
Embedded Software Security
ISSISP 2015

(6th Int. Summer School on Information Security and Protection)

Erik Poll
 Digital Security group

Radboud University Nijmegen
The Netherlands

1

Digital Security @ Radboud University Nijmegen

• formal methods for program analysis and protocol analysis
esp. for smartcards & RFID

• smartcard applications

• cryptanalysis

• side channel analysis

• identity management & privacy, incl. legal aspects

• more applied security, eg voting machines, smart grid,...

2

Overview

1. Smartcards & RFID

2. Embedded Security

3. Side channel attacks & defensive coding

4. Dynamic security analysis:
Fuzzing & automated reverse engineering

5. Physical attacks

3

involves software
and hardware

purely software
related

purely hardware
related

Smartcards & RFID

4

Example smartcard & RFID uses

• bank cards
• SIMs in mobile phone

• public transport
• identity documents

modern passports and national ID cards
contain (contactless) chip

• access cards
to control access to buildings, computer networks, laptops,...

• pay TV

5

Why smartcards?

Using cryptography can solve some security problems,

but using cryptography also introduces new security problems:

1. where do we store cryptographic keys?

2. who or what do we trust to use cryptographic keys?

3. key management – ie generating, distributing, revoking keys

Smartcards provide a solution for 1 & 2.

It helps with 3 by providing a way to distribute keys to users.

Alternative solution, used in back-ends: Hardware Security Modules (HSM)

6

 Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed and
accuracy when performing cryptographic operations.

 They are also large, expensive to maintain, difficult to manage,
and they pollute the environment.

 It is astonishing that these devices continue to be
manufactured and deployed. But they are sufficently pervasive
that we must design our protocols around their limitations

– Kaufman, Perlman, and Speciner

7

Typical use of smartcard for authentication

• If card performs encryption, then key K never leaves the card
• The card issuer does not have to trust the network, the terminal, or the card

holder

• The use of keys for encryption to ensure confidentiality is usually less
important than for signing or MAC-ing to ensure integrity/authentication

8

secret
 key K

CPU

challenge c

response encK(c)

What is a smartcard?

• Tamper-resistant computer, on a single chip,
 embedded in piece of plastic, with limited resources

– aka chip card or integrated circuit card (ICC)
– tamper-resistant, to a degree – not tamper-proof
– tamper-evident, to a degree

• Capable of “securely” storing & processing data

• This processing capability is what makes a smartcard smart;
stupid cards can store but not process

• NB processing capabilities vary a lot!

• Cards can have contact interface, or contactless (RFID) interface

9

3 types of functionality

1. stupid card just reports some data
 eg card shouts out a (unique) serial number on start-up

2. stupid smartcard aka memory card
 provides configurable file system with access control

by means of PIN code/passwords or crypto keys
or even simpler: irreversible writes

3. smart smartcard aka microprocessor card
 provides programmable CPU that can implement any functionality

eg complicated security protocols

What type of attacks can 2 & 3 withstand that 1 can't?
Replay attacks!
 10

Microprocessor smartcard hardware

• CPU (usually 8 or 16, but now also 32 bit)
• possibly also crypto coprocessor & random number generator (RNG)
• memory: volatile RAM and persistent ROM & EEPROM

• EEPROM serves as the smartcard's hard disk
• NB no power, no clock!

A modern card may have 512 bytes RAM, 16K ROM, 64K EEPROM and
operate at 13.5 MHz

Important reason for low capabilities: cost!

Also, keeping smartcard simple allows higher confidence:
you don’t want Windows or Linux as operating system on a smartcard

11

Smartcard Operating System (OS)

• Microprocessor smartcards come with very simple operating system.
Simple because there is no multi-threading, no complex device drivers

 Old-fashioned smartcards contain one program, that cannot be changed

 Modern smartcard platforms

 are multi-application, ie allow multiple, independent programs (aka
applets) to be installed on one card

 allow post-issuance download: applications to be added (or removed)
after the card has been issued to the card holder

 Of course, this is tightly controlled - by digital signatures

 Examples of such modern platforms: JavaCard and MULTOS

 Application management typically uses the GlobalPlatform standard

12

Contact cards (ISO 7816)

External power supply and external clock
• Originally 5 V, now also 3V or 1.8V
• Vpp - higher voltage for writing EEPROM

No longer used as it introduces a serious security weakness!

13

The terminal problem!

 THE fundamental problem with smartcards
no trusted I/O between user and card
 no display
 no keyboard

Solutions:

 Card with built-in display & keyboard

 Alternative: give people a reader

14

RFID tags

There are many types of RFID, with different operating ranges.

15

Contactless cards aka RFID (ISO 14443)

Commonly used (passport, public transport, contactless bank cards):

ISO14443 aka proximity cards

– operating range of < 10 cm

– antenna used both for

• powering card
• communication

• ISO14443 is compatible with
NFC in mobile phones

16

Using and/or attacking at larger distances

• Max. distance at which a proximity card can be activated is 50 cm

• Max. distance at which it can be eavesdropped is > 10 meters

[René Habraken et al., An RFID skimming gate using Higher Harmonics, RFIDSec 2015]

17

Embedded Security

18

What makes embedded security special?

Important characteristics

• Limited resources (storage, processing, I/O bandwidth, ..)

