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Digital Security @ Radboud University Nijmegen 

• formal methods for program analysis and protocol analysis                                                 
esp. for smartcards & RFID 

• smartcard applications 

• cryptanalysis 

• side channel analysis 

• identity management & privacy, incl. legal aspects 

• more applied security, eg voting machines, smart grid,... 
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Overview 

1. Smartcards & RFID 

2. Embedded Security 

 

3. Side channel attacks & defensive coding 

 

4. Dynamic security analysis:                                                                                        
Fuzzing & automated reverse engineering 

 

5. Physical attacks 
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involves software  
and hardware 

purely software 
related 

purely hardware 
related 



Smartcards & RFID 
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Example smartcard & RFID uses 

• bank cards 
• SIMs in mobile phone 

 
• public transport  
• identity documents 

modern passports and national ID cards  
contain (contactless) chip  
 

• access cards 
to control access to buildings, computer networks, laptops,... 
 

• pay TV 
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Why smartcards? 

Using cryptography can solve some security problems,  

but using cryptography also introduces new security problems: 

1. where do we store cryptographic keys? 

2. who or what do we trust to use cryptographic keys? 

3. key management – ie generating, distributing, revoking keys 

 

Smartcards provide a solution for 1 & 2. 

It helps with 3 by providing a way to distribute keys to users. 

 

Alternative solution, used in back-ends: Hardware Security Modules (HSM) 
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     Humans are incapable of securely storing high-quality 
cryptographic keys, and they have unacceptable speed and 
accuracy when performing cryptographic operations.  

    They are also large, expensive to maintain, difficult to manage, 
and they pollute the environment.  

     It is astonishing that these devices continue to be 
manufactured and deployed. But they are sufficently pervasive 
that we must design our protocols around their limitations 

 

– Kaufman, Perlman, and Speciner 
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Typical use of smartcard for authentication  

• If card performs encryption, then key K never  leaves the card 
• The card issuer does not have to trust the network, the terminal, or the card 

holder 
 

• The use of keys for encryption to ensure confidentiality is usually less 
important than for signing or MAC-ing to ensure integrity/authentication 
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secret 
 key K 

 
CPU 

challenge   c 

response    encK(c) 



What is a smartcard? 

• Tamper-resistant computer, on a single chip,  
     embedded in piece of plastic, with limited resources 

– aka chip card or integrated circuit card (ICC) 
– tamper-resistant, to a degree – not tamper-proof 
– tamper-evident, to a degree 

 
• Capable of “securely” storing & processing data 

• This processing capability is what makes a smartcard smart;            
stupid cards can store but not process 

• NB processing capabilities vary a lot! 
 

• Cards can have contact interface, or contactless (RFID) interface  
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3 types of functionality 

1. stupid card just reports some data 
      eg card shouts out a (unique) serial number on start-up 
 
2. stupid smartcard aka memory card 
     provides configurable file system with access control  

by means of  PIN code/passwords  or crypto keys 
or even simpler: irreversible writes 
 

3. smart smartcard aka microprocessor card 
     provides programmable CPU that can implement any functionality 

eg  complicated security protocols 
 

What type of attacks can 2 & 3 withstand that 1 can't?  
Replay attacks! 
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Microprocessor smartcard hardware 

• CPU (usually 8 or 16, but now also 32 bit) 
• possibly also crypto coprocessor & random number generator (RNG) 
• memory: volatile RAM and persistent ROM & EEPROM 

• EEPROM serves as the smartcard's hard disk 
• NB no power, no clock! 
 

A modern card may have 512 bytes RAM, 16K ROM, 64K EEPROM and 
operate at 13.5 MHz 

Important reason for low capabilities: cost! 

Also, keeping smartcard simple allows higher confidence:                                
you don’t want Windows or Linux as operating system on a smartcard   
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Smartcard Operating System (OS) 

• Microprocessor smartcards come with very simple operating system.          
Simple because there is no multi-threading, no complex device drivers 

 Old-fashioned smartcards contain one program, that cannot be changed 

 Modern smartcard platforms 

 are multi-application, ie allow multiple, independent programs (aka 
applets) to be installed on one card 

 allow post-issuance download: applications to be added (or removed) 
after the card has been issued to the card holder 

     Of course, this is tightly controlled - by digital signatures 

     Examples of such modern platforms: JavaCard and MULTOS 

     Application management typically uses the GlobalPlatform standard 
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Contact cards (ISO 7816) 

 
 
 
 
 
 
 
 
 
External power supply and external clock 
• Originally 5 V, now also 3V or 1.8V  
• Vpp - higher voltage for writing EEPROM                                                    

No longer used as it introduces a serious security weakness! 
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The terminal problem! 

 THE fundamental problem with smartcards 
no trusted I/O between user and card  
 no display 
 no keyboard 

 

Solutions: 

 Card with built-in display & keyboard 

 Alternative: give people a reader 
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RFID tags 

There are many types of RFID, with different operating ranges. 
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Contactless cards aka RFID (ISO 14443) 

Commonly used (passport, public transport, contactless bank cards):   

ISO14443 aka proximity cards 

– operating range of < 10 cm 

– antenna used both for                                                                             

• powering card 
• communication 

 

• ISO14443 is compatible with                                                                                   
NFC in mobile phones 
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Using and/or attacking at larger distances 

• Max. distance at which a proximity card can be activated is 50 cm 

• Max. distance at which it can be eavesdropped is > 10 meters 

 

 

 

 

 

 

 

[René Habraken et al., An RFID skimming gate using Higher Harmonics, RFIDSec 2015] 
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Embedded Security 
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What makes embedded security special? 

