
The Java Modeling language

JML

Erik Poll
Digital Security

Radboud University Nijmegen

Erik Poll, JML introduction - CHARTER meeting - 2

JML

• formal specification language for sequential Java
by Gary Leavens et. al.
– to specify behaviour of Java classes & interfaces
– to record detailed design decisions

 by adding annotations to Java source code in Design-By-
Contract style, using eg. pre/postconditions and invariants

• Design goal: meant to be usable by any Java programmer

Lots of info on http://www.jmlspecs.org

Erik Poll, JML introduction - CHARTER meeting - 3

to make JML easy to use

• JML annotations added as special Java comments,
between /*@ .. @*/ or after //@

• JML specs can be in .java files, or in separate .jml files

• Properties specified using Java syntax, extended with some
operators

 \old(), \result, \forall, \exists, ==> , ..
 and some keywords

 requires, ensures, invariant,

Erik Poll, JML introduction - CHARTER meeting - 4

JML example

public class ePurse{
 private int balance;
 //@ invariant 0 <= balance && balance < 500;

 //@ requires amount >= 0;
 //@ ensures balance <= \old(balance);
 public debit(int amount) {
 if (amount > balance) {
 throw (new BankException("No way"));}
 balance = balance – amount;
 }

Erik Poll, JML introduction - CHARTER meeting - 5

What can you do with this?

• documentation/specification
– record detailed design decisions & document assumptions

(and hence obligations!)
– precise, unambiguous documentation

• parsed & type checked
• use tools for

– runtime assertion checking
• eg when testing code

– compile time (static) analyses
• up to full formal program verification

Erik Poll, JML introduction - CHARTER meeting - 6

LOTS of freedom in specifying

• JML specs can be as strong or weak as you want
 Eg for debit(int amount)
 //@ ensures balance == \old(balance)-amount;
 //@ ensures balance <= \old(balance);
 //@ ensures true;

 Good bottom-line spec to start: give minimal specs (requires,
invariants) necessary to rule out (Runtime)Exceptions

• JML specs can be low(er) level
 //@ invariant f != null;

 or high(er) level
 //@ invariant child.parent == this;

Erik Poll, JML introduction - CHARTER meeting - 7

Rest of this talk

• A bit more JML

• Tools, possibilities, related work, etc

Erik Poll, JML introduction - CHARTER meeting - 8

exceptional postconditions: signals

 /*@ requires amount >= 0;

 @ ensures balance <= \old(balance);

 @ signals (BankException) balance == \old(balance);

 @*/

 public debit(int amount) throws BankException {

 if (amount > balance) {

 throw (new BankException("No way"));}

 balance = balance – amount;

 }

 Often specs (should) concentrate on ruling out exceptional
behaviour

Erik Poll, JML introduction - CHARTER meeting - 9

ruling out exceptions

 /*@ normal_behavior

 @ requires amount >= 0 && amount <= balance;

 @ ensures balance <= \old(balance);

 @*/

 public debit(int amount) throws BankException{

 if (amount > balance) {

 throw (new BankException("No way"));}

 balance = balance – amount;

 }

 Or omit “throws BankException”

Erik Poll, JML introduction - CHARTER meeting - 10

assert and loop_invariant

...
/*@ assert (\forall int i; 0<= i && i< a.length;
 a[i] != null);
 @*/
...

/*@ loop_invariant 0 <= i && i < a.length &
 (\forall int j; 0<= j & j < i;
 a[i] != null);
 decreasing a.length-i;
 @*/
while (a[i] != null) {...}

Erik Poll, JML introduction - CHARTER meeting - 11

non_null

• Lots of invariants and preconditions are about references
not being null, eg

 int[] a; //@ invariant a != null;

• Therefore there is a shorthand
 /*@ non_null @*/ int[] a;

• But, as most references are non-null, JML adopted this as
default. So only nullable fields, arguments and return types
need to be annotated, eg

 /*@ nullable @*/ int[] b;