• More exotic hardware & software platforms, and protocols

Some good news for security:

• less software – hence fewer exploitable bugs

• attacker may lack knowledge about the platform & protocols

• no OS access, eg to binaries

But also some bad news:

• attacker has physical access

• fewer resources for countermeasures

 19

Attacker model for embedded security

Even if all software is correct & free from security bugs
then the attacker can still observe or attack the hardware

20

embedded system

Hardware

OS

application

I/O

application

Specific threat for embedded software

Attacker can get physical access
and carry out physical attacks
on the endpoints.

Physical attacks can attack

1. the static hardware
(eg extracting ROM content) , or

2. attack the card while it is executing

21

depends on
 HW characteristics

Security flaws can happen at many levels

22

common but
easy to avoid!

1 & 2 common
but easy to avoid!

depends on
 HW characteristics

3, 5, 6 depend on
 HW characteristics

1. Choice of cryptographic primitives (AES, RSA, …)
Classic mistake: proprietary crypto

2. Key management
Classic mistake: default keys or same key in many devices

3. Implementation of the cryptographic primitives
Bad implementation will leak keys, as we will discuss at length

4. Design of the security protocol
Designing security protocols is notoriously tricky

5. Implementation of the security protocol
ie. software bugs, as usual

6. Purely physical attacks, eg to extract memory contents (especially keys)

Our toys for protocol analysis

23

old-fashioned version
(used for hacking pay TV)

newer, thin versions
(used for studying SIM locking)

Our toys for protocol analysis

24

Our toys for protocol analysis

25

Classic flaw 1: flawed cryptography

Homemade, proprietary cryptographic algorithms are routinely broken.

For example

 Crypto-1 used in MIFARE Classic, eg. by MetroRio

 COMP128 and A5/1 used in GSM

 SecureMemory, CryptoMemory, CryptoRF

 iClass, iClass Elite

 HiTag2

 Megamos

 ...

Stick to AES, RSA, ECC, SHA2, 3DES, …!

26

https://www.youtube.com/watch?v=NW3RGbQTLhE
https://www.youtube.com/watch?v=S8z9mgIkqBA

https://www.youtube.com/watch?v=NW3RGbQTLhE�
https://www.youtube.com/watch?v=S8z9mgIkqBA�

Classic flaw 2: flawed key management

Many systems are poorly configured wrt. using cryptographic keys

For example,

• Lukas Grunwald found 75% of systems using MIFARE RFID tags

• use the default key (which is A0A1A2A3A4A5)

• or, use keys used in examples in documentation

• All HID iClass RFID tags worldwide use the same master key

 Moreover, this master key is in all RFID readers sold by HID.

Extracting one key from one device should not break the entire system!

27

Classic flaw 3: flawed security protocols

Security protocols are notoriously tricky

 `Three line programs people still manage to get wrong’ [Roger Needham]

For example

• Some systems using RFID cards only rely on the unique serial number (UID)
of the card for authentication.
This UID can be trivally replayed, and possibly copied to other cards

• One variant of MasterCard’s EMV-CAP standard for internet banking using a
nonce (random Number used ONCE) which is always 0x0000000

• HID’s more expensive HiClass Elite is less secure than the standard HiClass.

• …

Keep security protocols – and hence their implementations – simple!

28

Side-channel attacks

29

Pizza deliveries as side-channel

Example side channel: pizza deliveries to the Pentagon

30

Pizza deliveries as side-channel

monday evening tuesday evening

31

What morning is the invasion taking place?

Side channel analysis

• Side-channel = any other channel than the normal I/O channel that may be
observed (or interfered with)

• Possible side-channels:
– power consumption
– timing
– electro-magnetic (EM) radiation
– sound
–

32

Some history of side channel attacks

• TEMPEST since 1960s computers are known to emit EM signal

– First evidence in 1943: an engineer using a Bell Telephone 131‐B2 noticed that a
digital oscilloscope spiked for every encrypted letter

– Declassified in 2008

• In 1965 MI5 put microphone near rotor-cipher machine in Egyptian embassy:
click-sounds of machine used to break encryption

• First academic publications by Paul Kocher et al. in 1990s:
1996 (timing) and 1999 (power)

• [P. Kocher. Timing Attacks on implementations of Diffie-Hellman, RSA, DSS and Other Systems,
CRYPTO 1996]

 [P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, CRYPTO 1999]

33

TEMPEST examples

• Laptop screen at 10 meter through 3 (thin) walls

• Dutch electronic voting machines were banned because EM radiation could
break vote secrecy

34

Side channel attacks

Side channel attacks are the Achilles’ heel of cryptography!

• The mathematics of cryptography is very elegant,
making implementation resistant to side-channel attacks is very messy

• Origin of the CHES (Cryptographic Hardware & Embedded Systems)
conference

Examples coming up

• Simple Power Analysis (SPA)

• Differential Power Analysis (DPA)

• Fault Injection

35

passive

active

Power analysis

• Power analysis uses the electricity consumption of a device as side-channel

• Power analysis typically leaves the card intact, so is not tamper-evident; it is
a so-called non-invasive attack

• The power consumption can depend on
– the instruction being executed
– Hamming weight of data being manipulated
 ie. number of 1 bits in the data
– Hamming distance between consecutive values

eg. for CMOS, switching 1→0 will have different power profile than 1→1,
and the power consumption will depend on the number of bits flipped.

 36

Equipment to analyse power as side-channel

37

Power consumption of a smartcard

38

What is this card doing?

This is a DES encryption!