Important characteristics 

• Limited resources (storage, processing, I/O bandwidth, ..) 

• More exotic hardware & software platforms, and protocols 

Some good news for security: 

• less software – hence fewer exploitable bugs 

• attacker may lack knowledge about the platform & protocols 

• no OS access, eg to binaries 

But also some bad news: 

• attacker has physical access 

• fewer resources for countermeasures 
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Attacker model for embedded security 

Even if all software is correct & free from security bugs                                                
then the attacker can still observe or attack the hardware 
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Specific threat for embedded software 

Attacker can get physical access                                                                                            
and carry out physical attacks                                                                                            
on the endpoints. 

Physical attacks can attack  

1. the static hardware                                                                                         
(eg extracting ROM content) , or      

2. attack the card while it is executing 
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depends on  
 HW characteristics 

Security flaws can happen at many levels 
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common but 
easy to avoid! 

1 & 2 common 
but easy to avoid! 

depends on  
 HW characteristics 

3, 5, 6 depend on  
 HW characteristics 

1. Choice of cryptographic primitives (AES, RSA, …)                                                
Classic mistake: proprietary crypto 

2. Key management                                                                                                              
Classic mistake: default keys or same key in many devices 

3. Implementation of the cryptographic primitives                                                             
Bad implementation will leak keys, as we will discuss at length 

4. Design of the security protocol                                                                                                                        
Designing security protocols is notoriously tricky 

5. Implementation of the security protocol                                                                   
ie. software bugs, as usual 

6. Purely physical attacks, eg to extract memory contents (especially keys) 

 



Our toys for protocol analysis 
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old-fashioned version 
(used for hacking pay TV) 

newer, thin versions 
(used for studying SIM locking) 



Our toys for protocol analysis 
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Our toys for protocol analysis 
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Classic flaw 1: flawed cryptography 

Homemade, proprietary cryptographic algorithms are  routinely broken. 

For example 

 Crypto-1 used in MIFARE Classic, eg. by MetroRio 

 COMP128 and A5/1 used in GSM 

 SecureMemory, CryptoMemory, CryptoRF 

 iClass, iClass Elite 

 HiTag2 

 Megamos 

 ... 

Stick to AES, RSA, ECC, SHA2, 3DES, …! 
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https://www.youtube.com/watch?v=NW3RGbQTLhE  
https://www.youtube.com/watch?v=S8z9mgIkqBA 

 

 

https://www.youtube.com/watch?v=NW3RGbQTLhE�
https://www.youtube.com/watch?v=S8z9mgIkqBA�


Classic flaw 2: flawed key management 

Many systems are poorly configured wrt. using cryptographic keys 

For example, 

• Lukas Grunwald found 75% of systems using MIFARE RFID tags 

• use the default key (which is A0A1A2A3A4A5) 

• or, use keys used in examples in documentation  

 

• All  HID iClass RFID tags worldwide use the same master key                                                 

     Moreover, this master key is in all RFID readers sold by HID. 

 

Extracting one key from one device should not break the entire system! 
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Classic flaw 3: flawed security protocols 

Security protocols are notoriously tricky 

    `Three line programs people still manage to get wrong’   [Roger Needham] 

For example 

• Some systems using RFID cards only rely on the unique serial number (UID) 
of the card for authentication.                                                                                    
This UID can be trivally replayed, and possibly copied to other cards 

• One variant of MasterCard’s EMV-CAP standard for internet banking using a 
nonce (random Number used ONCE) which is always 0x0000000 

• HID’s more expensive HiClass Elite is less secure than the standard HiClass. 

• … 

Keep security protocols – and hence their implementations – simple! 
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Side-channel attacks 
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Pizza deliveries as side-channel 

Example side channel:   pizza deliveries to the Pentagon 
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Pizza deliveries as side-channel 

monday evening tuesday evening 
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What morning is the invasion taking place? 



Side channel analysis 

• Side-channel = any other channel than the normal I/O channel that may be 
observed (or interfered with) 

• Possible side-channels: 
– power consumption 
– timing 
– electro-magnetic (EM) radiation 
– sound 
– .... 
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Some history of side channel attacks 

• TEMPEST since 1960s computers are known to emit EM signal 

– First  evidence in 1943:  an engineer using a Bell Telephone 131‐B2 noticed that a 
digital oscilloscope spiked for every encrypted letter   

– Declassified  in 2008 

• In 1965 MI5 put microphone near rotor-cipher machine in Egyptian embassy: 
click-sounds of machine used to break encryption 

• First academic publications by Paul Kocher et al. in 1990s:                                           
1996 (timing) and 1999 (power) 

• [P. Kocher. Timing Attacks on implementations of Diffie-Hellman, RSA, DSS and Other Systems, 
CRYPTO 1996] 

      [P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis, CRYPTO 1999] 
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TEMPEST examples  

• Laptop screen at 10 meter through 3 (thin) walls 

 

 

 

 

 

 

• Dutch electronic voting machines were banned because EM radiation could 
break vote secrecy 
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Side channel attacks 

Side channel attacks are the Achilles’ heel of cryptography! 

