
Position Paper:

Opportunities and challenges for formal

specification of Java programs

Joseph Kiniry and Erik Poll
Dept. of Computer Science, University of Nijmegen, The Netherlands

{kiniry,erikpoll}@cs.kun.nl

Abstract

This paper describes the main opportunities and challenges that we see for
introducing more rigorous software engineering practices, particularly those
centered on specification and validation, in industrial practice. Our perspec-
tive derives from our ongoing work on formal specification and verification of
Java programs.

1 Introduction

The notion of trusted component has two primary needs: a definition and domains
of application.

1. What does it mean for a component to be trusted? Is there a technical defini-
tion involving documentation and testing, or specifications and verifications?
Does it involve corporations, trusted third parties, webs of trust and encryp-
tion?

We believe that many of these ideas and approaches have a place in the domain
of trusted components, but one key aspect that drives our work is highlighted
by D.H. Lawrence when he said, “Never trust the artist. Trust the tale. The
proper function of the critic is to save the tale from the artist who created it.”

To rephrase in this setting, we must understand what a component does and
verify (as critics) that it does what it is supposed to. We must not blindly
trust the source from which it comes. This means that, in the least, we need
a language in which to (a) express the rich properties of reusable components,
and (b) a means by which to verify those properties.

2. As is evidenced by the state of the industry today, the vast bulk of software
need not be “trusted” in any sense of the term. Software is not well docu-
mented enough, in the general, to understand what it is supposed to do even
in the most gross sense.

This means we must identify a domain that needs trusted components “yester-
day”, not in ten years. This need will ensure that the transition from research
to development happens at a reasonable pace as businesses do not typically
change their behavior until the financial picture dictates that they do so.

In the LOOP group at the University of Nijmegen we have been working on
the formal specification and verification of Java programs for several years. The
specification language we use is the Java Modeling Language, or JML, and the

1



main application area for our work is Java Card, the dialect of Java for programming
smart cards. So for us, a trusted component is simply a well-specified Java class.
Examples include a smart card program or an API class provided by a smart card
operating system.

Section 2 describes this work in more detail, and then Section 3 describes what
we believe are the most important opportunities and challenges in this field, espe-
cially with regards to the issues of trusted components.

2 Background

Verification of Java programs

Our work in formal specification and verification of Java programs began with the
formalisation of a denotational semantics of sequential Java. This work uses a
coalgebraic semantics formalised in the theorem provers PVS and Isabelle. We
have also developed an associated tool, the LOOP tool, that, given a Java program,
returns a description of its semantics. Our formalisation does not include Java
threads, but apart from that, we try to cover all the complications of real Java.
For example, our formalisation includes exceptions, (possibly labeled) breaks and
continues, arrays, inheritance (including overloading, overriding, and hiding), static
fields and methods, static initialisation, etc.

This formalisation has since been extended to include the semantics of JML.
Consequently, the LOOP tool has also been extended. It now takes a Java program
with JML annotations as input and returns the aforementioned semantics of the
program along with a collection of proof obligations. To satisfy these obligations,
we have developed two proof infrastructures for Java. The first is a Hoare logic; the
second, a weakest precondition calculus. Both of them have been proven correct
with respect to the underlying semantics.

Currently, work focuses on improving PVS support for automating the tedious
work of verification as much as possible. Although we are very pleased with the
progress of this work, as well as the size and complexity of programs we can now
handle, the interactive verification of code remains an extremely labour-intensive
and difficult task. So while our goal is fully automatic verification of Java pro-
grams that have high quality specifications, such work will remain the domain for
specialists in academia for the foreseeable future.

For more information about this work, see http://www.cs.kun.nl/ita/research/
projects/loop.

Smart cards

All the examples that we work in the LOOP group are Java Card programs. Java
Card is a “dialect” of Java developed for the programming of smart cards (see
http://java.sun.com/products/javacard). It is essentially a subset of Java,
with many features omitted from the language (e.g. reals, doubles, threads . . . )
and from the API, in light of the very limited resources and capabilities of a typical
smart card. A few features have been added to provide more security than the
standard Java sandbox, notably a firewall around every smart card application.
Java Card is the leading language used in the newest generation of smart cards.
These cards support the download of (digitally signed) code, and allow several
applications to be installed on the same smart card.