39

What is the key?
In a really poor implementation, you might be able to read it off…

16 rounds, so probably DES

2D correlation matrix

40

• power trace s split in
small sections si

• matrix mij expressing
correlation between si
and sj

• light – higher correlation

• dark – lower correlation

Example thanks to

2D correlation matrix

more detailed view

41

Example SPA analysis of contactless card

42

Example thanks to

Power trace

43

Power trace detail of RSA encryption

44

 RSA implementation

• RSA involves exponentiation s = (xy) mod n

• Typical implementation with binary square & multiply:

 eg x27 = x 1 * x2 * x8 * x16 of the form

 s=1;

 while(y) { if (y&1) { s = (s*x) mod n; }

 y>>=1;

 x = (x*x) mod n; }

 return s;

• Only multiplies if bit in key is 1

• This enables timing or (D)PA attack

45

SPA: reading the key from this trace!

46

Countermeasures to side channel analysis

• Make execution time data-independent

 This is possible, possibly at the expense of efficiency, eg replacing

 if (b) then { x = e } else { x = e‘ }

 by a[0]=e; a[1]=e'; x = (b ? a[0] : a[1]);

• Use redundant data representation, to reduce/eliminate differences in
Hamming weights

• Most extreme case: use dual rail logic, representing 0 as 01 and 1 as 10

• Add redundant computations to confuse attacker;
eg activating crypto-coprocessor when it’s idle

• Add noise (eg clock jitter)

47

Power Analysis

• Simple Power Analysis – SPA
 analyse an individual power trace

– to find out the algorithm used
– to find the key length
– worst case: to find the key, as in the previous example

• Differential Power Analysis – DPA
 statistically analyse many power traces to find out the key
 The most serious threat to smartcards in the past 15 years!

48

• Suppose we have a large set of power traces S of same program (say an
encryption) acting on different, randomly chosen data.

 There will be variations in power traces, due to noise & differences in data

• Partition S into two subsets, S0 and S1
• Consider the trace Δ = (average of S0) - (average of S1)

Now

• What would you expect Δ to be?

 A flat line, as noise and random data differences should cancel out

• What if there is a big blip in Δ?

 Eg what if Δ looks like
 All traces in S0 must be doing the same at that point in time!

Differential Power Analysis (DPA)

49

Δ
time

S1

DPA (schematically)

50

S0

set of traces S

1. split S based on
hypothesis H

2. compute average traces

3. compute differential trace Δ

Δ shows a spike:
hypothesis H correct 

Δ is flat:
hypothesis H incorrect 

Differential Power Analysis (DPA)

1. Record set S of traces of encryptions of random data with unknown key

2. Split S into S0 and S1, based on some hypothesis H about the key

Idea: there is some correlation between traces in S0 at some point in time
if H is correct

Eg. traces in S0 compute the same intermediate value at same point in time

3. Compute differential trace Δ = average of S0 - average of S1

4. Now

– if there are blips in Δ then hypothesis H is correct

– if Δ is flat then hypothesis H was incorrect

We can re-use the same set S for many guesses for H !

 51

DES

52

DPA attack on DES: the last round of DES

53

Here f is the function containing the S-boxes.
We can observe the Output, of course. How far can we compute back?

Output (64 bit)

R16

permutation

L16

L15

xor f

R15

K16 (48 bit)

DPA attack on DES: the last round of DES

54

We can observe the Output, of course. How far can we compute back?
If we guess some value of K16, we know what L15 was.
For i=1..32: if we guess 6 bits of K16, we can know what the ith bit in L15

Output (64 bit)

R16

permutation

L16

L15

xor f

R15

K16 (48 bit)

Output (64 bit)

R16
L16

R15

DPA on DES

• We define selection function D(C,b,Ksub) = value of the b-th bit in L15
for ~~~ ciphertext C
~~~~~~1 ≤ b ≤ 32                                                                                                       
~~~~~~guess Ksub for the 6 bits subkey of K16 that influence bit b 

• So we split the traces in those where bit b in L15 is 1 and those where it is 1,
for each possible guess for Ksub

• Only 2^6 guesses needed Ksub; if the splits shows a spike that confirms that
guess for Ksub was correct.

• Repeating this for 32 bits yields all 32/4*6=56 bits of K16

• Four bits b will depend on the same Ksub, which will confirm the correctness
of the guess

• Remaining 8 bits can be brute forced or we can do a DPA analysis of the
previous round

55

DPA example result

56

average power

consumption

Δ with correct key guess

Δ with incorrect key

guess

Δ with another

incorrrect key guess

[source: Kocher, Jaffe and Jun, Differential Power Analysis]

DPA on DES

The key idea

 We don’t have to try all guesses for all possible keys, because the

 side-channel analysis reveals if guess for a 6-bit sub-key is correct

Instead of having to guess a 56 bit key takes 256 guesses,

but 8 times having to guess a 6-bit key takes only 8 * 26 = 29 guesses

57

DPA

• Obvious countermeasure to all power analysis attacks: add noise to signal

 But DPA is very good at defeating this countermeasure:

 with enough traces, any random noise can be filtered out

• Technical complications for DPA

– alligning the traces
– finding the interesting part of the trace

 Note that this is easier if you can program the smartcard yourself

• Possible countermeasure: masking

– manipulate secret ⊕ mask instead of secret, for randomly chosen mask
– now (un)masking may now leak information,

but this is typically not such an computationally intensive task...

58

Other side channels: eg EM radiation

59

Our lab set-up for EM attacks

Conclusions: side-channel analysis

• Resisting side-channel analysis is an ongoing arms race between attackers
and defenders

– with increasingly sophisticated attacks & cleverer countermeasures

• Interesting research question:
side-channel attacks on obfuscated code, eg. white-box crypto?

