(imm) Then o € inside(d) Uoutside(imm)Uimm.
If 0 € inside(d) Uoutside(imm), we are done. So suppose o € imm. Then immutable €
atts(C)). Then immutable € atts(C,), because superclasses (except Object) of im-
mutable classes are immutable. Then immutable € atts(C;,), because subclasses of
immutable classes are immutable. Then p € imm, by definition of imm. But that con-
tradicts p ¢ imm, which is a premise of (Frm Rdwr).

Case 3.3, (Frm Imm Cons): In this case, wrlocal € eatts(7’). Because T’ is
&lo.f=v]’s type, the subexpression o.f=v must also be wrlocal. That is, wrlocal €
eatts(U) = ea. By inspecting the last rule of (I'' - o.f=v: U in p,acc(p))’s derivation,
see above, we get ({wrlocal},o,ar,,v,) wrloc in p. By definition, this means that ei-
ther o = p or (ar,,v,) = (rdwr, p). If o = p, we get 0 = p € 3, by premise of (Frm Imm
Cons). So suppose that (ar,,v,) = (rdwr, p). Then the reason for subtyping judgment
(3.22) cannot be (Sub Share) and, thus, owner(0) = v,. So we have owner(o) = v, = p.
But then o € inside(0), because p € 6 by premise of (Frm Imm Cons).

Case 4, (Red Call):

s=s",Elo.m<i>(V)]inp ty(o) =C<ar),v.,> mbody(C,m)=<y>(x)(e)

h:s — h:selself(o,ar] V), i, x—7]ino
4.1 o & self(o,ar,,V)), y—ii, x—v abbreviation
(4.2) state =h::s,e[0’]ino
By inverting judgment (4), we obtain:

@43) 0 - (s":T)— (I';0-T"in p)
4.4) ;0% (Elo.m<i>(V)]inp) :T'inp
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By inverting judgment (4.4), we obtain:

4.5) T =% &lo.m<a>(v)] : T' in p,acc(p)
(4.6) vals(&[o.m<i>(¥)])No C {p}

4.7) T'";0+ eatts(T’) ok in p

4.8) 6 Cimm

(4.9) deanon(T',p&o)=T'

By applying Lemma 13 to (4.5), we obtain a type U such that:

4.10) I',x: U F* &x]: T"in p,acc(p)
4.11) I+ o.m<it>(¥) : U in p,acc(p)
(4.12) The last rule of (4.11)’s type derivation is (Call).

An inspection of the possible reasons for (4.7) shows that anon ¢ eatts(7”) unless p € 6.
We can therefore assume that anon ¢ eatts(U) unless p € 6. (If anon is in eatts(U) but
not in eatts(7"), we can remove anon from eatts(U) without violating judgment(4.10),
by Lemma 7, or judgment (4.11), by (Sub).)

(4.13) anon € eatts(U) = p €d

We spell out the last rule of (4.11)’s type derivation:

mtype(m,C,) = fim<y>fy — ean 1

(rdonly € eay,) or (ar, wrsafe in acc(p)) o =self(o,ary,v,),y—il

ea =(\éay NJ( {anon} N (ea, Uea,), {x asrdonly|x € eay, or v,,ii = world},
{wrlocall|(eam,0,ary,v,) wrlocin p or rdonly € ea, or v, = world} )

I'Fo,v:eay,Co<ary,vo>,éusiy[o]in p,acc(p) I''Fii:e (arp=rdorI’Fv,:e)

I+ o.m<ii>(V) : eaty’[6] in p,acc(p)
4.14) U = eaty'[0]

We define:

n A ) edn tyl[a/] ifp=oco
“4.15) U" = { (eam - anon) l‘yl [G/] otherwise
(4.16) ed’ = {anon|p # o}

4.17) U' £ ed rdonly wrlocalU”

[e

The following holds:
4.18) 'x:U'FU' =U

We show statement (4.18): To this end, it suffices to show that eatts(U) C eatts(U’).
To this end, it suffices to show that anon € eatts(U) implies anon € eatts(U’). So
suppose that anon € eatts(U ). Then p € 0, by (4.13). Then either anon € eatts(U”) or
p # o, by definition of U”. In the former case, we have anon € eatts(U") C eatts(U’)
and, in the latter case, we have anon € ed’ C eatts(U’).