2



JML

As mentioned earlier, the specification language we use is the Java Modeling Lan-
guage (JML) [4]. JML is a behavioural specification language for Java. JML allows
you to annotate Java source code with assertions that, among other things, specify
preconditions, postconditions, or class invariants, to record detailed design deci-
sions.

It is important to note that JML lets one specify more than just the state-centric
contracts of many other approaches. Specification via Hoare triples and invariants
is a fine first step, but many of the more subtle and necessary properties of trusted
components cannot be easily specified with such a simple language. We need a
more expressive language than first-order logic, a language that is “closer” to our
domain. We believe that JML is an excellent early example of such a language for
Java-based trusted components.

JML annotations are written as a special kind of Java comments which are ig-
nored by a Java compiler but are processed by various tools that support JML.
JML supports well-established notions in the specification of object-oriented lan-
guage, also used in the “Design By Contract” approach pioneered in Eiffel, but is
more expressive. For example, JML supports quantifiers \forall and \exists,
specification-only variables, and “normal” as well as “exceptional” postconditions.

The initiative for the development of JML was taken by Gary Leavens at Iowa
State University, but it is a very open effort that has quickly grown to attract many
collaborators and contributors worldwide. In particular, there have been serious
efforts to remove some of the incompatibilities between JML and the assertion lan-
guage used for ESC/Java (see http://research.compaq.com/SRC/esc/ for more
information).

Several tools for JML are available; see http://www.jmlspecs.org/. q The
most interesting for the typical developer is probably the runtime assertion checker
which translates annotations into runtime checks [3].

3 Opportunities and Challenges

What follows is a summary of some of the main opportunities and obstacles—or, to
phrase it positively, challenges—that we see in the field of formal specification for
Java programs.

Opportunity: JML

We believe that JML presents an promising opportunity to introduce a formal
specification language in industrial practice.

One important reason for this is that JML is easy to read for people who know
Java. A central design decision for JML was to make the language familiar for
non-experts. The language uses mainly Java syntax, thus is easy to understand for
anyone familiar with Java. Like any assertion language where one adds annotations
to code, JML is easy to use gradually, either in new projects or for legacy code, as
one can simply begin by add just a few assertions to source code. The threshold
to then use some tools, especially the runtime assertion checker, is also low. Code
is going to be tested anyway, doing runtime assertion checking when testing takes
little extra effort.

JML is an open project, and it is hoped that other groups working on specifica-
tion languages or tools for Java will join in. Having a range of tools that support
the same specification language could contribute to the success of JML, and to the
success of these individual tools. Having to learn yet another specification language
is often a major obstacle to using a new tool. If the academic community wants

3



their tools and methodologies to be accepted in industry, it is important to agree on
some common syntax. The experience with UML shows this. There are over half
a dozen runtime assertion checkers for Java, all using a slightly different syntax,
which is a pity.

Opportunity: Smart Cards

Smart cards present a great opportunity for the application of more rigorous ap-
proaches to software engineering and formal methods. Typical smart card appli-
cations are fairly small, the language and API used are relatively simple, and the
applications of smart card obviously demand the highest possible levels of confidence
in the correctness and security.

The smart card industry is more open to the use of new methodologies—including
formal methods—than most industries. Large investments in formal specifications
have been made to certify components of smart card operating systems. One issue
that plays a role here is the relatively new ISO standard for the evaluation of infor-
mation technology security, the so-called Common Criteria. Increasingly high levels
of certification are being demanded for smart card applications, and for the highest
levels of certification the Common Criteria requires the use of formal methods.

Of course, one should not expect people in industry to take the initiative to try
out new tools, notations, or methodologies. To get them interested takes some hard
work: you to go out and use an approach yourself to show them that it works on a
realistic examples and is feasible in practice.