• Side channel attacks are a classic example of thinking outside the box

60

Hacking football!
Penalty by Johan Cruijff
http://www.youtube.com/watch?v=MJHN1mN5SCg

http://www.youtube.com/watch?v=MJHN1mN5SCg�

Fault injections

(active side-channel attacks)

61

Fault injections

• So far we discussed passive side-channel attacks:
 the attacker monitors some side-channel of the physical hardware

 Passive side-channel attacks threaten confidentiality,
 and typically only target crypto functionality, to retrieve crypto keys

• Side-channel attacks can also be active:
 the attacker manipulates physical hardware

 Active attacks threaten integrity – of all software and/or data –
 and can target both crypto- and non-crypto functionality

 62

Example fault attacks with fault injections

• card tears
 removing the card from the reader halfway during a transaction

• glitching
 temporarily dipping the power supply

 Eg to prevent an EEPROM write,
 or to prevent the hardware from representing bits with the value 1

• light attacks
 shoot at the chip with a laser

 To flip some bits...

63

Laser attacks

 Laser mounted on microscope
with x-y table to move the card
and equipment to trigger timing.

 Unlike power analysis,
this is tamper-evident

64

Fault injections: practical complications

Many parameters for the attacker to play with

- When to do a card tear?

- When to glitch, for how long?

- When & where (x and y dimension) to shoot a laser?
And for how long, how strong, and which colour laser?

- Multiple faults?

Multiple glitches are possible, multiple laser attacks harder

This can make fault attacks a hit-and-miss process for the attacker (and security
evaluator).

65

Fault injections: targets

• Attacks can be on data or on code

• including data and functionality of the CPU, eg the program counter (PC)

• Code manipulation may

– turn instruction into nop

– skip instructions

– skip (conditional) jumps

• Data manipulation may result in

– special values: 0x00 or 0xFF

– just random values

66

Fault injections: targets

Fault attacks can target

• crypto

 Some crypto-algorithms are sensitive to bit flips;
the classic example is RSA

• any other functionality

 any security-sensitive part of the code or data can be targeted

 The smartcard platform (hardware, libraries, and VM) can takes care of
some of this, but every programmer has to ensure this for each program
separately

67

Light manipulation

Targets:

• memory

– targetting RAM: change content or decoding logic to change read out

– targetting EEPROM: difficult & not tried

• glue logic & CPU

– unpredictable results

• countermeasures

– to disable them

68

Countermeasures?

Physical countermeasures

• Prevention – make it hard to attack a card

• Detection: include a detector that can notice an attack

– eg a detector for light or a detector for dips in power supply

 This starts another arms race: attackers use another fault attack on such
detectors. Popular example: glitch a card and simultaneously use a laser to
disable the glitch detector!

Logical countermeasures

• program defensively to resist faults

69

Example sensitive code: spot the security flaw!

class OwnerPIN{
boolean validated = false;
short tryCounter = 3; //number of tries left
byte[] pin;

boolean check (byte[] guess) {
validated = false;
if (tryCounter != 0) {
 if arrayCompare(pin, 0, guess, 0, 4) {
 validated = true;
 tryCounter = 3;
 } else {
 tryCounter--;
 ISOException.throwIt(WRONG_PIN);
 }
else
 ~~ISOException.throwIt(PIN_BLOCKED);
}

70

cutting power
at this point will

leave
tryCounter
unchanged

Example sensitive code: more potential problems?

class OwnerPIN{
boolean validated = false;
short tryCounter = 3; //number of tries left
byte[] pin;

boolean check (byte[] guess) {
validated = false;
if (tryCounter != 0) {
 if arrayCompare(pin, 0, guess, 0, 4) {
 validated = true;
 tryCounter = 3;
 } else {
 tryCounter--;
 ISOException.throwIt(WRONG_PIN);
 }
else
 ~~ISOException.throwIt(PIN_BLOCKED);
}

71

can ArrayIndexOutOfBounds-
Exception wrong length guess

leak info?

Can timing behaviour
of arraycompare

leak info?

validated flag
should be allocated in

RAM,not EEPROM

Defensive coding for OwnerPIN

• Checking & resetting PIN try counter in a safe order
• to defeat card tear attacks

• validated should be allocated in RAM and not EEPROM

• to ensure automatic reset to false

• Does timing of arraycompare leak how many digits of the PIN code
we got right?

Read the JavaDocs for arraycompare !

• Can potential ArrayIndexOutOfBoundsException reveal if we got the
first digits of the PIN code right? (Eg by supplying a guess of length 1.)

(The JavaCard platform provides standard libraries for PIN codes:
you should always use that and not implement your own!)

72

Getting more paranoid

• checking for illegal values of tryCounter

– eg negative values or greater than 3
• redundancy in data type representation

– eg record tryCounter*13
 or use an error-detecting/correcting code

• keeping two copies of tryCounter

• even better?: keep one of these copies in RAM

– initialised on applet selection

 attacker must attack both RAM & EEPROM synchronously

• doing security sensitive checks twice

 73

Secure order of branches?

if (pinOK) { // perform some security-critical task

 ...

 }

 else { // error handling

 ...

 }

74

Better

if (!pinOK) { // error handling

 ...

 }

 else { // perform some security-critical task

 ...

 }

Better to branch (conditionally jump) to the "good" (ie "dangerous") case

if faults can get the card to skip instructions

75

Even more paranoid

if (!pinOK) { // error handling

 ...

 }

 else { if (pinOK) {

 ...