Now that we have established statement (4.18), we can apply type specialization
(Lemma 5) to judgment (4.10):

4.19) I, x:U'F*&[x]: T" in p,acc(p)
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Moreover, we have:

4.20) o.m<i>(¥): (6 F p) — (6" 0) by (Call Frm Mith)
4.21) I'"'=U" : ok follows from (4.11)

We now apply (Call Frm) to (4.4), (4.20), (4.19) and (4.21). We obtain:

4.22) T";6 - ((&[o.m<i>(¥)]inp) : T"in p) « (6 <" U" in 0)

We define:

(4.23) T = (0, (world, i,o0,owner(0) : o), I, abbreviation
By applying (Stk Call) to (4.3) and (4.22), we obtain:

4.24) I;oF (s, EJo.m<ii>@)]inp : T) «— (I'";6 2" U" in 0)

We want to show the following:

4.25) ot state: T goal

We know that (I";0 - h : ok), by (3). By (State), (5) and (6), it therefore suffices to show
the following:

(4.26) I';o+ s,e[0’]ino: T subgoal towards (4.25)
By (Stk Push) and (4.24), it suffices to show the following:
4.27) T";6 " e[6']ino: U"ino subgoal towards (4.26)

By (Frm) and (Mth Frm Body), we need to show the following four statements:

(4.28) I'"e[o’] : U" in 0,acc(o) subgoal towards (4.27)
(4.29) vals(e[o’])Né C {o} subgoal towards (4.27)
(4.30) I'";o+ eatts(U"”) ok in o subgoal towards (4.27)
4.31) 0 Cimm subgoal towards (4.27)

Subgoal (4.31) is identical to fact (4.8); only subgoals (4.28), (4.29) and (4.30) remain
open. We first derive some facts that are useful for several of these open proof goals.
By construction, we have:

(4.32) I'"(0) = rdonly wrlocalty(o) = rdonly wrlocalC<ar,,v,>
(4.33) o' =self(o,ar,,v,),y—i,x—v

By definition of acc(o) and owner(o), we have acc(o) = ar,, and owner(o) = V). We
can therefore restate (4.32) and (4.33) like this:

(4.34) I'"(0) = rdonly wrlocal C<acc(o),owner(0)>
(4.35) o' =self(o,acc(o),owner(0)), y«ii, x—v

By premise of the last rule of (I'" - o.m<i>(v) : U in p,acc(p))’s derivation, as dis-
played above, we have (I’ F o : ea, C,<ar,,v,> in p,acc(p)). By inverting this judg-
ment and using Lemma 6 in order to replace I’ by I'”’, we obtain the following:

(4.36) I'" - C<acc(o),owner(0)> < C,<ar,,vy>
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Proof of goal (4.28): We define:

4.37) ean =X rdonly wrlocal abbreviation
(438) I = (myaccess,world,myowner,this : e,
this : ean, C<myaccess,myowner>)

Because C <: C,, we have (I] F mtype(C,m) < mtype(C,,m)), by premise of (Mth
Dcl). By definition of method subtyping, this means that there are fin’, V such that:

(4.39) mtype(C,m) = fi' <y>fy—V
(4.40) L FV <ea,ty

By Lemma 3(d), we can swap the class parameter in subtyping judgment (4.36) and ob-
tain (I'" + C<ar,,v,> < C,<acc(o),owner(0)>). We then apply Lemma 3(e) to obtain:

4.41) I'" - iy[o] X iy[o’]

Because the underlying class table is well-typed, we know that m’s declaration in C is
well-typed. By premise of (Mth Dcl), there are ar;, o] such that the following state-
ments hold:

(4.42) eazmw 4 anon rdonly wrlocal abbreviation
(4.43) Ii[o1],7: ®,%: easwty[01] F €[01] : V[0oy] in this,ar

(4.44) ary =myaccess or ({rdonly,wrlocal}Neay, =0, ar; = rdwr)

(4.45) o) = (myaccess«ary)

We define o as the restriction of ¢’ to the singleton domain {myaccess}:

(4.46) o £ (myaccess«acc(0)) = ¢'|myaccess abbreviation
We will now show the following statement:
(4.47) Ii[o]],y: ®,X: eaan iy[o]] - e[o]] : V[0o]] in this,acc(0)

We show statement (4.47): Suppose first that {rdonly,wrlocal}Nea,, # @. Then
o7 is the identity, by (4.44)/(4.45). We obtain (4.47) by applying substitutivity (Lemma 11)
to judgment (4.43). Suppose now that {rdonly,wrlocal} Nea, = 0. Then acc(p) =
rdwr, by inspection of the possible reasons for (4.7). Then ar, = rdwr, because ar, wrsafe in acc(p).
Applying Lemma 14 to (I'" = C,<acc(0), owner(0)> < C<ar,,v,>), we obtain acc(o) =
rdwr. Therefore, 6] = 01, and judgment (4.47) is identical to judgment (4.43).
We have now completed the proof of statement (4.47) and resume the proof of
goal (4.28): By expanding the definition of I} and weakening judgment (4.47), we ob-
tain the following judgment:

(4.48) I'" myowner,y,this: e this : ean, C<acc(o),myowner>,x : edany fy[0]]
Fe[of] : V[oj] in this,acc(o)

On the other hand, we have the following judgments:

(4.49) o 4 0’|myowner,myaccess,y abbreviation

(4.50) I'" t- owner(0),i: o

(4.51) IT'"+ 0 : eany C<acc(o),owner(0)> in 0,acc(0)

(4.52) T" 7 : ez 1y[0] = eaarn y[0'] = eaany iy[0}5] in 0,acc(0)
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Judgment (4.50) holds by construction of I'”. Judgment (4.51) holds by (Obj). Judg-
ment (4.52) follows from (I’ - v : fy[o] in p,acc(p)) by subtyping judgment (4.41) and
because we can replace I'', p,acc(p) by I'”,0,acc(0), by Lemma 6 and Lemma 8.

