
Formal Methods

for Security Functionality and

for Secure Functionality

Erik Poll

Digital Security

Radboud University Nijmegen

Topics

• Some of my own research on formal methods & security

• Security seemed like a killer application for formal methods…

• Incl. work on state machine learning

• Some of other people’s research

• esp. LangSec (Language-theoretic Security) [http://langsec.org]

• Some directions for the future

• Not only in research but also in teaching:

Some lightweight formal methods could prevent a lot of security misery

Radboud University NijmegenErik Poll 3

Security is a software engineering problem

Fundamental fact of life:

Things can be hacked because there is SOFTWARE inside them

Useful technologies that help but that do not solve this problem include

• Crypto

• offers some prevention against very specific security problems

• Network intrusion detection, SOCs (Security Operation Centre), …

• to detect when things were hacked & then respond

These and other security technologies introduce yet more software

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

Radboud University NijmegenErik Poll 4

Example: Windows Defender bug [CVE 2017-0290]

• Remotely exploitable type confusion in the JavaScript engine inside the

MsMpEng malware protection engine

• Enabled by default on Windows 8, 8.1, 10 and Windows Server 2008 and 2012

• Runs as NT AUTHORITY\SYSTEM without sandboxing

• Remotely accessible via web browsers, Exchange, and Outlook

Vulnerability discovered by Natalie Silvanovich and Tavis Ormandy

https://bugs.chromium.org/p/project-zero/issues/detail?id=1252

5Erik Poll Radboud University Nijmegen

One approach to use formal methods for security

1. Take some security-critical system

• E.g. an OS kernel/hypervisor, security protocol, smartcard program

2. Formalise & verify the security guarantees this system provides

• These security guarantees can be tricky formalise, but it is (sort of) clear

what they are

Great success stories:

• L4.verified: verification of seL4 microkernel

• TLS: analysis & verified implementations of new TLS 1.3

This is ‘classic’ FM: formally specify & then verify

Radboud University NijmegenErik Poll 6

Security Functionality vs Secure Functionality

• TLS and OS kernels provide security functionality.

Therefore, they are natural targets for applying FM:

1. They are obviously security-critical

2. There are security properties to specify & verify

• But that about all the other software?

This software should also be ‘secure’, but what does that even mean?

• What does it mean for a PDF viewer to be secure?

• Worrying quote: “Adobe has enhanced JavaScript so that you can

easily integrate this level of interactivity into your PDF documents.”

Radboud University NijmegenErik Poll 7

Formal approaches to specify some security

• Temporal logic or security automata

• E.g. action X only possible after entering PIN code

• Information flow properties

• Showing that confidential information does not leak

• Showing that untrusted (tainted) information does not end up in places

where it can do damage

• Precondition TRUE in contracts for public interfaces

• Not just {P} S {Q}

but also {not P} S {nothing ’bad’ happened}

or only {true} S {no WeirdRuntimeException}

Radboud University NijmegenErik Poll 8

Formal Methods for Secure Functionality

• What to verify for, say, a PDF viewer?

• One generic property we would want verify

This application cannot be hacked

Hard to specify, let alone formally

• Fortunately, people keep making the same security mistakes!

So we can approximate this property with

This application does not contain well-known security flaw X

Radboud University NijmegenErik Poll 9

Standard security problems

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

SANS/CWE TOP 25 [2019]

1. Improper Restriction of Operations within the

Bounds of a Memory Buffer

2. Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

3. Improper Input Validation

4. Information exposure

5. Buffer overread

6. SQL Injection

7. Use After Free

8. Integer Overflow

9. CSRF

10. Path Traversal

11. OS Command Injection

12. Out-of-bounds Write

13. Improper Authentication

14. NULL Pointer Dereference

15. Incorrect Permission Assignment

16. Unrestricted Upload of File with Dangerous Type

17. Improper Restriction of XML External Entity

18. Code Injection

19. Use of Hard-coded Credentials

20. Uncontrolled Resource Consumption

21. Missing Release of Resource

22. Untrusted Search Path

23. Deserialization of Untrusted Data

24. Improper Privilege Management

25. Improper Certificate Validation

Erik Poll Radboud University Nijmegen 10

CWE TOP 668
CWE-14 Compiler Removal of Code to Clear Buffers

CWE-20 ☉ Improper Input Validation

CWE-22 ☉ Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉ Relative Path Traversal

CWE-24 ☉ Path Traversal: '../filedir'

CWE-25 ☉ Path Traversal: '/../filedir'

CWE-26 ☉ Path Traversal: '/dir/../filename'

CWE-27 ☉ Path Traversal: 'dir/../../filename'

CWE-28 ☉ Path Traversal: '..\filedir'

CWE-29 ☉ Path Traversal: '\..\filename'

CWE-30 ☉ Path Traversal: '\dir\..\filename'

CWE-31 ☉ Path Traversal: 'dir\..\..\filename'

CWE-32 ☉ Path Traversal: '...' (Triple Dot)

CWE-33 ☉ Path Traversal: '....' (Multiple Dot)

CWE-34 ☉ Path Traversal: '....//'

CWE-35 ☉ Path Traversal: '.../...//'

CWE-36 ☉ Absolute Path Traversal

CWE-37 ☉ Path Traversal: '/absolute/pathname/here'

CWE-38 ☉ Path Traversal: '\absolute\pathname\here'

CWE-39 ☉ Path Traversal: 'C:dirname'

CWE-40 ☉ Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉ Improper Resolution of Path Equivalence

CWE-51 ☉ Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉ Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉ Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉ Improper Link Resolution Before File Access ('Link Following')

CWE-61 UNIX Symbolic Link (Symlink) Following

CWE-62 UNIX Hard Link

CWE-73 External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76 Improper Neutralization of Equivalent Special Elements

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88 Argument Injection or Modification

CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90
Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94 Improper Control of Generation of Code ('Code Injection')

CWE-95
Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96
Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-114 Process Control

CWE-116 Improper Encoding or Escaping of Output

CWE-117 Improper Output Neutralization for Logs

CWE-123 Write-what-where Condition

CWE-134 Use of Externally-Controlled Format String

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-138 Improper Neutralization of Special Elements

CWE-140 Improper Neutralization of Delimiters

CWE-141 Improper Neutralization of Parameter/Argument Delimiters

CWE-142 Improper Neutralization of Value Delimiters

CWE-143 Improper Neutralization of Record Delimiters

CWE-144 Improper Neutralization of Line Delimiters

CWE-145 Improper Neutralization of Section Delimiters

CWE-146 Improper Neutralization of Expression/Command Delimiters

CWE-147 Improper Neutralization of Input Terminators

CWE-148 Improper Neutralization of Input Leaders

CWE-149 Improper Neutralization of Quoting Syntax

CWE-150 Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151 Improper Neutralization of Comment Delimiters

CWE-152 Improper Neutralization of Macro Symbols

CWE-153 Improper Neutralization of Substitution Characters

CWE-154 Improper Neutralization of Variable Name Delimiters

CWE-155 Improper Neutralization of Wildcards or Matching Symbols

CWE-156 Improper Neutralization of Whitespace

CWE-157 Failure to Sanitize Paired Delimiters

CWE-158 Improper Neutralization of Null Byte or NUL Character

CWE-159 Failure to Sanitize Special Element

CWE-160 Improper Neutralization of Leading Special Elements

CWE-161 Improper Neutralization of Multiple Leading Special Elements

CWE-162 Improper Neutralization of Trailing Special Elements

CWE-163 Improper Neutralization of Multiple Trailing Special Elements

CWE-164 Improper Neutralization of Internal Special Elements

CWE-165 Improper Neutralization of Multiple Internal Special Elements

CWE-166 Improper Handling of Missing Special Element

CWE-167 Improper Handling of Additional Special Element

CWE-168 Improper Handling of Inconsistent Special Elements

CWE-172 Encoding Error

CWE-173 Improper Handling of Alternate Encoding

CWE-174 Double Decoding of the Same Data

CWE-175 Improper Handling of Mixed Encoding

CWE-176 Improper Handling of Unicode Encoding

CWE-177 Improper Handling of URL Encoding (Hex Encoding)