• The mathematics of cryptography is very elegant,                                   
making implementation resistant to side-channel attacks is very messy 

• Origin of the CHES (Cryptographic Hardware & Embedded Systems) 
conference 

Examples coming up 

• Simple Power Analysis (SPA) 

• Differential Power Analysis (DPA) 

• Fault Injection 
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passive 

active 



Power analysis 

• Power analysis uses the electricity consumption of a device as side-channel 

• Power analysis typically leaves the card intact, so is not tamper-evident; it is 
a so-called non-invasive attack 
 

• The power consumption can depend on 
– the instruction being executed 
– Hamming weight of data being manipulated  
    ie. number of 1 bits in the data 
– Hamming distance between consecutive values                                      

eg. for CMOS, switching 1→0 will have different power profile than 1→1,                           
and the power consumption will depend on the number of bits flipped. 
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Equipment to analyse power as side-channel 

37 



Power consumption of a smartcard 
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What is this card doing? 



This is a DES encryption! 
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What is the key?   
In a really poor implementation, you might be able to read it off… 

16 rounds, so probably DES 



2D correlation matrix 
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• power trace s split in 
small sections si 

• matrix mij expressing 
correlation between si 
and sj  

• light – higher correlation 

• dark – lower correlation 

 

Example thanks to  



2D correlation matrix  

more detailed view 
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Example SPA analysis of contactless card 
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Example thanks to  



Power trace 
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Power trace detail of RSA encryption  

44 



 RSA implementation   

• RSA involves exponentiation  s = (xy) mod n 

• Typical implementation with binary square & multiply:            

      eg  x27 = x 1  * x2 * x8 * x16  of the form 

        s=1; 

        while(y) { if (y&1) { s = (s*x) mod n; } 

                         y>>=1; 

                         x = (x*x) mod n; } 

        return s; 

• Only multiplies if bit in key is 1 

• This enables timing or (D)PA attack 
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SPA: reading the key from this trace! 
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Countermeasures to side channel analysis 

• Make execution time data-independent 

     This is possible, possibly at the expense of efficiency, eg replacing 

                     if (b) then { x = e } else { x = e‘ } 

           by       a[0]=e; a[1]=e'; x = ( b ? a[0] : a[1] ); 

• Use redundant data representation, to reduce/eliminate differences in 
Hamming weights 

• Most extreme case: use dual rail logic, representing 0 as 01 and 1 as 10 

• Add redundant computations to confuse attacker;                                                         
eg activating crypto-coprocessor when it’s idle 

• Add noise (eg clock jitter)  
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Power Analysis 

• Simple Power Analysis – SPA 
           analyse an individual  power trace  

– to find out the algorithm used 
– to find the key length 
– worst case: to find the key, as in the previous example 

 
• Differential Power Analysis – DPA 
          statistically analyse many power traces to find out the key                                          
         The most serious threat to smartcards in the past 15 years! 
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• Suppose we have a large set of power traces S of same program (say an 
encryption) acting on different, randomly chosen data. 

     There will be variations in power traces, due to noise & differences in data  

• Partition S into two subsets, S0 and S1 
• Consider the trace  Δ = (average of S0)  -  (average of S1)   

Now 

• What would you expect Δ to be? 

      A flat line, as noise and random data differences should cancel out 

 

• What if there is a big blip in Δ? 

                              Eg what if Δ looks like 
 All traces in S0  must be doing the same at that point in time! 

 

Differential Power Analysis (DPA) 
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Δ 
time  



S1 

DPA (schematically) 
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S0 

set of traces S 

1. split S based on 
hypothesis H 

2. compute average traces 

3. compute differential trace Δ   

Δ  shows a spike:  
hypothesis H correct  

Δ  is flat: 
hypothesis H incorrect  



Differential Power Analysis (DPA) 

1. Record set S of traces of encryptions of random data with unknown key 

2. Split S into S0 and S1, based on some hypothesis H about the key 

Idea: there is some correlation between traces in S0 at some point in time    
if H is correct   

Eg. traces in S0 compute the same intermediate value at same point in time 

3. Compute differential trace  Δ = average of S0 - average of S1 

4. Now  

– if there are blips in Δ then hypothesis H is correct 

– if Δ is flat then hypothesis H was incorrect 

 

We can re-use the same set S for many guesses for H ! 
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DES 
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DPA attack on DES: the last round of DES 
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Here f is the function containing the S-boxes. 
We can observe the Output, of course.  How far can we compute back? 

Output (64 bit) 

R16 

permutation 

L16 

L15 

xor f 

R15 

K16 (48 bit) 
 



DPA attack on DES: the last round of DES 
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We can observe the Output, of course.  How far can we compute back? 
If we guess some value of K16, we know what L15 was. 
For i=1..32: if we guess 6 bits of K16, we can know what the ith bit in L15 

Output (64 bit) 

R16 

permutation 

L16 

L15 

xor f 

R15 

K16 (48 bit) 
 

Output (64 bit) 

R16 
L16 

R15 



DPA on DES 

• We define selection function    D(C,b,Ksub) = value of the b-th bit in L15                      
for ~~~ ciphertext C                                                                                                                      
~~~~~~1 ≤ b ≤ 32                                                                                                       
~~~~~~guess Ksub for the 6 bits subkey of K16 that influence bit b 

• So we split the traces in those where bit b in L15 is 1 and those where it is 1, 
for each possible guess for Ksub  

• Only 2^6 guesses needed Ksub; if the splits shows a spike that confirms that 
guess for Ksub was correct. 