We now apply the customized substitutivity lemma 34 to judgments (4.50), (4.51),
(4.52) and (4.47) to obtain the following:

(4.53) I'" - e[0’] : deanon(V[0'],0 € V) in 0,acc(0)

We will have established goal (4.28), if we can show the following:
(4.54) I'" +deanon(V[o'],0 € ) < U" subgoal towards (4.28)
We expand the definition of U”:

ean 1y'[0’] ifp=o0€o

(eay, —anon)ry'[0’] otherwise goal

(4.55) I'" +deanon(V[c’],0 € V) < {

By applying weakening and substitutivity to subtyping judgment (4.40), we get (I'” I
V[o'] = eanty'[0']). Moreover, we have (I'" - 1y/[6'] X 1y/[0]), by Lemma 3(e). So, by
transitivity, (I'” - V[0’] < ean ty|o]). It now suffices to show the following:

4.56) p=o€co=o0¢v subgoal towards (4.28)

To show (4.56), let p = o € 6. By inspecting the possible reasons for (4.7), we see that
p € o is only possible if anon € eatts(7”’). Then it must also be the case that anon €
eatts(U) (because subexpressions of anonymous expressions are anonymous). Then
anon € ) éay, by premise of the last rule of (I’ - 0.m<i>(v) : U in p,acc(p))’s deriva-
tion, as displayed above. Then p & 7, by inverting judgment (I’ - v : éay fy[a] in p,acc(p))
from the premise of the same rule. Then o ¢ v, because 0 = p.

Proof of goal (4.29): By well-typedness of the underlying class table, m’s body e in
C is well-typed in an environment I such that dom(I3,) = {this,%}. Then vals(e) C
{null,this,x}, by Lemma 18(a). Then vals(e[o’]) C {null,o,v}, by Lemma 18(b).
We need to show the following:
4.57) (g€ {o,7}Nd)= (g=0) subgoal towards (4.29)
Let g € {0,v} Na. Then ¢ = p, by (4.6). An inspection of the possible reasons for (4.7)
shows that p € 6 is only possible if anon € eatts(7”). Then also anon € eatts(U),
because subexpressions of anonymous expressions are again anonymous. Then all ar-
guments v for 0.m<i>(V) are anonymous in p, by premise of the last rule of (I -
o.m<i>(V) : U in p,acc(p))’s derivation, as displayed above. That means ¢ = p ¢ v. But
then ¢ = o, because g € {0, 7} by assumption.

Proof of goal (4.30): We distinguish cases by the possible reasons for (4.7).

Case 4.1, (Frm Rdonly): In this case, p € 0 and rdonly € eatts(7’). By (4.6) and
because p & 9, we obtain:
4.1.1) oo
By definition of U” and because p € 0, we have:
(4.1.2) anon ¢ eatts(U")
From rdonly € eatts(7’) we obtain rdonly € eatts(U), because subexpressions of
read-only expressions are read-only. We now inspect the last rule of (I’ - 0.m<ii>(v) :

U in p,acc(p))’s derivation, as displayed above. Because rdonly € eatts(U), there are
two possibilities: Either rdonly € ea,, or v,, it = world.
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Case 4.1.1, rdonly € ea,,: Then (I'";6 + eatts(U") ok in 0), by (Frm Rdonly).

Case 4.1.2, rdonly & ea,,, v,,i = world: Because rdonly & ea,, and all methods
on immutable objects are read-only, we have:

(4.1.2.1) o € imm

By inspection of the possible last rules for subtyping judgment (4.36) and because
v, = world, we obtain owner(o) = world, We also have i = world, by assumption.
Therefore, dom(I,.) = {0,world}, by definition of I'”. Because owner(0) = world
and o ¢ imm, we obtain:

(4.1.2.2) o € outside(imm)
(4.1.2.3) dom(I% ) C {o,world} C outside(imm)

own

By Lemma 14 and because owner(o) = world, we have:
(4.1.2.4) acc(o) = rdwr
We can now apply (Frm Rdwr) to these facts in order to obtain (I'”; o+ eatts(U") ok in o).