CWE-178 Improper Handling of Case Sensitivity

CWE-179 Incorrect Behavior Order: Early Validation

CWE-180 Incorrect Behavior Order: Validate Before Canonicalize

CWE-181 Incorrect Behavior Order: Validate Before Filter

CWE-182 Collapse of Data into Unsafe Value

CWE-184 ☉
Incomplete Blacklist

CWE-185 Incorrect Regular Expression

CWE-186 Overly Restrictive Regular Expression

CWE-187 Partial Comparison

CWE-188 ☉
Reliance on Data/Memory Layout

CWE-200 Information Exposure

CWE-201 Information Exposure Through Sent Data

CWE-203 Information Exposure Through Discrepancy

CWE-204 Response Discrepancy Information Exposure

CWE-209 Information Exposure Through an Error Message

CWE-210 Information Exposure Through Self-generated Error Message

CWE-211 Information Exposure Through Externally-generated Error Message

CWE-212 Improper Cross-boundary Removal of Sensitive Data

CWE-215 Information Exposure Through Debug Information

CWE-216 Containment Errors (Container Errors)

CWE-227 ☉
Improper Fulfillment of API Contract ('API Abuse')

CWE-241 Improper Handling of Unexpected Data Type

CWE-252 Unchecked Return Value

CWE-253 Incorrect Check of Function Return Value

CWE-273 Improper Check for Dropped Privileges

CWE-311 Missing Encryption of Sensitive Data

CWE-319 Cleartext Transmission of Sensitive Information

CWE-354 Improper Validation of Integrity Check Value

CWE-364 ◄
Signal Handler Race Condition

CWE-365 ◄
Race Condition in Switch

CWE-374 Passing Mutable Objects to an Untrusted Method

CWE-375 Returning a Mutable Object to an Untrusted Caller

CWE-378 Creation of Temporary File With Insecure Permissions

CWE-379 Creation of Temporary File in Directory with Incorrect Permissions

CWE-390 Detection of Error Condition Without Action

CWE-391 Unchecked Error Condition

CWE-394 Unexpected Status Code or Return Value

CWE-405 ◄
Asymmetric Resource Consumption (Amplification)

CWE-406 Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉
Algorithmic Complexity

CWE-408 ◄
Incorrect Behavior Order: Early Amplification

CWE-409 Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410 Insufficient Resource Pool

CWE-412 ◄
Unrestricted Externally Accessible Lock

CWE-413 ◄
Improper Resource Locking

CWE-414 ◄
Missing Lock Check

CWE-430 Deployment of Wrong Handler

CWE-431 Missing Handler

CWE-432 ◄
Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉
Unimplemented or Unsupported Feature in UI

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables or Data Stores

CWE-455 Non-exit on Failed Initialization

CWE-456 Missing Initialization of a Variable

CWE-460 Improper Cleanup on Thrown Exception

CWE-462 Duplicate Key in Associative List (Alist)

CWE-463 Deletion of Data Structure Sentinel

CWE-464 Addition of Data Structure Sentinel

CWE-470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-474 ☉
Use of Function with Inconsistent Implementations

CWE-479 ◄
Signal Handler Use of a Non-reentrant Function

CWE-488 ◄
Exposure of Data Element to Wrong Session

CWE-489 ☉
Leftover Debug Code

CWE-493 ☉
Critical Public Variable Without Final Modifier

CWE-494 Download of Code Without Integrity Check

CWE-496 Public Data Assigned to Private Array-Typed Field

CWE-497 Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉
Cloneable Class Containing Sensitive Information

CWE-500 ☉
Public Static Field Not Marked Final

CWE-502 ☉
Deserialization of Untrusted Data

CWE-506 ☉
Embedded Malicious Code

CWE-507 ☉
Trojan Horse

CWE-508 Non-Replicating Malicious Code

CWE-509 ☉
Replicating Malicious Code (Virus or Worm)

CWE-510 Trapdoor

CWE-511 ☉
Logic/Time Bomb

CWE-512 ☉
Spyware

CWE-524 ☉
Information Exposure Through Caching

CWE-526 Information Exposure Through Environmental Variables

CWE-538 File and Directory Information Exposure

CWE-539 ☉
Information Exposure Through Persistent Cookies

CWE-543 ◄
Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544 Missing Standardized Error Handling Mechanism