• Repeating this for 32 bits yields all 32/4*6=56 bits of K16 

• Four bits b will depend on the same Ksub, which will confirm the correctness 
of the guess 

• Remaining 8 bits can be brute forced or we can do a DPA analysis of the 
previous round 
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DPA example result 
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average power 

consumption 

 

Δ with correct key guess 

 
Δ  with incorrect key 

guess 

 
Δ with another 

incorrrect key guess  

[source: Kocher, Jaffe and Jun, Differential Power Analysis] 



DPA on DES 

The key idea 

     

 We don’t have to try all guesses for all possible keys, because the 

 side-channel analysis reveals if guess for a 6-bit sub-key is correct 

 

Instead of having to guess a 56 bit key takes 256 guesses, 

but 8 times having to guess a 6-bit key takes only  8 * 26  = 29 guesses 
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DPA 

• Obvious countermeasure to all power analysis attacks: add noise to signal 

      But  DPA is very good at defeating this countermeasure:                                                             

              with enough traces, any random noise can be filtered out 

• Technical complications for DPA  

– alligning the traces 
– finding the interesting part of the trace 

       Note that this is easier if you can program the smartcard yourself 

• Possible countermeasure: masking 

– manipulate secret ⊕ mask instead of secret, for randomly chosen mask 
– now (un)masking may now leak information,                                                         

but this is typically not such an computationally intensive task... 
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Other side channels: eg EM radiation 
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Our lab set-up for EM attacks 



Conclusions: side-channel analysis 

• Resisting side-channel analysis is an ongoing arms race between attackers 
and defenders 

– with increasingly sophisticated attacks & cleverer countermeasures 

• Interesting research question:                                                                                      
side-channel attacks on obfuscated code, eg. white-box crypto? 

• Side channel attacks are a classic example of thinking outside the box  
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Hacking football! 
Penalty by Johan Cruijff 
http://www.youtube.com/watch?v=MJHN1mN5SCg  

http://www.youtube.com/watch?v=MJHN1mN5SCg�


Fault injections 
 

(active side-channel attacks) 
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Fault injections  

• So far we discussed passive side-channel attacks: 
      the attacker monitors some side-channel of the physical hardware 
 
     Passive side-channel attacks threaten confidentiality, 
     and typically only target crypto functionality, to retrieve crypto keys 
 
 
• Side-channel attacks can also be active:  
          the attacker manipulates physical hardware 
 
     Active attacks threaten integrity – of all software and/or data – 
     and can target both crypto- and non-crypto functionality 
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Example fault attacks with fault injections 

• card tears  
       removing the card from the reader halfway during a transaction 

 
• glitching  
       temporarily dipping the power supply 

 Eg to prevent an EEPROM write,                                                                          
  or to prevent the hardware from representing bits with the value 1 

 
• light attacks  
       shoot at the chip with a laser 

 To flip some bits... 
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Laser attacks 

    Laser mounted on microscope 
with x-y table to move the card 
and equipment to trigger timing. 

 

    Unlike power analysis,               
this is tamper-evident   
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Fault injections: practical complications 

Many parameters for the attacker to play with 

- When to do a card tear? 

- When to glitch, for how long? 

- When & where (x and y dimension) to shoot a laser?                                                                
And for how long, how strong, and which colour laser? 

- Multiple faults? 

Multiple glitches are possible, multiple laser attacks harder 

This can make fault attacks a hit-and-miss process for the attacker (and security 
evaluator). 
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Fault injections: targets 

• Attacks can be on data or on code 

• including data and functionality of the CPU, eg the program counter (PC) 

• Code manipulation may  

– turn instruction into nop 

– skip instructions 

– skip (conditional) jumps 

• Data manipulation may result in  

– special values: 0x00 or 0xFF 

– just random values 
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Fault injections: targets 

Fault attacks can target  

• crypto 

     Some crypto-algorithms are sensitive to bit flips;                                     
the classic example is RSA 

• any other functionality 

      any security-sensitive part of the code or data can be targeted 

 

      The smartcard platform  (hardware, libraries, and VM) can takes care of 
some of this, but every programmer has to ensure this for each program 
separately 
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Light manipulation  

Targets: 

• memory 

– targetting RAM: change content or decoding logic to change read out 

– targetting EEPROM: difficult & not tried 

• glue logic & CPU 

– unpredictable results 

•  countermeasures 

– to disable them 
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Countermeasures? 

Physical countermeasures 

• Prevention – make it hard to attack a card 

• Detection: include a detector that can notice an attack 

– eg a detector for light or a detector for dips in power supply 

     This starts another arms race: attackers use another fault attack on such 
detectors. Popular example: glitch a card and simultaneously use a laser to 
disable the glitch detector! 

Logical countermeasures 

• program defensively to resist faults 
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Example sensitive code: spot the security flaw! 

class OwnerPIN{                                                                  
boolean validated = false;                                  
short tryCounter = 3;   //number of tries left                                        
byte[] pin; 

boolean check (byte[] guess) {                                   
validated = false;                                                       
if (tryCounter != 0) {                                          
  if arrayCompare(pin, 0, guess, 0, 4) {                           
   validated = true;                                           
   tryCounter = 3;                                                              
  } else {                                                           
   tryCounter--;                                   
   ISOException.throwIt(WRONG_PIN);                                     
 }                                                                      
else                                               
 ~~ISOException.throwIt(PIN_BLOCKED);                                           
} 
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cutting power 
at this point will 

leave 
tryCounter 
unchanged 



Example sensitive code: more potential problems? 

class OwnerPIN{                                                                  
boolean validated = false;                                  
short tryCounter = 3;   //number of tries left                                        
byte[] pin; 

boolean check (byte[] guess) {                                   
validated = false;                                                       
if (tryCounter != 0) {                                          
  if arrayCompare(pin, 0, guess, 0, 4) {                           
   validated = true;                                           
   tryCounter = 3;                                                              
  } else {                                                           
   tryCounter--;                                   
   ISOException.throwIt(WRONG_PIN);                                     
 }                                                                      
else                                               
 ~~ISOException.throwIt(PIN_BLOCKED);                                           
} 
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can ArrayIndexOutOfBounds-
Exception wrong length guess 

leak info? 
 