Case 4.2, (Frm Rdwr): In this case, dom(I},,) C outside(imm) Uinside(d) and
p € 0,imm and p € outside(imm) Uinside(a). By (4.6) and because p ¢ 6, we obtain:

4.2.1) ogo
By definition of U"” and because p ¢ o, we have:
(4.2.2) anon ¢ eatts(U")
Case 4.2.1, rdonly € ea,,: Then (I';6 F eatts(U") ok in 0), by (Frm Rdonly).

Case 4.2.2, rdonly ¢ ea,,: Because rdonly ¢ ea,, and all methods on immutable
objects are read-only, we have:

(4.2.2.1) 0 ¢imm

In the following, we will inspect the premises of (Call)—the last rule of (I’ - 0.m<i>(v) :
U in p,acc(p))’s derivation, as displayed above. By premise of (Frm Rdwr), we know

that either acc(p) = rdwr or wrlocal € eatts(T’), thus, wrlocal € eatts(U). In case

wrlocal € eatts(U), we know that either v, = world or (ea,,o0,ar,,v,) wrloc in p,

by premise of (Call). By definition, the statement (ea,,o0,ar,,v,) wrloc in p holds

whenever (wrlocal € ea,,0 = p) or (ar,,v,) = (rdwr,p). So we have to consider

the following four cases: acc(p) = rdwr or v, = world or (wrlocal € ea,;,0 = p) or

(ary,vo) = (rdwr, p).

Case 4.2.2.1, acc(p) = rdwr: By premise of (Call), we get ar, wrsafe in acc(p).
Because we also have acc(p) = rdwr, we obtain ar, = rdwr by definition of wrsafe. We
also have (I'" F v, : @), by premise of (Call) and because acc(p) = rdwr. Moreover (I'' +
ii : o), by premise of (Call). By expanding the definition of (I’ - v,,i : ¢), we obtain
Vo, it € dom(I7,,). By inspection of the possible last rules for subtyping judgment (4.36)
and because ar, = rdwr, we obtain owner(o) = v,. We know that owner(0) = v, €
dom(I,,) C outside(imm) Uinside(d). Moreover, we know that o ¢ imm. It follows
that:
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(4.2.2.1.1) o € outside(imm) Uinside(o)
(4.2.2.1.2) dom(I,.) = {world,o,owner(0),i} C outside(imm)Uinside(a)

Applying Lemma 14 to I'' + C<acc(0), owner(0)> = C,<ar,,owner(0)>, we obtain:
(4.2.2.1.3) acc(o) = rdwr

We can now apply (Frm Rdwr) to obtain (I'”;0 I eatts(U") ok in o).

Case 4.2.2.2, v, = world: Then owner(o) = world, by inspection of the possible
reasons for subtyping judgment (4.36). Because we already know that o & imm, we
obtain:

(4.2.2.2.1) o € outside(imm)
(4.2.2.2.2) dom(I ) = {world,o,owner(0),ii}
C outside(imm) Udom(I),,,)

C outside(imm) Uinside(0)
By Lemma 14 and because owner(o) = world, we obtain:
(4.2.2.2.3) acc(o) = rdwr

We can now apply (Frm Rdwr) to obtain (I'”;0 I eatts(U") ok in o).

Case 4.2.2.3, wrlocal € ea,,, 0 = p: Then o = p € outside(imm) Uinside(d). Be-
cause we already know that o ¢ 6, we also have owner(0) € outside(imm) Uinside(0).

(4.2.2.3.1) dom(I},,) = {world,o,owner(0),i}
C outside(imm) Uinside(o) Udom(I,,.)
C outside(imm) Uinside(o)

We can now apply (Frm Rdwr) to obtain (I'”;0 I eatts(U") ok in o).

Case 4.2.2.4, (ar,,v,) = (rdwr, p): By inspection of the last rule of subtyping judg-
ment (4.36), we get that owner(o) = p. Then owner(0) = p € outside(imm) Uinside(d).
Because we already know that o ¢ imm, we also get:

(4.2.2.4.1) o € outside(imm) Uinside(o)

(4.2.2.4.2) dom(I) ) = {world,o,owner(0),ii}
C outside(imm) Uinside(o) Udom(I),,,)
C outside(imm) Uinside(0)

Using Lemma 14, we obtain:
(4.2.2.4.3) acc(o) = rdwr

We can now apply (Frm Rdwr) to obtain (I'”;0 I eatts(U") ok in o).

Case 4.3, (Frm Imm Cons): We have dom(I),,,) C {p,world} and p € 0 and
owner(p) = world and anon € eatts(T’) and {rdonly,wrlocal} Neatts(7’) # 0.
Then also anon € eatts(U) and {rdonly,wrlocal} Neatts(U) # 0, because if an ex-
pression has these attributes then each subexpression (except perhaps values) also have
these attributes.