 }

 else {

 // We are under attack!

 // Start erasing keys

 }

 76

An attacker observing
the power trace can

tell when
countermeasure is
triggered, and then

cut the power

And more paranoid still

if (!pinOK) { // error handling

 ...

 }

 else { if (pinOK) {

 ...

 }

 else {

 // We are under attack!

 // Set a flag and start erasing keys

 // some time in the future

 }

77

Defensive coding tricks

• avoiding use of special values such as 00 and FF

– don't use C or JavaCard booleans!

• use restricted domains and check against them

– ideally, domains that exclude 00 and FF, and elements with equal
Hamming weights

• introduce redundancy

– when storing data and/or performing computations

– forcing attacker to synchronise attacks or combine different attacks (eg
on EEPROM and RAM)

• jump to good (ie dangerous) cases

• make sure code executes in constant time

78

Defensive coding tricks

• additional integrity checks on execution trace

– doing the same computation twice & checking results

– for asymmetric crypto: use the cheap operation to check validity of the
expensive one

• check control flow integrity

– add ad-hoc trip-wires & flags in the code to confirm integrity of the run

 eg set bits of a boolean at various points in the code, and check in the
end if all are set

 People have proposed beginSensitive() and endSensitive() API calls for the
JavaCard smartcardplatform to turn on VM countermeasures

79

Physical attacks

80

Physical attacks

• Much more costly than logical or side channel attacks.

• expensive equipment

• lots of time & expertise

• Also, you destroy a few chips in the process:

–they are invasive attacks, and tamper-evident

• Some forms are largely historic, as modern chips are too small and complex
to analyse/

• Examples: probing, fibbing, reading memory contents

81

Smartcard attacks: cost

Logical attacks - ie. look for flaws in protocols or software

• Only 50$ of equipment, but possibly lots of brain power!

• Analysis may take weeks, but final attack can be in real time

Side channel attacks (SPA, DPA)

• 5K$ of equipment

• Again, lots of time to prepare, but final attack can be quick

Physical attacks

• 100K$

• Several weeks to attack a single card, and attack is tamper-evident

82

First step: removing chip from smartcard

83

using heat & nitric acid

[Source: Oliver Kömmerling, Marcus Kuhn]

Optical reverse engineering

84

microscope images with different layers in different
colours, before and after etching

[Source: Oliver Kömmerling, Marcus Kuhn]

Physical attack: probing

Observe or change the data on the bus while the chip is in operation eg to
observe keys

Probing can be done with physical needles (>0.35 micron)
or electron beam

 85

probing with
8 needles

86

Visual reconstruction of bus permutation

[Source: Oliver Kömmerling, Marcus Kuhn]

87

• sensor line checked for
interruptions or short-circuits,
which trigger alarm: halt
execution or erase memory

• but.. external power supply is

needed to eg. erase persistent
memory

• attacker will fingerprint active

countermeasures (eg by power
consumption) to interrupt power
supply in time

Vcc

sensor

ground

Protective sensor mesh

Physical attack: probing

• FIB = Focussed Ion Beam

• can observe or modify chip by

• drilling holes

• cutting connections

• soldering new connections
and creating new gates

88

blown fuse
hole drilled in

 the chip surface

Using FIB in probing

89

Fibbing can be used to

• add probe pads

• for lines too thin or fragile for
needles

• surface buried lines

–poking holes through upper
layers

[Source: Sergei Skorobogatov]

Physical attack: extracting ROM content

90

[Source: Brightsight]

Staining can
optically reveal
the bits in ROM:
dark squares are 1
light squares are 0

Physical attack: extracting RAM content

91

Image of RAM with voltage sensitive scanning electron microscope

92

Optical Beam Induced Current
• signalling hot spots on chip surface

– eg to locate crypto co-processor

[Source: Sergei Skorobogatov]

Newer imaging techniques

Physical attacks: countermeasures

• protective mesh to prevent access to the chip surface

• obfuscate chip layout, eg by scrambling or hiding bus lines

• scramble or encrypt memo

• sensors for low and high temperatures, light, clock frequency,
voltage, to trigger active countermeasure
– But… external power supply needed for reaction
– Sensors can be destroyed when power is off => they must be tested

periodically in normal operation

• The good news: as circuits become smaller & more-complex,

 physical attacks become harder … ultimately too hard?

93

Dynamic security analysis:
Fuzzing & automated reverse engineering

94

Accidental DoS attacks over the years

95
All accidentally made to crash with unexpected inputs

1. original form of fuzzing: trying out long inputs to find buffer overflows

2. message format fuzzing:
trying out strange inputs, given some format/language

3. message sequence fuzzing
trying out strange sequences of inputs

 to infer the protocol state machine from an implementation ~S

Fuzzing: different forms & case studies

96

Message Format Fuzzing

aka Protocol Fuzzing
Fuzzing some protocol/format/protocol/input language

Example: GSM

97

Input problems

98

All input is potentially evil!

99

Malformed image on a
electronic passport
could crash passport
readers.

Moral:
Beware of all inputs

not just the
obvious ones
that come over the
network…

Message format aka protocol fuzzing

Fuzzing based on a known protocol format

 ie format of packets or messages

Typical things to try in protocol fuzzing:

• trying out many/all possible value for specific field
esp undefined values, or values Reserved for Future Use (RFU)

• giving incorrect lengths, length that are zero, or payloads that are too
short/long

Note the relation with LangSec: a good description of the input language is not
just useful to generate parsers, but also for fuzzing!