CWE-546 ☉
Suspicious Comment

CWE-548 ☉
Information Exposure Through Directory Listing

CWE-584 Return Inside Finally Block

CWE-587 Assignment of a Fixed Address to a Pointer

CWE-591 Sensitive Data Storage in Improperly Locked Memory

CWE-595 Comparison of Object References Instead of Object Contents

CWE-598 Information Exposure Through Query Strings in GET Request

CWE-605 Multiple Binds to the Same Port

CWE-622 ☉
Improper Validation of Function Hook Arguments

CWE-636 ☉
Not Failing Securely ('Failing Open')

CWE-637 ☉
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638 Not Using Complete Mediation

CWE-641 Improper Restriction of Names for Files and Other Resources

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄
Use of a Non-reentrant Function in a Concurrent Context

CWE-664 Improper Control of a Resource Through its Lifetime

CWE-666 ☉
Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉
Uncontrolled Recursion

CWE-688 Function Call With Incorrect Variable or Reference as Argument

CWE-694 Use of Multiple Resources with Duplicate Identifier

CWE-754 Improper Check for Unusual or Exceptional Conditions

CWE-759 Use of a One-Way Hash without a Salt

CWE-761 Free of Pointer not at Start of Buffer

CWE-765 ◄
Multiple Unlocks of a Critical Resource

CWE-767 Access to Critical Private Variable via Public Method

CWE-773 ◄
Missing Reference to Active File Descriptor or Handle

CWE-774 ◄
Allocation of File Descriptors or Handles Without Limits or Throttling

CWE-777 Regular Expression without Anchors

CWE-785 Use of Path Manipulation Function without Maximum-sized Buffer

CWE-789 Uncontrolled Memory Allocation

CWE-806 Buffer Access Using Size of Source Buffer

CWE-828 ◄
Signal Handler with Functionality that is not Asynchronous-Safe

CWE-909 Missing Initialization of Resource

CWE-912 Hidden Functionality

CWE-913 Improper Control of Dynamically-Managed Code Resources

CWE-914 Improper Control of Dynamically-Identified Variables

CWE-915 Improperly Controlled Modification of Dynamically-Determined Object Attributes

CWE-916 ☉
Use of Password Hash With Insufficient Computational Effort

CWE-940 ☉
Improper Verification of Source of a Communication Channel

CWE-943 Improper Neutralization of Special Elements in Data Query Logic

Top 1 security vulnerability: input handling

Mishandling malicious input is the common theme in most attacks

eg buffer overflow, format string attack, command injection, path traversal, SQL

injection, XSS, CSRF, Word macros, XML/XPath injection, LDAP injection, CRLF

injection, deserialization attacks, zip bombs, …

• Garbage In, Garbage Out

leads to

Malicious Garbage In, Security Incident Out

11Erik Poll Radboud University Nijmegen

application
malicious input

LangSec (Language-theoretic Security)

• Interesting look at root causes of problems

• Useful suggestions for dos and don’ts

• The language in Language-theoretic Security refers to input languages,

not modelling or programming languages.

Sergey Bratus & Meredith Patterson

‘The science of insecurity’

CCC 2012

Erik Poll Radboud University Nijmegen 12

Fallacy of classic input validation?

Classical remedy to input problems: input validation / input sanitisation

remove or encode harmful characters (eg ; ' ")

before processing inputs

But...

• Which characters are harmful depends on the language/format, and a

typical application handles many languages.

Eg ' problematic for SQL database, < > for web app, & for LDAP server

• Instead of validating input before feeding it to crappy software that

processes it, maybe that software should be more robust?

• esp. the parsing it performs as part of any processing

Erik Poll Radboud University Nijmegen 13

Example: SMS of Death

Text message that used to crash iPhones:

• Should telecom operators or phones do input validation to remove these

dangerous Unicode combinations from SMS text messages?

• Or should software be robust in dealing with arbitrary combinations of

Unicode?

So, is input validation always the right way to prevent input problems?

https://www.reddit.com/r/iphone/comments/37eaxs/um_can_someone_explain_this_phenomenon/

Erik Poll Radboud University Nijmegen 14

LangSec: root causes

• Input languages (aka protocols, file formats, encodings) play the

central role causing security flaws

• Any language anywhere in the protocol stack, incl.