 

Can timing behaviour 
of arraycompare 

leak info? 

validated flag 
should be allocated in 

RAM,not EEPROM 



Defensive coding for OwnerPIN 

• Checking & resetting PIN try counter in a safe order  
• to defeat card tear attacks 

• validated should be allocated in RAM and not EEPROM 

• to ensure automatic reset to false 

• Does timing of arraycompare leak how many digits of the PIN code 
we got right? 

Read the JavaDocs for arraycompare ! 

• Can potential ArrayIndexOutOfBoundsException reveal if we got the 
first digits of the PIN code right? (Eg by supplying a guess of length 1.) 

 

(The JavaCard platform provides standard libraries for PIN codes:                                
you should always use that and not implement your own!) 
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Getting more paranoid 

• checking for illegal values of tryCounter 

– eg negative values or greater than 3 
• redundancy in data type representation 

– eg record tryCounter*13 
     or use an error-detecting/correcting code 

• keeping two copies of tryCounter  

• even better?: keep one of these copies in RAM 

– initialised on applet selection 

    attacker must attack both RAM & EEPROM synchronously 

• doing security sensitive checks twice 
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Secure order of branches? 

if (pinOK)  { // perform some security-critical task 

                    ... 

            }  

       else { // error handling 

                    ...   

            } 
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Better 

if (!pinOK) { // error handling 

                   ... 

            }  

       else { // perform some security-critical task 

                   ...   

            } 

 

Better to branch (conditionally jump) to the "good" (ie "dangerous") case 

if faults can get the card to skip instructions 
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Even more paranoid 

if (!pinOK) { // error handling 

                   ... 

            }  

       else { if (pinOK) {  

                 ...      

              } 

              else { 

                // We are under attack!  

                // Start erasing keys           

                 .... 

            } 

 76 

An attacker observing 
the power trace can 

tell when 
countermeasure is 
triggered, and then 

cut the power 
 



And more paranoid still 

if (!pinOK) { // error handling 

                   ... 

            }  

       else { if (pinOK) {  

                 ...      

              } 

              else { 

                // We are under attack!  

                // Set a flag and start erasing keys  

                // some time in the future 

                 .... 

            } 
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Defensive coding tricks 

• avoiding use of special values such as 00 and FF 

– don't use C or JavaCard booleans! 

• use restricted domains and check against them 

– ideally, domains that exclude 00 and FF, and elements with equal 
Hamming weights 

• introduce redundancy 

– when storing data and/or performing computations 

– forcing attacker to synchronise attacks or combine different attacks (eg 
on EEPROM and  RAM) 

• jump to good (ie dangerous) cases 

• make sure code executes in constant time  
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Defensive coding tricks 

• additional integrity checks on execution trace 

– doing the same computation twice & checking results 

– for asymmetric crypto: use the cheap operation to check validity of the 
expensive one 

• check control flow integrity  

– add ad-hoc trip-wires & flags in the code  to confirm integrity of the run 

     eg set bits of a boolean at various points in the code, and check in the 
end if all are set  

 

    People have proposed beginSensitive() and endSensitive() API calls for the 
JavaCard smartcardplatform to turn on VM countermeasures 
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Physical attacks 
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Physical attacks 

• Much more costly than logical or side channel attacks. 

• expensive equipment  

• lots of time & expertise 

• Also, you destroy a few chips in the process:  

–they are invasive attacks, and tamper-evident 

• Some forms are largely historic, as modern chips are too small and complex 
to analyse/ 

• Examples: probing, fibbing, reading memory contents 
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Smartcard attacks: cost 

Logical attacks  -   ie. look for flaws in protocols or software 

•  Only 50$ of equipment, but possibly lots of brain power! 

•  Analysis may take weeks, but final attack can be in real time 

Side channel attacks (SPA, DPA)  

•  5K$ of equipment 

• Again, lots of time to prepare, but final attack can be quick  

Physical attacks  

• 100K$ 

•  Several weeks to attack a single card, and attack is tamper-evident 
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First step: removing chip from smartcard  
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using heat & nitric acid 

[Source: Oliver Kömmerling, Marcus Kuhn]  



Optical reverse engineering 
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microscope images with different layers in different  
colours, before and after etching 

[Source: Oliver Kömmerling, Marcus Kuhn]  



Physical attack: probing 

Observe or change the data on the bus while the chip is in operation   eg to 
observe keys 

 

 

 

 

     

 

Probing can be done with physical needles (>0.35 micron)                                    
or electron beam 
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probing with 
8 needles 
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Visual reconstruction of bus permutation 

[Source: Oliver Kömmerling, Marcus Kuhn]  
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• sensor line checked for 
interruptions or short-circuits, 
which trigger alarm: halt 
execution or erase memory 

