
JML & ESC/Java case study :

specifying the JavaCard APDU protocol in JML

Erik Poll

1

The JavaCard platform

JavaCard platform
(JCRE)

=
JavaCard language

(JCVM)
+

JavaCard
API

The JavaCard API provides

• some base classes and interfaces, eg. Applet

• some OS-like functionality, including the APDU class for communication
with the smartcard terminal.

2

ISO 7816 and APDU’s

Smartcard and terminal communicate by exchanging APDU’s – sequences
of bytes – as specified in ISO7816-4:

1. terminal sends a command APDU to smartcard

CLA INS P1 P2 LE D1 . . . DLE

2. smartcard sends a response APDU back to terminal

3. back to 1.

Two variants, T=0 and T=1: byte and block transmission

3

ISO 7816 and APDU’s for applets

The JCRE mediates between applets and terminal:

appleti

CardTerminal JCRE appleti+1

JCRE passes an APDU-object to the selected applet, by invoking its
process(apdu) method.

An APDU-object is essentially a buffer, with methods for
reading/writing/etc. in it.

4

The APDU class

So an applet receives an APDU, on which it can invoke

public static byte[] getBytes()

public static short getInBlockSize()

public static short getOutBlockSize()

and

public short setIncomingAndReceive()

public short receiveBytes(short bOff)

public short setOutgoing()

public void setOutgoingLength(short len)

public void sendBytes(short bOff, short len)
...

in a certain order!

5

Informal (javadoc) spec

receiveBytes

public short receiveBytes(short bOff) throws APDUException

Gets as many data bytes as will fit without APDU buffer overflow, at the
specified offset bOff. Gets all the remaining bytes if they fit.

Parameters: bOff - the offset into APDU buffer.

Returns: number of bytes read. Returns 0 if no bytes are available.

Throws: APDUException - with the following reason codes:

• APDUException.ILLEGAL USE if setIncomingAndReceive() not called or if

setOutgoing() or setOutgoingNoChaining() previously invoked.
• APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block size.
• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an

ABORT S-Block command to abort the data transfer.

6

Reference implementation

The reference implementation of APDU uses 7 flags

incomingFlag, outgoingFlag, outgoingLenSetFlag,

lrIs256Flag, sendInProgressFlag, noChainingFlag,

noGetResponseFlag

to enforce invocation order, eg.

public short receiveBytes(short bOff) throws APDUException

{ if (!getIncomingFlag() || getOutgoingFlag())

APDUException.throwIt(APDUException.ILLEGAL_USE);

...

but protocol has << 27 states !

7

8

� � ��� � �� �	

 ��
 ��� �� � �� � �� �� � �� ��� �

�

�
�� �� �� � � �
 � �

� ! ��
 "$#
 �� �� � % � � �
 & '
�� � � �

��
 " #
 �� �� �

��
 " #
 �� �� � (�) &�* �� �� �

��
 " #
 �� �� � �� � + � � �

, ��
 " #
 �� �� � % � � �
 & -
�� � � �

.

9

Using a model field and FSM to specify APDU

//@ public model int _APDU_state;

/*@ requires _APDU_state == 1 && ... ;

@ ensures _APDU_state == 2 && ... ;

@*/

public short setIncomingAndReceive()

/*@ requires _APDU_state == 2 && ... ;

@ ensures _APDU_state == 2 && ... ;

@*/

public short receiveBytes(short bOff)

10

Relating reference implementation to formal spec

Invariants relating the abstract state to its concrete representation, eg:

/*@ invariant

@ _APDU_state == 2

@ <==>

@ getIncomingFlag() && !getOutgoingFlag();

@*/

11

More detailed JML spec of receiveBytes(short bOff)

/*@ requires _APDU_state == 2 &&

@ 0 <= bOff &&

@ bOff + getInBlockSize() <= BUFFERSIZE;

@

@ assignable _APDU_state, _Lc, buffer[bOff..bOff+\result-1];

@

@ ensures _APDU_state == 2 &&

@ 0 <= \result && \result <= \old(_Lc) &&

@ _Lc == \old(_Lc) - \result &&

@ bOff + \result <= BUFFERSIZE &&

@ (* data received in buffer[bOff..bOff+\result-1] *);

@

@ signals (APDUException e) e.getReason() == APDUException.IO_ERROR

@ || e.getReason() == APDUException.T1_IFD_ABORT;

@*/

Here model field _Lc is the length of incoming command.

12

Relating reference implementation to formal spec

Length of the incoming command in JML spec:

//@ public model int _Lc;

//@ public invariant 0 <= _Lc && _Lc < 256;

Representation in the reference implementation:

private byte getLc()

{ return ramVars[LC]; }

NB. byte-int conversion yields getLc() ∈ [−128..127]. So

//@ private invariant _Lc == (getLc()&0xFF)

and not Lc == getLc().

13

Bug in reference impl. of receiveBytes

The reference implementation does NOT meet this spec, but requires a
stronger precondition than

bOff + getInBlockSize() <= BUFFERSIZE,

namely

bOff + getInBlockSize() < BUFFERSIZE.

This is probably a bug.

14

Conclusions

• (Still incomplete) formal specs for APDU protocol:
400 lines code, 400 lines javadoc, 170 lines public JML spec

• State transitition diagram nice way to specify the APDU protocol.
Why isn’t it used anywhere in the existing documentation ??

• Whenever possible, our specs do not say ”exception Ei is thrown, if Pi holds”,

but insist on ”¬P1&& . . . &&¬Pn” as precondition.

15