TCP/IP v4 or v6,

Ethernet, WiFi, GSM, 3G, 4G, 5G, Bluetooth, USB,

TLS, SSH, OpenVPN,

HTTP(S), X.509, HTML5 (incl. JavaScript), XML, JSON,

URLs, email addresses, S/MIME,

JPG, MP3, MPEG, Flash,

docx (incl macros), PDF (incl. JavaScript), xls (incl. macros) , …

• This provides a attack surface for the attacker

15Erik Poll Radboud University Nijmegen

huge

LangSec: root causes of security problems

• Ad-hoc, imprecise, or complex notion of input validity

Eg, have you looked at how complex the PDF file format is? Or HTML5? Or

X.509 certificates?

• Mixing input recognition & processing

esp. in shotgun parsers, handwritten code that incrementally parses &

interprets input, in a piece-meal fashion

Buggy parsing & processing then results in weird behaviour

- a weird machine - for attackers to have fun with

Erik Poll Radboud University Nijmegen 16

1. Precisely defined input languages

• eg with regular expression or EBNF grammar

2. Generated parser code

3. Complete parsing before processing

• Also don’t substitute strings & then parse,

but first parse & then substitute in parse tree

• cf. parameterised queries instead of dynamic SQL

4. Keep the input language simple & clear

• So that there is minimal chance of bugs or ambiguities

• So that you give minimal processing power given to attackers

LangSec principles to prevent input problems

17Erik Poll Radboud University Nijmegen

Example input problem: PDF

Root cause: PDF spec is horrendously complex

All PDF viewers suffer from such problems, see

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

18Erik Poll Radboud University Nijmegen

Example input problem: X.509 certificates

X.509 spec is horrendously complex. Example attacks:

• Multiple comma-separated names in a certificate Common Name

paypal.com,mafia.org

Different browsers and CAs interpret this in different ways

• ANS.1 attacks in X.509 certificates

Null terminator in ANS.1 BER-encoded string in a certificate Common Name

paypal.com\00mafia.org

• PKCS#10-tunneled SQL injection

SQL command inside a BMPString, UTF8String or UniversalString used as
PKCS#10 Subject Name ?

[Dan Kaminsky, Meredith Patterson, and Len Sassaman, PKI Layer Cake: New Collision
Attacks against the Global X.509 Infrastructure, Financial Crypto 2010]

19Erik Poll Radboud University Nijmegen

Eg GSM specs

for SMS text messages

Unsurprisingly,

malformed GSM traffic

will trigger lots of

problems

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres,

Security Testing of GSM Implementations, ESSOS 2014]

Example input problem: GSM

20Erik Poll

LangSec in slogans

[Image by Kythera of Anevern, see http://langsec.org/occupy]
21

22
[Image by Kythera of Anevern, see http://langsec.org/occupy]

23
[Image by Kythera of Anevern, see http://langsec.org/occupy]

LangSec continued:

Protocol state machines

or

Formal Methods for Free!

[LangSec 2015]

Sequences of inputs

• Many protocols not only involves a language of input messages

but only a notion of session, ie. sequence of messages

• Most specs only describe the happy flow…

• For security protocols, getting unhappy flows

correct is crucial

• Fortunately, we can extract these state machines

from code - or hardware - using active learning

25Erik Poll Radboud University Nijmegen

Case study: EMV

• Most banking smartcards implement a variant of EMV

• EMV = Europay-Mastercard-Visa

• Specification in 4 books totalling > 700 pages

• Contactless payments: another 7 books with > 2000 pages

26Erik Poll Radboud University Nijmegen

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

State machine learning of card (using LearnLib)

27
Erik Poll Radboud University Nijmegen

State machine learning of card (using LearnLib)

28

merging arrows

with identical

response

Erik Poll Radboud University Nijmegen

State machine learning of card (using LearnLib)

29

merging arrows with

same start & end state

We did not find bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

Erik Poll Radboud University Nijmegen

Using state machines for comparison

Are both implementations correct & secure? Or compatible?

30

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Erik Poll Radboud University Nijmegen

Using state machine for security analysis

31

Which actions are guarded by PIN check?