Case 4.3.1, rdonly € ea,,, 0 # p: By (4.6) and because o # p, we obtain o ¢ 0.
By definition of U"” and because o # p, we obtain anon ¢ eatts(U”). We can therefore
apply (Frm Rdonly) to obtain (I'";6 + eatts(U”) ok in 0).
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Case 4.3.2, {rdonly,wrlocal} Nea, # 0, o = p: We inspect the premises of
(Call)—the last rule of (I'" + o.m<i>(v) : U in p,acc(p))’s derivation, as displayed
above. By premise of (Call) and because o = p, we have anon € ea,,. Because o = p €
0 C imm and all methods on immutable objects are read-only, we obtain rdonly € eay,.
By anon, rdonly € ea,, and definition of U"”, we obtain:

(4.3.2.1) anon,rdonly € eatts(U")

Because o = p, owner(p) = world, i € dom(I],,,) and dom(I],,,.) C {p,world}, we
obtain:

dom(I).,.) = {world,o,owner(0),i}
C {world, p,owner(p)} Udom(I},,) C {p,world}

We now apply (Frm Imm Cons) to obtain (I'”;6 - eatts(U") ok in o).

Case 4.3.3, v, = world, rdonly ¢ eay,: Because p € 6 C imm and methods on
immutable objects are read-only, we have o # p. Then o ¢ o, by (4.6). Moreover, o ¢
imm, because rdonly ¢ ea,,. Because v, = world, we have owner(o) = world, by
inspection of the possible last rules for subtyping judgment (4.36). Because owner(o) =
world and o ¢ imm, it follows that o € outside(imm).

dom(I,) = {world,o,owner(o),i}

C {world,o,owner(o)} Udom(I},,)
C outside(imm) U {p,world}
C outside(im )U{p}
C outside(imm) U
C outside(imm) U|n5|de (0)

Because owner(o) = world, we have acc(o) = rdwr, by Lemma 14. Because o # p, we
have anon ¢ eatts(U”), by definition of U”. We can now apply (Frm Rdwr) to obtain
(I'";6 - eatts(U”) ok in 0).

Case 4.3.4, (ar,,v,) = (rdwr, p), rdonly & ea,, : Because p € 6 C imm and meth-
ods on immutable objects are read-only, we have o # p. Then o & o, by (4.6). Moreover,
o € imm, because rdonly ¢ ea,,. Because ar, = rdwr, we have owner(o) = p, by in-
spection of the possible last rules for subtyping judgment (4.36). Because owner(o) =
p € 0, we have that o € inside(0).

dom(I ) = {world,o,owner(0),ii}

C {world,o,owner(o)} Udom(I,.)
{world,o,owner(0)} U{p,world}
C inside(0) U{world}

C outside(imm) Uinside(0)

ﬂlﬂ

Then acc(o) = rdwr, by Lemma 14. Because o # p, we have anon ¢ eatts(U"), by
definition of U”. We now apply (Frm Rdwr) to obtain (I'”’; 0 - eatts(U”) ok in 0).
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Case 5, (Red New):

s=s & newC<ar,w>k(¥)]inp o¢gdom(h) ty(o)=C<ar,w> fd(C)=#Hf

his — ho{f =null}:s,Ck(¥);0in0

(5.1) state = h,0{f =null} ::s,C.k(¥);0ino
By definition of owner(o) and acc(o), we have:
(5.2) (ar,w) = (acc(o),owner(0))

We define:

(5.3) ean £ rdonly wrlocal

(54) I & (T',0: ean, C<ar,w>)

By applying Lemma 30 to judgment (3), we obtain:
(5.5) I;0,0 h,o{f =null}: ok

By inverting judgment (4), we obtain:

(5.6) I';0' = (s':T) «— (I'";0-%T"in p)

(5.7 I'';0H" (&newC<ar,w>k(v)]inp) : T'in p
By inverting judgment (4.4), we obtain:

(5.8) I'" ¥ &newC<ar,w>.k(v)] : T" in p,acc(p)
(5.9) vals(&[newC<ar,w>.k(v)])No C {p}
(5.10) I'";0+ eatts(T’) ok in p

(5.11) 0 Cimm

(5.12) deanon(T’,p ¢ o) =T

By applying Lemma 13 to (5.8), we obtain a type U such that:
(5.13) I'',x: U F* &x] : T"in p,acc(p)

(5.14) I''+newC<ar,w>.k(¥) : U in p,acc(p)
(5.15) The last rule of (5.14)’s type derivation is (New).