Tools for protocol fuzzing: SNOOZE, Peach, Sulley

100

Example : GSM protocol fuzzing

GSM is a extremely rich & complicated protocol

101

SMS message fields

102

Field size
Message Type Indicator 2 bit
Reject Duplicates 1 bit
Validity Period Format 2 bit
User Data Header Indicator 1 bit
Reply Path 1 bit
Message Reference integer
Destination Address 2-12 byte
Protocol Identifier 1 byte
Data Coding Scheme (CDS) 1 byte
Validity Period 1 byte/7 bytes
User Data Length (UDL) integer
User Data depends on CDS and UDL

Example: GSM protocol fuzzing

Lots of stuff to fuzz!

We can use a USRP

with open source cell tower software (OpenBTS)

 to fuzz any phone

[Mulliner et al., SMS of Death]

[F van den Broek, B. Hond, A. Cedillo Torres, Security Testing of GSM Implementations]

 103

Example: GSM protocol fuzzing

Fuzzing SMS layer reveals weird functionality in GSM standard and in phones

104

Example: GSM protocol fuzzing

Fuzzing SMS layer reveals weird functionality in GSM standard and in phones

– eg possibility to send faxes (!?)

 Only way to get rid if this icon: reboot the phone

105

you have a fax!

Example: GSM protocol fuzzing

Malformed SMS text messages showing raw memory contents, rather than
content of the text message

106

garbage SMS text garbage SMS text, incl.names
of games installed on the phone

Example: GSM protocol fuzzing

• Lots of success to DoS phones: phones crash, disconnect from the network,
or stop accepting calls

– eg requiring reboot or battery removal to restart, to accept calls again, or to
remove weird icons

– after reboot, the network might redeliver the SMS message, if no
acknowledgement was sent before crashing, re-crashing phone

 But: not all these SMS messages could be sent over real network

• There is not always a correlation between problems and phone brands &
firmware versions

– how many implementations of the GSM stack does Nokia have?

• The scary part: what would happen if we fuzz base stations?

107

LangSec (Language-theoretic security)

Fuzzing file or protocol formats naturally fits with LangSec.
LangSec recognizes the role of input languages, esp.

• complexity and variety of input languages

• poor (informal) specification of input languages
(not with eg EBNF grammar)

• ad-hoc, handwritten code for parsing, which mixes parsing & interpreting
(aka shotgun parsers)

as root causes behind software insecurity

If you’re interested in producing secure software, read up on this at langsec.org
Eg
Towards a formal theory of computer insecurity httpp://ww.youtube.com/watch?v=AqZNebWoqnc
CCC presentation The Science of Insecurity http://www.youtube.com/watch?v=3kEfedtQVOY

 108

http://www.youtube.com/watch?v=AqZNebWoqnc�
http://www.youtube.com/watch?v=3kEfedtQVOY�

Automated Reverse Engineering

by learning Protocol State Machines

Case studies &

109

Input languages: messages & sessions

Most protocols not only involves nottion of of input message format

but also language of session,

 ie. sequences of messages

110

message sequence chart

This oversimplifies

because it only specifies one correct, happy flow

111

protocol state machine

A protocol is typically more

complicated than a simple

sequential flow.

This can be nicely

specified using a

finite state machine (FSM)

This still oversimplifies: it only

describes the happy flows

and the implementation

will have to be input-enabled

112
SSH transport layer

 input enabled state machine

113

A state machine is input enabled if in every state it is able to receive every
message

Often, unexpected messages are ignored (eg b above)
or lead to some error state (eg as a above)

a b

c

c

b, c

b

b
a

a, b, c

a

Extracting protocol state machine from code

We can infer a finite state machine from implementation

by black box testing using state machine learning

• using Angluin’s L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing

using a test harness that sends typical protocol messages

This is a great way to obtain protocol state machine

• without reading specs!

• without reading code!

114

State machine learning with L*

Basic idea: compare response of a deterministic system to different
input sequences, eg.

1. b

2. a ; b

If response is different, then

 otherwise

The state machine inferred is only an approximation of the system,

and only as good as your set of test messages

115

b

a

…

b b
a

… …

Case study in state machine learning (1):

EMV smartcards for banking

116

Case study: EMV

• Started 1993 by EuroPay, MasterCard, Visa

• Common standard for communication between

– smartcard chip in bank or credit card (aka ICC)

– terminal (POS or ATM)

– issuer back-end

• Specs controlled by which is owned by

• Over 1 billion cards in use

117

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1�
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1�
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1�
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1�

The EMV protocol suite

• EMV is not a protocol, but a “protocol toolkit suite”:
many options and parameterisations (incl. proprietary ones)

– 3 different card authentication mechanism

– 5 different cardholder verification mechanisms

– 2 types of transactions: offline, online

All these mechanisms again parameterized!

• Specs public but very complex (4 books, totalling >750 pages)

118

More complexity still: EMV variants

• EMV-CAP, for using EMV cards for internet banking

 Proprietary and secret standard of MasterCard.

• Contactless EMV for payments with contactless bankcard or NFC phone

Specs public, 10 documents totalling >1600 pages

119

Example: one sentence from these specs

“If the card responds to GPO with SW1 SW2 = x9000 and AIP byte 2 bit 8 set
to b0, and if the reader supports qVSDC and contactless VSDC, then if the
Application Cryptogram (Tag '9F26') is present in the GPO response, then
the reader shall process the transaction as qVSDC, and if Tag '9F26' is not
present, then the reader shall process the transaction as VSDC.”