• JML will move to adopting JSR308 Java tags for this
 @Nullable int[] b;

Erik Poll, JML introduction - CHARTER meeting - 12

pure

Methods without side-effects that are guaranteed to terminate can
be declared as pure
 /*@ pure @*/ int getBalance (){
 return balance;
 };

Pure methods can be used in JML annotations
 //@ requires amount < getBalance();
 public debit (int amount)

Erik Poll, JML introduction - CHARTER meeting - 13

assignable (aka modifies)

For non-pure methods, frame properties can be specified using
assignable clauses, eg
 /*@ requires amount >= 0;
 assignable balance;
 ensures balance == \old(balance) – amount;
 @*/
 void debit()

says debit is only allowed to modify the balance field

• NB this does not follow from the postcondition
• Assignable clauses are needed for modular verification
• Fields can be grouped in Datagroups, so that spec does not have to

list concrete fields

Erik Poll, JML introduction - CHARTER meeting - 14

resource usage

 Syntax for specifying resource usage

/*@ measured_by len; // max recursion depth

 @ working_space (len*4); // max heap space used

 @ duration len*24; // max execution time

 @ ensures \fresh(\result); // freshly allocated

 @*/

public List(int len) {...

}

Erik Poll, JML introduction - CHARTER meeting - 15

model state
interface Connection{

//@ model boolean opened; // spec-only field

//@ ensures !opened;

public Connection(...);

//@ requires !opened;

//@ ensures opened;

public void open ();

//@ requires opened;

//@ ensures !opened;

public void close ();

Erik Poll, JML introduction - CHARTER meeting - 16

pointer trouble
References are the main source of trouble, also in verification
Universes are a type system to control aliasing

class A {

 //@ invariant invA;

 /*@ rep @*/ C c1, c2;

 /*@ rep @*/ B b;

}

class B {

 //@ invariant invB;

 /*@ rep @*/ D d;

}

a

a.c1 a.b

a.b.d

a.c2

• invariants should only depend on owned
 state
• an object's invariant may be broken when it

 invokes methods on sub-objects

Erik Poll, JML introduction - CHARTER meeting - 17

tools, related work, ...

Erik Poll, JML introduction - CHARTER meeting - 18

tool support: runtime assertion checking

• implemented in JMLrac, with JMLunit extension
• annotations provide the test oracle:

– any annotation violation is an error,
 except if it is the initial precondition

• Pros
– Lots of tests for free
– Complicated test code for free, eg for

 signals (Exception) balance ==\old(balance);
– More precise feedback about root causes

• eg "Invariant X violated in line 200" after 10 sec instead of
"Nullpointer exception in line 600" after 100 sec

Erik Poll, JML introduction - CHARTER meeting - 19

tool support: compile time checking

• extended static checking
 automated checking of simple specs

– ESC/Java(2)

• formal program verification tools
 interactive checking of arbitrarily complex specs

– KeY, Krakatoa, Freeboogie, JMLDirectVCGen....

There is a trade-off between usability & qualifability.
In practice, each tool support its own subset of JML.

Erik Poll, JML introduction - CHARTER meeting - 20

testing vs verification

• verification gives complete coverage
– all paths, all possible inputs

• if testing fails, you get a counterexample (trace);
 if verification fails, you typically don't....

• verification can be done before code is complete

• verification requires many more specs
– as verification is done on a per method basis
– incl API specs

Erik Poll, JML introduction - CHARTER meeting - 21

related work

• OCL for UML
 pro: not tied to a specific programming language
 con: idem
 less expressive, and semantics less clear

• Spec# for C#
 by Rustan Leino & co at Microsoft Research

• SparkAda for Ada
 by Praxis High Integrity System
 Commercially used

Erik Poll, JML introduction - CHARTER meeting - 22

• For Java 1.4
– JML2 jmlrac
– ESC/Java2
– KeY

• For newer Java versions - under construction
– OpenJML

 based on openjdk
 front end for runtime checking (and ESC)

tools and tool status

Erik Poll, JML introduction - CHARTER meeting - 23

program verification state-of-the-art

• JML verification tools can cope with typical Java Card
code
– small API, only 100's loc

• Microsoft hypervisor verification Hyper-V using VCC
– 60 kloc of C code

Erik Poll, JML introduction - CHARTER meeting - 24

some ideas...