To convince people of the value of a formal specification language like JML, and
the utility of the tool support that brings, several case studies for the domain of
smart cards have been tackled by academia. For example, we have developed formal
JML specifications for Java Card API [9, 10]; these specification have been used by
others to specify and debug a realistic Java Card case study with ESC/Java [2]; the
LOOP tool has been used to verify parts of this case study [1]; the runtime assertion
checker for JML has been used to formally specify and debug an implementation of
a potential future extension of the Java Card API [8].

Challenge: Identifying and Specifying Security Properties

All the work on Java Card using JML above focuses on typical correctness proper-
ties, i.e. ensuring that code meets certain functional specifications. It is often not
clear what the “security properties” are that people are really interested in, or how
these could be conveniently specified – let alone verified. For example, implemen-
tations of Java use stack inspection to ensure some security properties, so maybe
expressing properties of the stack is a conveniently way to specify security policies?

An interesting overview of security properties that are relevant for Java Card
applications is given by Marlet and Le Metayer [5]. Many, but not all, of these
properties are standard correctness properties that are easy to express as functional
requirements.

Challenge: Pointers

A large obstacle in our specification and verification work is dealing with pointer-like
constructs like Java’s references. Of course, Java is nicer than languages that allow
pointer arithmetic when is comes to specification and verification. Still, the basic
problems caused by aliasing remain: e.g. how to specify the absence of aliasing, how
to ensure the absence of aliasing, or how to reason about code in the presence of
aliasing. Of course, this is a very old problem. In fact, it is somewhat embarrassing
to the field of academic research that this problem has been around for so long,

4



without any definitive solutions. This is not to say that there has not been good
work on “alias control”; e.g., see [11], which also gives a good overview of earlier
work on the topic and an illustration of the relevance to security, or [6, 7].

References

[1] C.-B. Breunesse, B. Jacobs, and J. van den Berg. Specifying and verifying a decimal
representation in Java for smart cards. In 9th Algebraic Methodology and Software
Technology (AMAST), LNCS, St. Gilles les Bains, Reunion Island, France, September
2002. Springer-Verlag, Berlin.

[2] N. Cataño and M. Huisman. Formal specification of Gemplus’s electronic purse case
study. In L. H. Eriksson and P. A. Lindsay, editors, Formal Methods: getting IT right
– Formal Methods Europe (FME), volume LNCS 2391, pages 272 – 289, Copenhagen,
Denmark, Jul 2002. Springer Verlag.

[3] Y. Cheon and G.T. Leavens. A Runtime Assertion Checker for the Java Modeling
Language (JML). In H.R. Arabnia and Y. Mun, editors, International Conference on
Software Engineering Research and Practice (SERP ’02), Las Vegas, Nevada, pages
322–328. CSREA Press, 2002.

[4] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06q, Dep. of Comp.
Sci., Iowa State Univ., 2002.

[5] R. Marlet and D. Le Metayer. Security properties and Java Card specificities to be
studied in the SecSafe project. Technical Report SECSAFE-TL-006, Trusted Logic,
August 23 2001. Available from http://www.doc.ic.ac.uk/~siveroni/secsafe/

docs.html.

[6] P. Müller. Modular Specification and Verification of Object-Oriented Programs. PhD
thesis, FernUniversität Hagen, 2001. Also as LNCS 2262, Springer-Verlag, 2002.

[7] P. Müller, A. Poetzsch-Heffter, and G.T. Leavens. Modular specification of frame
properties in JML. Concurrency and Computation: Practice and Experience, To
appear.

[8] E. Poll, P. Hartel, and E. de Jong. A Java reference model of transacted mem-
ory for smart cards. In Fifth Smart Card Research and Advanced Application Conf.
(CARDIS’2002). USENIX, Nov 2002. to appear.

[9] E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in JML.
In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Fourth Smart Card Research
and Advanced Application Conference (CARDIS’2000), pages 135–154. Kluwer Acad.
Publ., 2000.

[10] E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the Java Card API
in JML: the APDU class. Computer Networks, 36(4):407–421, 2001.

[11] J. Vitek and B. Bokowski. Confined Types in Java. Computer Networks, 36(4):407–
421, 2001.

5