[Thanks to Jordi van Breekel for this example]

120

Test harness for EMV

Our test harness implements standard EMV instructions, eg

– SELECT (to select application)

– INTERNAL AUTHENTICATE (for a challenge-response)

– VERIFY (to check the PIN code)

– READ RECORD

– GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

• most commands with fixed parameters, but some with different options

121

State machine learning of card

122

State machine learning of card

123

merging arrows
with identical
response

State machine learning of card

124

merging arrows with
same start & end state

Formal models of banking cards for free!

• Experiments with Dutch, German and Swedish banking and credit cards

• Learning takes between 9 and 26 minutes

• Editing by hand to merge arrows and give sensible names to states

– this could be automated

• Limitations

– We do not try to learn response to incorrect PIN as cards would block...

– We cannot learn about one protocol step which requires knowledge of card’s
secret 3DES key

• No security problems found, but interesting insight in implementations

[F. Aarts et al, Formal models of bank cards for free, SECTEST 2013]

 125

Using such protocol state diagrams

• Analysing the models by hand, or with model checker, for flaws

– to see if all paths are correct & secure

• Fuzzing or model-based testing

– using the diagram as basis for “deeper” fuzz testing

• eg fuzzing also parameters of commands
• Program verification

– proving that there is no functionality beyond that in the diagram, which
using testing you can never establish

• Using it when doing a manual code review

126

SecureCode application on Rabobank card

127

used for internet banking, hence
entering PIN with VERIFY obligatory

Comparing implementations

Are both implementations correct & secure? And compatible?

Presumably they both passed a Maestro-approved compliance test suite...

128

Volksbank Maestro
implementation

Rabobank Maestro
implementation

Case study in state machine learning (2):

EMV-CAP internet banking

129

Fundamental problems

Computer display
cannot be trusted
 despite

How can the bank
authenticate the user?
Or (trans)actions of the user?

How can the user
authenticate the bank?

 Internet banking with EMV-CAP

This display
can be trusted.
And the keyboard,
to enter PIN.

Computer display
cannot be trusted

transfer € 10.00
to 52.72.83.232
type: 23459876

 Internet banking with EMV-CAP
Limitation:
 meaning of the numbers 23459876 unclear...
Solution:
 Let the user enter transaction details
 (eg amount, bank accounts,...)
 on the device
Problem: lots of typing....

transfer € 10.00
to 52.72.83.232
type: 23459876

Using a USB-connected device

More secure: display can show full transaction details
Also, more user-friendly

USB transfer € 10.00
to 52.72.83.232

transfer € 10.00
to 52.72.83.232

Analysis: first observation

 Some text for display goes in plain-text over USB line

 The PC can show

 messages predefined in the e.dentifier2

 any message that it wants to be signed

GENERATE AC f(number, text)

Reverse-Engineered Protocol

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK
SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)
cryptogram

PIN
OK

GENERATE AC f(number, text)

Spot the defect!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK
SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)
cryptogram

PIN
OK

GENERATE AC f(number, text)

Suspicious...

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK
SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)
cryptogram

PIN
OK

GENERATE AC f(number, text)

Attack!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK
SIGN (number, text)

USER-OK

g(cryptogram)
cryptogram

PIN
OK

Reverse engineering the USB-connected e.dentifier

Can we fuzz

• USB commands

• user actions via keyboard

to find bug in ABN-AMRO

e.dentifier2

by automated learning?

 [Arjan Blom et al,

 Designed to Fail: a USB-connected reader

 for online banking, NORDSEC 2012]

Operating the keyboard using of

140

The hacker let loose on

143

 [Georg Chalupar et al
 Automated Reverse Engineering using LEGO,
 WOOT 2014]

http://tinyurl.com/legolearning

Would you trust this to be secure?

144

More detailed inferred state machine, using richer input alphabet.

Do you think whoever designed or
implemented this is confident that
it is secure?

Case study in state machine learning (3):
TLS

145

NSS implementation of TLS

State machine inferred from NSS implementation

Comforting to see this is so simple!

146

TLS... according to GnuTLS

147

TLS... according to OpenSSL

148

TLS... according to Java Secure Socket Exension

149

Which TLS implementations are correct? or secure?

150

 [Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Conclusions: Dynamic Security Analysis

151

More reverse engineering approaches

There are many techniques for reverse engineering based on testing.

• passive vs active learning, ie passive observing vs active testing

– Active learning involves a form of fuzzing

– These approaches learns different things:

• passive learning produces statistics on normal use,
 and can be basis for anomaly detection
• active learning will more agressively try our strange things

• black box vs white box

ie only observing in/output or also looking inside running code

Cool example of what afl (american fuzzy lop) fuzzer can do
http://lcamtuf.blogspot.com.br/2014/11/pulling-jpegs-out-of-thin-air.html

152

1. original form of fuzzing: trying out long inputs to find buffer overflows

2. message format fuzzing:
trying out strange inputs, given some format/language
to find flaws in input handling

3. message sequence fuzzing
trying out strange sequences of inputs
to find flaws in program logic

 3a. given a protocol state machine, or

3b. to infer the protocol state machine from an implementation
~

2 & 3a are essentially forms of model-based testing

3b is a form of automated reverse engineering

(Warning: there is no really standard terminology for these various kinds of fuzzing)

Different forms of fuzzing

153

Protocol State Machines

• State machines are a great specification formalism

– easy to draw on white boards , but typically omitted in official specs 

 and you can extract them for free from implementations

– using standard, off-the-shelf, tools like LearnLib

Useful for security analysis of protocol implementations

The people writing the specs,
coding the implementation, and
doing the security analyses may
all be drawing state machines
on their white boards...