• Coping with concurrency
 Track thread-ownership of objects
 marking objects are thread-local or shared,
 to make guarantees about memory-separation between

threads.
 Largely supported by type system

 Traceability could maybe be supported by naming
 JML annotations
 //@ invariant propertyXyz: ;

Erik Poll, JML introduction - CHARTER meeting - 25

questions?

Erik Poll, JML introduction - CHARTER meeting - 26

Exercise: JML specification for arraycopy

 /*@ requires ... ;

 ensures ... ;

 @*/

 static void arraycopy (int[] src, int srcPos,

 int[] dest, int destPos,

 int len)

 throws NullPointerException,

 ArrayIndexOutOfBoundsException;

Copies an array from the specified source array, beginning at the
specified position, to the specified position of the destination array.

Erik Poll, JML introduction - CHARTER meeting - 27

Exercise: JML specification for arraycopy

/*@ requires src != null && dest != null &&

 0 <= srcPos && srcPos + len < src.length &&

 0 <= destPos && srcPos + len < dest.length;

 ensures (\forall int i; 0 <= i && i < len;

 dest[dstPos+i] == src[srcPos+i]) &&

 (* rest unchanged *)

 @*/

 static void arraycopy (int[] src, int srcPos,

 int[] dest, int destPos,

 int len);

Erik Poll, JML introduction - CHARTER meeting - 28

Exercise: JML specification for arraycopy

/*@ requires src != null && dest != null &&

 0 <= srcPos && srcPos + len < src.length &&

 0 <= destPos && srcPos + len < dest.length;

 ensures (\forall int i; 0 <= i && i < len;

 dest[dstPos+i] == \old(src[srcPos+i])) &&

 (* rest unchanged *)

 @*/

 static void arraycopy (int[] src, int srcPos,

 int[] dest, int destPos,

 int len);

Erik Poll, JML introduction - CHARTER meeting - 29

Exercise: JML specification for arraycopy

/*@ requires ...

 ensures (\forall int i; 0 <= i && i < len;
 dest[dstPos+i] == \old(src[srcPos+i])) &&
 (* rest unchanged *)
 @*/
 static void arraycopy (int[] src, int srcPos,
 int[] dest, int destPos,
 int len);

We don't have to write \old(len) and \old(dest)[\old(dstPos)+1]
in the postcondition, because all parameters are implicily \old() in JML
postconditions

Erik Poll, JML introduction - CHARTER meeting - 30

Defaults and conjoining specs

• Default pre- and postconditions
 //@ requires true;
 //@ ensures true;

 can be omitted

• //@ requires P
 //@ requires Q

 means the same as
 //@ requires P && Q;

Erik Poll, JML introduction - CHARTER meeting - 31

Default signals clause?

 //@ requires amount >= 0;
 //@ ensures balance <= \old(balance);
 public debit(int amount) throws BankException

• Can debit throw a BankException, if precondition holds?
 YES
• Can debit throw a NullPointerException, if the precondition

holds?
 NO. Unlike Java, JML only allows method to throw unchecked

exceptions explicitly mentioned in throws-clauses!
• Methods are always allowed to throw Errors

Erik Poll, JML introduction - CHARTER meeting - 32

Default signals clause?

• For a method
 //@ public void m throws E1, ... En { ... }
 the default is
 //@ signals (E1) true;
 ...
 //@ signals (En) true;
 //@ signals_only E1, ... En;

• Here
 //@ signals_only E1, ... En;

 is shorthand for
 /*@ signals (Exception e)
 \typeof(e) <: E1 || ... || \typeof(e) <: En;
 @*/

Erik Poll, JML introduction - CHARTER meeting - 33

Specifying exceptional behaviour is tricky!