 
• but.. external power supply is 

needed to eg. erase persistent 
memory 

 
• attacker will fingerprint active 

countermeasures (eg by power 
consumption) to interrupt power 
supply in time 

Vcc 

sensor  

ground 

Protective sensor mesh 



Physical attack: probing 

• FIB = Focussed Ion Beam  

• can observe or modify chip by 

• drilling holes 

• cutting connections 

• soldering new connections                                                              
and creating new gates 
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blown fuse 
hole drilled in 

 the chip surface 



Using FIB in probing 
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Fibbing can be used to 

•    add probe pads  

• for lines too thin or fragile for 
needles 

• surface buried lines  

–poking holes through upper 
layers  

 

 

[Source: Sergei Skorobogatov] 



Physical attack: extracting ROM content 
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[Source: Brightsight]  

Staining can   
optically reveal 
the bits in ROM: 
dark squares are 1 
light squares are 0 
 
  



Physical attack: extracting RAM content 
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Image of RAM with voltage sensitive scanning electron microscope 
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Optical Beam Induced Current 
• signalling hot spots on chip surface 

– eg to locate crypto co-processor 

[Source: Sergei Skorobogatov] 

Newer imaging techniques 



Physical attacks: countermeasures 

• protective mesh to prevent access to the chip surface 

• obfuscate chip layout, eg by scrambling or hiding bus lines 

• scramble or encrypt memo 

• sensors  for low and high temperatures, light, clock frequency, 
voltage, to trigger active countermeasure 
– But… external power supply needed for reaction 
– Sensors can be destroyed when power is off => they must be tested 

periodically in normal operation 
 

• The good news: as circuits become smaller & more-complex,  

     physical attacks become harder … ultimately too hard? 
 

93 



Dynamic security analysis:                                                                                        
Fuzzing & automated reverse engineering 
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Accidental DoS attacks over the years 

95 
All accidentally made to crash with unexpected inputs 



1. original form of fuzzing: trying out long inputs to find buffer overflows 

 

2. message format fuzzing:                                                                            
trying out strange inputs, given some format/language                                                     

 

3. message sequence fuzzing                                                                             
trying out strange sequences of inputs 

       to infer the protocol state machine from an implementation                     ~S 

  

Fuzzing: different forms & case studies 
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Message Format Fuzzing 
 

aka Protocol Fuzzing 
Fuzzing some protocol/format/protocol/input language 

Example: GSM  

97 



Input problems 
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All input is potentially evil! 

99 

Malformed image on a 
electronic passport 
could crash passport 
readers. 
 
Moral: 
Beware of all inputs 
 
not just the  
obvious ones 
that come over the 
network… 



Message format aka protocol fuzzing 

Fuzzing based on a known protocol format 

 ie format of packets or messages 

 

Typical things to try in protocol fuzzing: 

• trying out many/all possible value for specific field                                                                
esp undefined values, or values Reserved for Future Use (RFU) 

• giving incorrect lengths, length that are zero, or payloads that are too 
short/long 

Note the relation with LangSec: a good description of the input language is not 
just useful to generate parsers, but also for fuzzing! 

Tools for protocol fuzzing: SNOOZE, Peach, Sulley  
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Example : GSM protocol fuzzing 

GSM is a extremely rich & complicated protocol 
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SMS message fields 
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Field size 
Message Type Indicator 2 bit 
Reject Duplicates 1 bit 
Validity Period Format 2 bit 
User Data Header Indicator 1 bit 
Reply Path 1 bit 
Message Reference integer 
Destination Address 2-12 byte 
Protocol Identifier 1 byte 
Data Coding Scheme (CDS) 1 byte 
Validity Period 1 byte/7 bytes 
User Data Length (UDL) integer 
User Data depends on CDS and UDL 



Example: GSM protocol fuzzing 

Lots of stuff to fuzz! 

We can use a USRP  

 

with open source cell tower software (OpenBTS)       

 

  to fuzz any phone 

 

 

 

[Mulliner et al., SMS of Death] 

[F van den Broek, B. Hond, A. Cedillo Torres, Security Testing of GSM Implementations] 

 103 



Example: GSM protocol fuzzing 

Fuzzing SMS layer reveals weird functionality in GSM standard and in phones 
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Example: GSM protocol fuzzing 

Fuzzing SMS layer reveals weird functionality in GSM standard and in phones 

– eg possibility to send faxes (!?) 

 

 

 

 

 

 

 

    Only way to get rid if this icon: reboot the phone 

105 

you have a fax! 



Example: GSM protocol fuzzing 

Malformed SMS text messages showing raw memory contents, rather than 
content of the text message 
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garbage SMS text garbage SMS text, incl.names 
of games installed on the phone 



Example: GSM protocol fuzzing 

• Lots of success to DoS phones: phones crash, disconnect from the network, 
or stop accepting calls 

– eg requiring reboot or battery removal to restart, to accept calls again, or to 
remove weird icons 

– after reboot, the network might redeliver the SMS message, if no 
acknowledgement was sent before crashing, re-crashing phone 

    But: not all these SMS messages could be sent over real network 

• There is not always a correlation between problems and phone brands & 
firmware versions  

– how many implementations of the GSM stack does Nokia have? 

• The scary part: what would happen if we fuzz base stations? 
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LangSec (Language-theoretic security) 

Fuzzing file or protocol formats naturally fits with LangSec.                                              
LangSec recognizes the role of input languages, esp. 