We spell out the last rule of (5.14)’s type derivation:

ctype(C.k) = fy—eayvoid (ar =rdur) or (wrlocal,anon € eay)
ea =(\({rdonly|w =world} U{wrlocal,anon},éa;) I Far,w:ok,e
I''F7: éayiy[o] in p,acc(p) o =self(null,ar,w) C<ar,w> generative

I'' k- newC<ar,w>.k(V) : eaC<ar,w> in p,acc(p)
(5.16) U = eaC<ar,w>
We define:

ea C<ar,w> if immutable € atts(C)
(eap, — anon) C<ar,w> otherwise

(5.17) U" & {

(5.18) eazrw 2 anon rdonly wrlocal
(5.19) U' £ ey, U"
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(5.20) & 2 (0,0) if immutable € atts(C)
) R W7 otherwise

The following holds because eatts(U) C {anon,rdonly,wrlocal} = eatts(U’):
(521) I''x:U'-U' =U

We apply type specialization (Lemma 5) to judgment (5.13):

(5.22) I, x:U'+* &[x] : T" in p,acc(p)

Moreover, we have:

(5.23) newC<ar,w>.k(v): (6 p) « (0’ F"" 0) by (Call Frm Mth)
(5.24) I'"'=U" : ok follows from (5.14)

We now apply (Call Frm) to (5.7), (5.23), (5.22) and (5.24). We obtain:
(5.25) I'";0F ((&newC<arw>.k(¥)]inp) : T'in p) « (&' F"* U" in 0)
We define:

(5.26) T = (0, (world,o,w: e),I7.)

By applying (Stk Call) to (5.6) and (5.25), we obtain:

(5.27) T';o+ (8, &[newC<ar,w>.k(¥)]inp : T) « (I'";0' F"*¥ U" in 0)
We want to show the following:

(5.28) o' I~ state: T goal

We know that (I;;0' - h,0{f =null} : ok) by (5.5) and Lemma 29. By (State), (5) and
(6), it therefore suffices to show the following:

(5.29) I,;0' 5,(C.k(¥);0in0): T subgoal towards (5.28)

By (Stk Push), (5.27) and Lemma 30, it suffices to show the following:

(5.30) I £ (I'",0 : eay, C<ar,w>)
(5.31) I);0' F"" (C.k(V);0in0) : U" ino subgoal towards (5.29)

o’

By (Frm), we need to show the following four statements:

(5.32) IJ "W C.k(¥);0: U" in 0,acc(0) subgoal towards (5.31)
(5.33) vals(C.k(v);0)Nd’ C {0} subgoal towards (5.31)
(5.34) I);0' - eatts(U") ok in o subgoal towards (5.31)
(5.35) ¢’ Cimm subgoal towards (5.31)

Subgoal (5.35) follows from 6 C imm, see (5.11), by definition of &'. So only subgoals
(5.32), (5.33) and (5.34) remain open.

51



Proof of goal (5.32): By (New Frm Body), it suffices to show the following state-
ments:

(5.36) I - 0 : eayy, C<ar,w> = (eay — anon) C<ar,w> in 0,acc(0)
(5.37) I)) - C.k(V) : earvoidin 0,acc(o) subgoal towards (5.32)

Statement (5.36) holds by (Obj) and (Sub). So we need to show (5.32): By premise of
the last rule of (I'' - newC<ar,w>.k(v) : U in p,acc(p))’s type derivation, as displayed
above, we have:

(5.38) ctype(C.k) =iy —eapvoid
(5.39) o =self(null,ar,w)
(5.40) I''+7: iy[o] in p,acc(p)

We define:
(5.41) ¢ £ self(o,ar,w)

The parameter types of well-typed constructors do not contain occurrences of this, by
(Cons Dcl). Therefore, (I'' v : iy[0’] in p,acc(p)). Because ea, C eatts(I (o)) for

val

all o in dom(I)’, we obtain (I'' = v : eayy, iy[0”] in p,acc(p)). We then apply Lemmas 6
and 8 to replace I/, p,acc(p) by I'”,0,acc(0) and weakening to replace I'” by I}/ This
way, we obtain (I} - v : ean, fy[0'] in 0,acc(0)). Because v C dom(I™), by (5.40), but
o & dom(I""), we have N {o} = 0. That is v are anonymous in 0. We obtain:

(5.42) I -V : eagny fy[0’] in 0,acc(0)
We now apply to (Cons) to (5.38), (5.41), and (5.42), obtaining our goal (5.37).
Proof of goal (5.33): 1t suffices to show the following:

(5.43) {#}no=0 subgoal towards (5.33)

Suppose, towards a contradiction, that ¢ € {7} Né. Then g = p, by (5.10). An inspection
of the possible reasons for (5.11) shows that p € 4 is only possible if anon € eatts(7”).
Then arguments v for new C<ar,w>.k(V) are anonymous in p. That means p ¢ v. Then
q & v, because ¢ = p. This contradicts our assumption.

Proof of goal (5.34):

Case 5.1, immutable € atts(C): Itis straightforward to check that (I'"; 6 - eatts(U”) ok in o),
by (Frm Imm Cons).