Erik Poll Radboud University Nijmegen

Security flaw in USB-connected internet banking token

• User has to press OK to confirm transactions

• But … a strange sequence of USB instructions

can by-pass this check

[Georg Chalupar et al., Automated reverse engineering using Lego, WOOT 2014]

Movie at http://tinyurl/legolearn

State machine learning of internet banking token

State machine of flawed device & patched device

Erik Poll Radboud University Nijmegen 32

33

34

State machine learning of internet banking token

35

Would you trust this to be secure?

Complete state machine

Erik Poll Radboud University Nijmegen

State machine learning for TLS

Protocol state machine of the NSS TLS implementation

36Erik Poll Radboud University Nijmegen

State machine of OpenSSL

OpenSSL

37Erik Poll Radboud University Nijmegen

State machine of Java Secure Socket Exchange

38Erik Poll Radboud University Nijmegen

State machine learning for TLS

39

All implementations we analysed were different! Two had security flaws

Why doesn’t the TLS spec include a state machine?

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, USENIX Security 2015]

40

Forwarding flaws

[LangSec 2018]

[Strings considered harmful, USENIX ;login:, 2018]

(At least) two types of input problems

1. Buggy processing & parsing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote code

execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end service/system/API, to cause damage there

• Classic examples: SQL injection, XSS, format string attack, Word macros

This is intended behaviour of the back-end, introduced deliberately,

but exposed by mistake by the front-end

42Erik Poll Radboud University Nijmegen

43

(abuse of) a feature !

Forwarding Flaws

back-end

service

malicious

input

eg SQL query

or Word macro

application

application
malicious

input

a bug !
Processing Flaws

eg buffer overflow in

PDF viewer

More back-ends, more languages, more problems

44Erik Poll

SQL

database
malicious

input

web

application

OS

web

browser

XSS

command

injection

SQLi

file

systempath

traversal

format

string attack C library

Radboud University Nijmegen

How & where to tackle input problems?

45

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

Where will this
input end up?

?

?

validation/sanitisation:

filtering and/or escaping?

Which bits
are input?

LangSec approach:

- Simple & clear language spec

- Generated parser code

- Complete parsing before

any further processing

Erik Poll Radboud University Nijmegen

Anti-pattern: string concatenation

• Standard recipe for security disaster: concatenating several pieces of

data, some of them user input, and passing the result on to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

46Erik Poll Radboud University Nijmegen

Anti-pattern: strings

The use of strings in itself is already troublesome

• be it char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:

eg. name, file name, email address, URL, shell command, bit of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing them often

involves some interpretation (incl. parsing)

• If you have a shotgun parser, your code will use strings

2. The same string may be handled & interpreted in many – possibly

unexpected – ways

3. A string parameter in an API call often hides an expressive & powerful

language

47Erik Poll Radboud University Nijmegen

Remedy: (1) use types to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages:

• Types provide structured data

• No ambiguity about the intended use of data

48Erik Poll Radboud University Nijmegen

Remedy: (2) use types to distinguish trust levels

• Use information flow types to track the origins of data

and/or to control destinations

• Eg distinguish untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

49Erik Poll Radboud University Nijmegen

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out

• as latest attacks using script gadgets show

[Lekies et al., Code-Reuse Attacks for the Web: Breaking Cross-Site
Scripting Mitigations via Script Gadgets, CCS’17]

Google’s Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based APIs with typed APIs

• using TrustedHtml, TrustedUrl, TrustedScriptUrl,

TrustedJavaScript,…

• ‘safe’ APIs for back-ends which auto-escape untrusted inputs

50Erik Poll Radboud University Nijmegen

Conclusions

Security is about software & handling input !

• Input handling problems typically come from

• buggy parsing

• buggy state machines

• unintended parsing due to forwarding

Ironically – or embarrassingly –, parsing is a very well-understood area of

computer science…

• We all teach finite state machines, regular expressions, grammars, …

to our students, but will they ever use them in practice?

• LangSec provides some constructive remedies to tackle this

• Have clear, simple & well-specified input languages

• Generate parser code

• Don’t use strings

• Do use types, to distinguish languages & trust levels

Radboud University NijmegenErik Poll 52

Thanks for your attention!

Erik Poll Radboud University Nijmegen 53