• complexity and variety of input languages 

• poor (informal) specification of input languages                                               
(not with eg EBNF grammar) 

• ad-hoc, handwritten code for parsing, which mixes parsing & interpreting    
(aka shotgun parsers) 

as root causes behind software insecurity 

If you’re interested in producing secure software, read up on this at langsec.org 
Eg                                                                                                                                      
Towards a formal theory of computer insecurity            httpp://ww.youtube.com/watch?v=AqZNebWoqnc                                                                                             
CCC presentation The Science of Insecurity       http://www.youtube.com/watch?v=3kEfedtQVOY  
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Automated Reverse Engineering 
 

by learning Protocol State Machines 

 

Case studies                              &  
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Input languages: messages & sessions 

Most protocols not only involves nottion of of input message format 

 

 

 

but also language of session,                 

    ie. sequences of messages 
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message sequence chart 

 

 

 

 

 

 

 

 

 

 

This oversimplifies  

because it only specifies one correct, happy flow  
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protocol state machine   

A protocol is typically more  

complicated than a simple  

sequential flow. 

This can be nicely 

specified using a  

finite state machine (FSM) 

 

This still oversimplifies: it only  

describes the happy flows  

and the implementation  

will have to be input-enabled 
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SSH transport layer 



 input enabled state machine 

113 

A state machine is input enabled if in every state it is able to receive every 
message  
 
Often, unexpected messages are ignored (eg b above)   
or lead to some error state (eg as a above) 

a b 

c 

c 

b, c 

b 

b 
a 

a, b, c 

a 



Extracting protocol state machine from code 

We can infer a finite state machine from implementation  

by black box testing using state machine learning                    

• using Angluin’s L* algorithm, as implemented in eg. LearnLib 

 

This is effectively a form of ‘stateful’ fuzzing                                            

using a test harness that sends typical protocol messages 

 

This is a great way to obtain protocol state machine 

• without reading specs! 

• without reading code! 
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State machine learning with L* 

Basic idea: compare response of a deterministic system to different                       
input sequences, eg. 

1. b 

2. a ; b 

If response is different, then               

 

                       otherwise   

 

 

The state machine inferred is only an approximation of the system,  

and only as good as your set of test messages                                              
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b 

a 

… 

b b 
a 

… … 



Case study in state machine learning (1): 
 

EMV smartcards for banking 

116 



Case study:  EMV 

• Started 1993 by EuroPay, MasterCard, Visa 

• Common standard for communication between  

– smartcard chip in bank or credit card (aka ICC) 

– terminal  (POS or ATM) 

– issuer back-end 

• Specs controlled by                         which is owned by 

 

• Over 1 billion cards in use 
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The EMV protocol suite 

• EMV is not a protocol, but a “protocol toolkit suite”:                                                  
many options and parameterisations (incl. proprietary ones) 

– 3 different card authentication mechanism  

– 5 different cardholder verification mechanisms  

– 2 types of transactions: offline, online 

All these mechanisms again parameterized! 

 

 

• Specs public but very complex (4 books, totalling >750 pages) 
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More complexity still: EMV variants             

• EMV-CAP, for using EMV cards for internet banking 

      Proprietary and secret standard of MasterCard. 

• Contactless EMV for payments with contactless bankcard or NFC phone 

Specs public, 10 documents totalling >1600 pages   
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Example: one sentence from these specs 

  

“If the card responds to GPO with SW1 SW2 = x9000 and AIP byte 2 bit 8 set 
to b0, and if the reader supports qVSDC and contactless VSDC, then if the 
Application Cryptogram (Tag '9F26') is present in the GPO response, then 
the reader shall process the transaction as qVSDC, and if Tag '9F26' is not 
present, then the reader shall process the transaction as VSDC.” 

 

 

[Thanks to Jordi van Breekel for this example] 
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Test harness for EMV 

Our test harness implements standard EMV instructions, eg 

– SELECT (to select application) 

– INTERNAL AUTHENTICATE (for a challenge-response) 

– VERIFY  (to check the PIN code) 

– READ RECORD 

– GENERATE AC  (to generate application cryptogram) 

LearnLib then tries to learn all possible combinations 

• most commands with fixed parameters, but some with different options 
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State machine learning of              card 
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State machine learning of              card 
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merging arrows  
with identical  
response 



State machine learning of              card 
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merging arrows with  
same start & end state 



Formal models of banking cards for free! 

• Experiments with Dutch, German and Swedish banking and credit cards 

• Learning takes between 9 and 26 minutes 

• Editing by hand to merge arrows and give sensible names to states 

– this could be automated 

• Limitations 

– We do not try to learn response to incorrect PIN as cards would block... 

– We cannot learn about one protocol step which requires knowledge of card’s 
secret 3DES key 

• No security problems found, but interesting insight in implementations 

 

[F. Aarts et al, Formal models of bank cards for free, SECTEST 2013] 
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Using such protocol state diagrams 

• Analysing the models by hand, or with model checker, for flaws 

– to see if all paths are correct & secure 

• Fuzzing or model-based testing 

– using the diagram as basis for “deeper” fuzz testing 

• eg fuzzing also parameters of commands 
• Program verification 

– proving that there is no functionality beyond that in the diagram, which 
using testing you can never establish 

• Using it when doing a manual code review 
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SecureCode application on Rabobank card 

127 

used for internet banking, hence 
entering PIN with VERIFY obligatory 



Comparing implementations 

 

 

 

 

 

 

 

 

Are both implementations correct & secure? And compatible? 

Presumably they both passed a Maestro-approved compliance test suite... 
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Volksbank Maestro 
implementation 

Rabobank Maestro 
implementation 



Case study in state machine learning (2): 
 

EMV-CAP internet banking 
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Fundamental problems 

Computer display 
cannot be trusted 
         despite 

How  can the bank  
authenticate the user? 
Or  (trans)actions of the user? 