We now distinguish cases by the possible reasons for (4.7):

Case 5.2, (Frm Rdwr), immutable ¢ atts(C): It is straightforward to check that
(I'";6 | eatts(U") ok in 0), by (Frm Rdwr).

Case 5.3, (Frm Rdonly), immutable ¢ atts(C): It is straightforward to check that
(I'";6 | eatts(U”) ok in 0), by (Frm Rdwr).

Case 5.4, (Frm Imm Cons), immutable ¢ atts(C): It is straightforward to check
that (I'”;6 - eatts(U”) ok in 0), by (Frm Rdwr).
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Case 6, (Red Cons):
s=5,8[Ck(¥)]inp cbody(C.k) = (X)(

e) ty(p)=D<ar,w>
his — h:s,e[self(p,ar,w),x—7]inp

6.1) 0’ = self(p,ar,w),x—v abbreviation
(6.2) state =h::s,e[0’]ino

By inverting judgment (4), we obtain:

63) I (s":T)— (I'";6 F* T'in p)
(6.4) I'';0-% (&[C.k(P)]inp) : T"in p

By inverting judgment (6.4), we obtain:

(6.5) I'" =% &|C.k(V)] : T" in p,acc(p)

(6.6) vals(&[C.k(V)])Nna C {p}

(6.7) T'';0+ eatts(T’) ok in p

(6.8) 0 Cimm

(6.9) deanon(T',pgo)=T'

By applying Lemma 13 to (6.5), we obtain a type U such that:

(6.10) I'',x: U F* &x]: T"in p,acc(p)

(6.11) I'" = C.k(¥) : U in p,acc(p)

(6.12) The last rule of (6.11)’s type derivation is (Cons).

An inspection of the possible reasons for (6.7) shows that anon ¢ eatts(7”) unless p € 6.
We can therefore assume that anon ¢ eatts(U) unless p € 4. (If anon is in eatts(U) but

not in eatts(7"), we can remove anon from eatts(U) without violating judgment(6.10),
by Lemma 7, or judgment (6.11), by (Sub).)

(6.13) anon € eatts(U) = p€ o

We spell out the last rule of (6.11)’s type derivation:

ctype(C.k) =fy—eaqivoid o =self(p,acc(p),wp)
I'"+v,p : éayiy[o],C<acc(p),wp> in p,acc(p) ea=)(eay,éay)
I+ C.k(¥) : eavoidin p,acc(p)

(6.14) U = eavoid
We define:
6.15) U" = {

(6.16) U’ = rdonly wrlocall”

eaivoid ifpeo
(ear —anon)void otherwise

The following holds because anon € eatts(U) implies p € g, by (6.13).
6.17) I''x:U'FU' =U

We apply type specialization (Lemma 5) to judgment (6.10):

(6.18) I'' . x:U'F*&[x]: T"in p,acc(p)

53



Moreover, we have:

(6.19) C.k(¥): (oF p) « (6 F=" p) by (Call Frm Cons)
(6.20) I'"=U" : ok follows from (6.11)

We now apply (Call Frm) to (6.4), (6.19), (6.18) and (6.20). We obtain:

(6.21) I';0- ((E[C.k(P)]inp): T"inp) «— (6-2"U"in o)

We define:

(6.22) T'" = (0, (world, p,w:e),I%) abbreviation
By applying (Stk Call) to (6.3) and (6.21), we obtain:

(6.23) T;0F (s, &[C.k(V)]inp: T) « (I'";6 - U in o)

We want to show the following:

(6.24) ot state: T goal

We know that (I';0 - h : ok), by (3). By (State), (5) and (6), it therefore suffices to show
the following:

(6.25) I';o s,e[0’]inp: T subgoal towards (6.24)
By (Stk Push) and (6.23), it suffices to show the following:

(6.26) T";6-" e[c']inp:U" inp subgoal towards (6.25)
By (Frm) and (Mth Frm Body), we need to show the following four statements:

(6.27) I'" t-e[c’] : U" in p,acc(p) subgoal towards (6.26)
(6.28) vals(e[o’'])No C {p} subgoal towards (6.26)
(6.29) I'";o+ eatts(U"”) ok in p subgoal towards (6.26)
(6.30) 0 Cimm subgoal towards (6.26)

Subgoal (6.30) is identical to fact (6.8); only subgoals (6.27), (6.28) and (6.29) remain
open. We first derive some facts that are useful for several of these open proof goals.
By construction, we have:

(6.31) I'"(p) = rdonly wrlocalty(p) = rdonly wrlocal D<ar,w>

By definition of acc(p) and owner(p), we have acc(p) = ar and owner(p) = w. We can
therefore restate (6.31) and (4.1) like this:

(6.32) I'"(0) = rdonly wrlocal D<acc(p),owner(p)>

(6.33) o' =self(p,acc(p),owner(p)),x—v

By premise of the last rule of (I'" - C.k(¥) : U in p,acc(p))’s derivation, as displayed
above, we have (I'' - p : C<acc(p),wp> in p,acc(p)). By inverting this judgment and
using Lemma 6 in order to replace I'' by I'”’, we obtain the following:

(6.34) I'" + D<acc(p),owner(p)> < C<acc(p),wp>

By Lemma 3(d), we can swap the class parameters in subtyping judgment (6.34) to
obtain:

(6.35) I'" = D<acc(p),w,> < C<acc(p),owner(p)>

Because the types fy of C.k()’s formal parameters are legal, by premise of (Cons Dcl),
we can apply Lemma 3(e) to obtain:

(6.36) I'" - fy[o] < fy[o]
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Proof of goal (6.27): We define:

(6.37) eayy, 4 rdonly wrlocal abbreviation
(6.38) I} 2 (myaccess,world,myowner,this : e,

this:ea,n C<myaccess,myowner>)
Because the underlying class table is well-typed, we know, in particular, that k’s decla-
ration in C is well-typed. By premise of (Cons Dcl), we have:

(6.39) eazw 4 rdonly wrlocal abbreviation
(6.40) I,X:eaun iyt e:eapvoidin this,myaccess
We define o as the restriction of ¢’ to the singleton domain {myaccess}:

(6.41) o] = (myaccess«acc(p)) = 0'|myaccess abbreviation

By applying access right substitutivity (Lemma 11) to judgment (6.40), we obtain the
following statement:
(6.42) Ii[o|]. X : eaarw ty[o]] - €[0]] : earvoid in this,acc(o)
By expanding the definition of I and weakening judgment (6.42), we obtain the fol-
lowing judgment:
(6.43) I'” myowner,this: e, this: ean, C<acc(p),myowner>,x : edany, fy[0]]
Fe[of] : V[oj] in this,acc(o)

On the other hand, we have the following judgments:
(6.44) o £ 6'|myowner,myaccess abbreviation
(6.45) T'" I~ owner(0) : ®
(6.46) I'" I p : eayy C<acc(p),owner(p)>in p,acc(p)
(6.47) I'" b V2 eaany 1Y[0] = €aany 1Y[0'] = edarw fy[05] in 0,acc(0)
Judgment (6.45) holds by construction of I'”. Judgment (6.46) holds by (Obj). Judg-
ment (6.47) follows from (I’ v : iy[o] in p,acc(p)) by subtyping judgment (6.36) and
because we can replace I'' by I'”, by Lemma 6.

We now apply the customized substitutivity lemma 34 to judgments (6.45), (6.46),
(6.47) and (6.42) to obtain the following:
(6.48) I'" - e[0’] : deanon(eay void, p € V) in p,acc(p)
We will have established goal (6.27), if we can show the following:
(6.49) I'" - deanon(ea; void, p € v) < U” subgoal towards (6.27)
We expand the definition of U”:
earvoid ifpeod

. . oal
(ear —anon)void otherwise &

(6.50) I'" I deanon(ea; void, p € ¥) < {

To this end, it suffices to show the following:
(6.51) peo=pé&v subgoal towards (6.27)

To show (6.51), let p € 6. By inspecting the possible reasons for (6.7), we see that
p € 0 is only possible if anon € eatts(7’). Then it must also be the case that anon €
eatts(U) (because subexpressions of anonymous expressions are anonymous). Then
anon € () éay, by premise of the last rule of (I’ = C.k(V) : U in p,acc(p))’s derivation,
as displayed above. Then p & v, by inverting judgment (I'' - v : éaziy[o] in p,acc(p))
from the premise of the same rule.
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Proof of goal (6.28): By well-typedness of the underlying class table, k’s body e in
C is well-typed in an environment I" such that dom(I7,) = {this,&}. Then vals(e) C
{null,this,x}, by Lemma 18(a). Then vals(e¢[c’]) C {null,p,v}, by Lemma 18(b).
We need to show the following:

6.52) (ge{p,v}Nd)=(g=p) subgoal towards (6.28)
This is a consequence of (6.6).
Proof of goal (6.29): We distinguish cases by the possible reasons for (6.7).

Case 6.1, (Frm Rdwr): In this case we get (I'”;0 I eatts(U”) ok in p), by (Frm
Rdwr). This is straightforward to check.

Case 6.2, (Frm Rdonly): In this case we get (I'”;6 F eatts(U”) ok in p), by (Frm
Rdonly). This is straightforward to check.

Case 6.3, (Frm Imm Cons): In this case we get (I'”;0 b eatts(U”) ok in p), by
(Frm Imm Cons). This is straightforward to check.

Case 7, (Let): This case is unproblematic. We omit the details.

Case 8, (Cast): This case is unproblematic. We omit the details. O
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