• Beware of the difference between
1. if P holds then exception E must be thrown
2. if P holds then exception E may be thrown
3. if exception of type E is thrown then P will hold

 (in the poststate)
 This is what signals specifies

• Most often we just want to rule out exceptions
– and come up with preconditions and invariants to do this

• Ruling out exceptions also helps with certified analyses for PCC, as it rules
out many execution paths

Erik Poll, JML introduction - CHARTER meeting - 34

requiring & ruling out exceptions

 /*@ requires amount <= balance;
 ensures ...;

 signals (Exception) false;

 also

 requires amount > balance;

 ensures false;

 signals (BankException) ...;

 @*/

 public debit(int amount) throws BankException

Erik Poll, JML introduction - CHARTER meeting - 35

requiring & ruling out exceptions

 /*@ normal_behavior

 requires amount <= balance;

 ensures ...;

 also

 exceptional_behavior

 requires amount > balance;

 signals (BankException) ...;

 @*/

 public debit(int amount) throws BankException

Erik Poll, JML introduction - CHARTER meeting - 36

requiring & ruling out exceptions

 /*@ normal_behavior

 requires amount <= balance;

 ensures ...;

 also

 exceptional_behavior

 requires amount > balance;

 signals (BankException) ...;

 @*/

 public debit(int amount) throws BankException

Erik Poll, JML introduction - CHARTER meeting - 37

requiring & ruling out exceptions

or simply

/*@ requires amount <= balance;

 ensures ...;

 @*/

 public debit(int amount) // throws BankException

Effectively a normal_behavior, since there is no throws clause

Ruling out exceptions, esp. RuntimeExceptions, as much as possible
is the natural thing to do – and a good bottom line specification

Erik Poll, JML introduction - CHARTER meeting - 38

Visibility and spec_public

The standard Java visibility modifiers (public, protected, private) can
be used on invariants and method specs, eg
 //@ private invariant 0 <= balance;

Visibility of fields can be loosened using the keyword spec_public, eg

 public class ePurse{
 private /*@ spec_public @*/ int balance;

 //@ ensures balance <= \old(balance);
 public debit(int amount)

 allows private field to be used in (public) spec of debit

Of course, this exposes implementation details, which is not nice...

Erik Poll, JML introduction - CHARTER meeting - 39

Dealing with undefinedness

• Using Java syntax in JML annotations has a drawback
– what is the meaning of

 //@ requires !(a[3] < 0);
 if a.length == 2 ?
• How to cope with Java expressions that throw exceptions?

– runtime assertion checker can report the exception
– program verifier can treat a[3] as unspecified integer

• Moral: write protective specifications, eg
 //@ requires a.length > 4 && !(a[3] < 0);

Erik Poll, JML introduction - CHARTER meeting - 40

pure

Methods without side-effects that are guaranteed to terminate can
be declared as pure
 /*@ pure @*/ int getBalance (){
 return balance;
 };

Pure methods can be used in JML annotations
 //@ requires amount < getBalance();
 public debit(int amount)

Erik Poll, JML introduction - CHARTER meeting - 41

assignable

The default assignable clause is
 //@ assignable \everything;

Pure methods are
 //@ assignable \nothing;

Pure constructors are
 //@ assignable this.*;

Erik Poll, JML introduction - CHARTER meeting - 42

Reasoning in presence of late binding

Late binding (aka dynamic dispatch) introduces a complication
in reasoning:
 which method specification do we use to reason about
 ; x.m();
 if we don't know the dynamic type of x?
Solutions:
1. do a case distinction over all possible dynamic types of x,

• ie. x's static type A and all its subclasses
Obviously not modular!
1. insist on behavioural subtyping:

• use spec for m in class A and require that specs for m
in subclasses are stronger or identical

Erik Poll, JML introduction - CHARTER meeting - 43

Behavioural subtyping & substitutivity

• The aim of behavioural subtyping aims to ensure the
principle of subsitutivity:

 "substituting a subclass object for a parent object will not
cause any surprises"

• Well-typed OO languages already ensure this in a weak form, as
soundness of subtyping:

 "substituting a subclass object for a parent object will not result in
'Method not found' errors at runtime"

Erik Poll, JML introduction - CHARTER meeting - 44

behavioural subtyping

Two ways to achieve behavioural subtyping
1. For any method spec in a subclass, prove that it is implies

the spec for that method in the parent class
• ie prove that the precondition is weaker !

 and the postcondition is stronger
1. Implicitly conjoin method spec in a subclass with method

specs in the parent class
– called specification inheritance, which is what JML uses
– this guarantees that resulting precondition is weaker,

and the resulting postcondition is stronger

Erik Poll, JML introduction - CHARTER meeting - 45

Specification inheritance for method specs

Method specs are inherited in subclasses, and required keyword also
warns that this is the case
 class Parent {
 //@ requires i >=0;
 //@ ensures \result >= i;
 int m(int i) {...}
 }
 class Child extends Parent {
 //@ also
 //@ requires i <= 0;
 //@ ensures \result <= i;
 int m(int i) {...}
 }

Effective spec of m in Child:

requires true;
ensures
 (i>=0 ==> result>=i)
&&

 (i<=0 ==> result<=i);

Erik Poll, JML introduction - CHARTER meeting - 46

Specification inheritance for invariants

Invariants are inherited in subclasses, eg in

 class Parent {
 //@ invariant invParent;
 ...
 }

 class Child extends Parent {
 //@ invariant invChild;
 ...
 }

the invariant for the Child is invChild && invParent

JML
invariants

Erik Poll, JML introduction - CHARTER meeting - 48

The semantics of invariants

• Basic idea:
– Invariants have to hold on method entry and exit
– but may be broken temporarily during a method

• NB invariants also have to hold if an exception is thrown!

• But there's more to it than that...

Erik Poll, JML introduction - CHARTER meeting - 49

The callback problem

class A {
 int i;
 int[] a;
 B b;
 //@ invariant 0<=i && i< a.length;

 void inc() {a[i]++; }

 void break() {
 int oldi = i; i = -1;
 b.m(); i = oldi;
 }

class B {
 A a;

 void m() {
 a.inc(); // possible callback
 }

}

What if b.m() does a callback
on inc of that same A object,
while its invariant is broken...

invariant temporarily
broken

Erik Poll, JML introduction - CHARTER meeting - 50

The semantics of invariants

• An invariant can be temporarily broken during a method, but
– because of the possible callbacks - it has to hold when any
other method is invoked.

• Worse still, one object could break another object's
invariant...

• visible state semantics
 all invariants of all objects have to hold in all visible states,

ie. entry and exit points of methods

Erik Poll, JML introduction - CHARTER meeting - 51

Problems with invariants

• The visible state semantics is very restrictive
– eg, a constructor cannot call out to other methods

before it has established the invariant

 It can be loosened in an ad-hoc manner by declaring methods as

helper methods
– helper methods don't require or ensure invariants
– effectively, you can think of them as in-lined

• The more general problem: how to cope with invariants that
involve multiple (or aggregate) objects
– still an active research area...
– one solution is to use some notion of object ownership

Erik Poll, JML introduction - CHARTER meeting - 52

universes & relevant invariant semantics

Current JML approach to weakening visible state semantics for
invariants
• universe type system

– enforces hierachical nesting of objects

• relevant invariant semantics
– invariant of outer objects may be broken when calling

methods in inner objects

Erik Poll, JML introduction - CHARTER meeting - 53

universes for alias control

class A {

 //@ invariant invA;

 /*@ rep @*/ C c1, c2;

 /*@ rep @*/ B b;

}

class B {

 //@ invariant invB;

 /*@ rep @*/ D d;

}

a

a.c1 a.b

a.b.d

ac2

• invariants should only depend on owned
 state
• an object's invariant may be broken when it

 invokes methods on sub-objects

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