How can the user  
authenticate the bank? 



       Internet banking with EMV-CAP 

This display  
can be trusted. 
And the keyboard,  
to enter PIN. 

Computer display 
cannot be trusted 

transfer € 10.00   
to 52.72.83.232  
type: 23459876 



       Internet banking with EMV-CAP 
Limitation: 
    meaning of the numbers 23459876 unclear... 
Solution: 
   Let the user enter transaction details  
   (eg amount, bank accounts,...) 
    on the device 
Problem: lots of typing.... 
 

transfer € 10.00   
to 52.72.83.232  
type: 23459876 



Using a USB-connected device 

More secure: display can show full transaction details 
Also, more user-friendly 
 

USB transfer € 10.00 
to 52.72.83.232 
     

transfer € 10.00 
to 52.72.83.232  



Analysis: first observation 

 Some text for display goes in plain-text over USB line 

 The PC can show 

 messages predefined in the e.dentifier2 

 any message that it wants to be signed 

 

 

 

 



GENERATE AC f(number, text) 

Reverse-Engineered Protocol 

PC reader card 

display:‘enter pin’ 

display:‘text’ 

user enters PIN 

user presses OK 

ASK-PIN 

PIN-OK 
SIGN (number, text )   

USER-OK 

COMPLETE 

g(cryptogram) 
cryptogram 

PIN 
OK 



GENERATE AC f(number, text) 

Spot the defect! 

PC reader card 

display:‘enter pin’ 

display:‘text’ 

user enters PIN 

user presses OK 

ASK-PIN 

PIN-OK 
SIGN (number, text )   

USER-OK 

COMPLETE 

g(cryptogram) 
cryptogram 

PIN 
OK 



GENERATE AC f(number, text) 

Suspicious... 

PC reader card 

display:‘enter pin’ 

display:‘text’ 

user enters PIN 

user presses OK 

ASK-PIN 

PIN-OK 
SIGN (number, text )   

USER-OK 

COMPLETE 

g(cryptogram) 
cryptogram 

PIN 
OK 



GENERATE AC f(number, text) 

Attack! 

PC reader card 

display:‘enter pin’ 

display:‘text’ 

user enters PIN 

user presses OK 

ASK-PIN 

PIN-OK 
SIGN (number, text )   

USER-OK 

g(cryptogram) 
cryptogram 

PIN 
OK 



Reverse engineering the USB-connected e.dentifier 

Can we fuzz  

• USB commands 

• user actions via keyboard 

to find bug in ABN-AMRO 

e.dentifier2   

by automated learning? 

 

 

 [Arjan Blom et al, 

  Designed to Fail: a USB-connected reader 

 for online banking, NORDSEC 2012] 

 

 



Operating the keyboard using of  
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The              hacker let loose on 
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 [Georg Chalupar et al  
   Automated Reverse Engineering using LEGO,  
  WOOT 2014] 

http://tinyurl.com/legolearning 



Would you trust this to be secure? 
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More detailed inferred state machine, using richer input alphabet. 
 
 
Do you think whoever designed or 
implemented this is confident that 
it is secure? 



Case study in state machine learning (3): 
TLS 
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NSS implementation of TLS 

 

 

 

 

 

 

State machine inferred from NSS implementation 

Comforting to see this is so simple! 
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TLS... according to GnuTLS 

147 



TLS... according to OpenSSL 
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TLS... according to Java Secure Socket Exension 
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Which TLS implementations are correct? or secure? 
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             [Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015] 



Conclusions: Dynamic Security Analysis 
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More reverse engineering approaches 

There are many techniques for reverse engineering based on testing.  

• passive  vs active learning, ie passive observing vs active testing 

– Active learning involves a form of fuzzing 

– These approaches learns different things:                                     

• passive learning produces statistics on normal use,     
   and can be basis for anomaly detection 
• active learning will more agressively try our strange things 

• black box vs white box 

ie only observing in/output or also looking inside running code 

Cool example of what afl (american fuzzy lop) fuzzer can do 
http://lcamtuf.blogspot.com.br/2014/11/pulling-jpegs-out-of-thin-air.html 
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1. original form of fuzzing: trying out long inputs to find buffer overflows 

2. message format fuzzing:                                                                            
trying out strange inputs, given some format/language                                   
to find flaws in input handling                                                      

3. message sequence fuzzing                                                                             
trying out strange sequences of inputs                                                               
to find flaws in program logic  

      3a. given a protocol state machine, or  

3b.  to infer the protocol state machine from an implementation                      
~ 

2 & 3a are essentially forms of model-based testing 

3b is a form of automated reverse engineering 

(Warning: there is no really standard terminology for these various kinds of fuzzing) 

 

  

Different forms of fuzzing 
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Protocol State Machines 

• State machines are a great specification formalism 

– easy to draw on white boards , but typically omitted in official specs  

     and you can extract them for free from implementations 

– using standard, off-the-shelf, tools like LearnLib 

Useful for security analysis of protocol implementations 

The people writing the specs,                                                                                                   
coding the implementation, and                                                                                        
doing the security analyses may                                                                                                          
all be drawing state machines                                                                                             
on their white boards... 

But will these be identical? 
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[Protocol state machines and session languages, 
 SErik Poll, Joeri de Ruiter, and Aleksy Schubert, LangSec 2015]  

http://www.cs.ru.nl/~erikpoll/papers/langsec.pdf�
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