But will these be identical?

154

[Protocol state machines and session languages,
 SErik Poll, Joeri de Ruiter, and Aleksy Schubert, LangSec 2015]

http://www.cs.ru.nl/~erikpoll/papers/langsec.pdf�

 model

specs code

 implementing

 model-based
testing

 automated
learning

156

	Embedded Software Security�ISSISP 2015�(6th Int. Summer School on Information Security and Protection)�
	Digital Security @ Radboud University Nijmegen
	Overview
	Smartcards & RFID
	Example smartcard & RFID uses
	Why smartcards?
	Slide Number 7
	Typical use of smartcard for authentication
	What is a smartcard?
	3 types of functionality
	Microprocessor smartcard hardware
	Smartcard Operating System (OS)
	Contact cards (ISO 7816)
	The terminal problem!
	RFID tags
	Contactless cards aka RFID (ISO 14443)
	Using and/or attacking at larger distances
	Embedded Security
	What makes embedded security special?
	Attacker model for embedded security
	Specific threat for embedded software
	Security flaws can happen at many levels
	Our toys for protocol analysis
	Our toys for protocol analysis
	Our toys for protocol analysis
	Classic flaw 1: flawed cryptography
	Classic flaw 2: flawed key management
	Classic flaw 3: flawed security protocols
	Side-channel attacks
	Pizza deliveries as side-channel
	Pizza deliveries as side-channel
	Side channel analysis
	Some history of side channel attacks
	TEMPEST examples
	Side channel attacks
	Power analysis
	Equipment to analyse power as side-channel
	Power consumption of a smartcard
	This is a DES encryption!
	2D correlation matrix
	2D correlation matrix
	Example SPA analysis of contactless card
	Power trace
	Power trace detail of RSA encryption
	 RSA implementation
	SPA: reading the key from this trace!
	Countermeasures to side channel analysis
	Power Analysis
	Differential Power Analysis (DPA)
	DPA (schematically)
	Differential Power Analysis (DPA)
	DES
	DPA attack on DES: the last round of DES
	DPA attack on DES: the last round of DES
	DPA on DES
	DPA example result
	DPA on DES
	DPA
	Other side channels: eg EM radiation
	Conclusions: side-channel analysis
	Fault injections��(active side-channel attacks)
	Fault injections
	Example fault attacks with fault injections
	Laser attacks
	Fault injections: practical complications
	Fault injections: targets
	Fault injections: targets
	Light manipulation
	Countermeasures?
	Example sensitive code: spot the security flaw!
	Example sensitive code: more potential problems?
	Defensive coding for OwnerPIN
	Getting more paranoid
	Secure order of branches?
	Better
	Even more paranoid
	And more paranoid still
	Defensive coding tricks
	Defensive coding tricks
	Physical attacks
	Physical attacks
	Smartcard attacks: cost
	First step: removing chip from smartcard
	Optical reverse engineering
	Physical attack: probing
	Slide Number 86
	Protective sensor mesh
	Physical attack: probing
	Using FIB in probing
	Physical attack: extracting ROM content
	Physical attack: extracting RAM content
	Newer imaging techniques
	Physical attacks: countermeasures
	Dynamic security analysis: Fuzzing & automated reverse engineering��
	Accidental DoS attacks over the years
	Fuzzing: different forms & case studies
	Message Format Fuzzing��aka Protocol Fuzzing�Fuzzing some protocol/format/protocol/input language
	Input problems
	All input is potentially evil!
	Message format aka protocol fuzzing
	Example : GSM protocol fuzzing
	SMS message fields
	Example: GSM protocol fuzzing
	Example: GSM protocol fuzzing
	Example: GSM protocol fuzzing
	Example: GSM protocol fuzzing
	Example: GSM protocol fuzzing
	LangSec (Language-theoretic security)
	Automated Reverse Engineering��by learning Protocol State Machines
	Input languages: messages & sessions
	message sequence chart
	protocol state machine
	 input enabled state machine
	Extracting protocol state machine from code
	State machine learning with L*
	Case study in state machine learning (1):��EMV smartcards for banking
	Case study: EMV
	The EMV protocol suite
	More complexity still: EMV variants
	Example: one sentence from these specs
	Test harness for EMV
	State machine learning of card
	State machine learning of card
	State machine learning of card
	Formal models of banking cards for free!
	Using such protocol state diagrams
	SecureCode application on Rabobank card
	Comparing implementations
	Case study in state machine learning (2):��EMV-CAP internet banking
	Fundamental problems
	 Internet banking with EMV-CAP
	 Internet banking with EMV-CAP
	Using a USB-connected device
	Analysis: first observation
	Reverse-Engineered Protocol
	Spot the defect!
	Suspicious...
	Attack!
	Reverse engineering the USB-connected e.dentifier
	Operating the keyboard using of
	Slide Number 141
	Slide Number 142
	The hacker let loose on
	Would you trust this to be secure?
	Case study in state machine learning (3):�TLS
	NSS implementation of TLS
	TLS... according to GnuTLS
	TLS... according to OpenSSL
	TLS... according to Java Secure Socket Exension
	Which TLS implementations are correct? or secure?
	Conclusions: Dynamic Security Analysis
	More reverse engineering approaches
	Different forms of fuzzing
	Protocol State Machines
	Slide Number 155
	Slide Number 156

