
Security by Construction

Erik Poll

Digital Security

Radboud University Nijmegen

Security by Construction ?!?

Security by Construction:

Forget about it,

it ain’t gonna happen

Some Security by Construction

thanks to LangSec

Overview

1. General observations about security

• Why we need & want security by construction

• Why security is hard to do by construction

2. Preventing a large class of security problems, namely input problems,

by construction

• using LangSec approach, esp. parser generation [http://langsec.org]

3. My own additions to the LangSec approach

• protocol state machines [LangSec 2015]

• tackling forwarding flaws (aka injection flaws) [LangSec 2018]

Radboud University NijmegenErik Poll 5

Background & motivation

For the past decade I’ve been

• trying to apply formal methods to security

• teaching software security

Much security research & teaching is the polar opposite of constructive

• Security research is often post-hoc and destructive:

• Vulnerability research looks for clever ways to attack systems

• Teaching by counterexample:

• ie. showing students entertaining examples of security flaws

Can we take a more systematic approach?

Radboud University NijmegenErik Poll 6

Why security by construction

would be great!

Cyber security is huge & still growing problem

Radboud University NijmegenErik Poll 8

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world

What’s new with security:

skilled people with lots of
resources are actively
looking for bugs to exploit.

Root cause: software

• Systems can be hacked because there is software in them

• Software is the main root cause of security problems

• Only other cause of problems: humans (‘social engineering’)

• Cyber security is our problem, as software engineering community

• Don’t count on security researchers, network security people,

cryptographers, … to solve this

Radboud University NijmegenErik Poll 9

software security ≠ security software

• Security software = software implementing security controls or

functionality

• such as security protocols (eg TLS), access control mechanisms,

login procedures, disk encryption, …

• Obviously, security software needs to be correct & secure, and we

could try and specify it & get it right by construction

• However, ALL software needs to be secure, not just the security

software

• eg device drivers, PDF viewers, MS Office, FaceTime…

• Of course, we can & should use compartmentalisation to reduce the TCB

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

Radboud University NijmegenErik Poll 10

Security in Software Development Lifecycle

Radboud University NijmegenErik Poll 11

Requirements

& use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests

(DAST)

Static

Analysis

(SAST)

Pen

testing

Security
incidents

Deployment

Holy grail: Security-by-Design

Patch

Coding

guidelines Patch

Management

Assets

Why security (by design) is tricky…

Specifying security

• specification = WHAT

program = HOW

security specification = WHAT NOT

• WHAT NOT is not so useful during construction…

• Should the specification (‘correctness’) subsume / imply security?

• For security software, it might?

• If the spec allows refinement, then it will not?

Radboud University NijmegenErik Poll 14

Specifying security - WHAT NOT

• The good news: WHAT NOT can be orthogonal to functionality

• So maybe we can re-use security specs for multiple systems?

• Indeed, there are useful generic lists of common security flaws

• OWASP Top 10

• CWE/SANS Top 25

This is top 25 out of 702 (!) common security weaknesses

• The bad news: WHAT NOT is hard to specify exhaustively

‘There are unknown unknowns’ – Donald Rumsfeld

Radboud University NijmegenErik Poll 15

Some ways to specify (some) security

• Temporal logic or security automata

• eg. action X only possible after entering PIN code

• Information flow properties

• enforced using typing, static analysis, or deductive verification

• Precondition TRUE in contracts for public interfaces

• Not just {P} S {Q}

but also {not P} S {nothing ’bad’ happened}

• Eg. prove safety conditions

{true} S {no RuntimeException}

Radboud University NijmegenErik Poll 17

LangSec
(language-theoretic security)

LangSec

• Interesting look at root causes of large class of security problems,

namely problems with

• Useful suggestions for dos and don’ts

• The language in Language-theoretic Security refers to input languages,

not modelling or programming languages.

Sergey Bratus & Meredith Patterson

‘The science of insecurity’

CCC 2012

Erik Poll Radboud University Nijmegen 19

Common theme: input
Mishandling malicious input is the common theme in many

attacks

eg buffer overflow, format string attack, command injection, path traversal,

SQL injection, XSS, CSRF, Word macros, XML injection, LDAP injection, zip

bombs, deserialization attacks, …

• Garbage In, Garbage Out

leads to

Malicious Garbage In, Security Incident Out

20Erik Poll Radboud University Nijmegen

application
malicious input

Fallacy of classic input validation?

Classical input validation aka input sanitisation

remove or encode harmful characters (eg ; ' ")

before processing inputs

But...

• Which characters are harmful depends on the language/format, and a

typical application handles many languages.

Eg ' problematic for SQL database, < > for web app, & for LDAP server

• Instead of validating input before feeding it to crappy software that

processes it, maybe that software should be more robust?

• esp. the parsing it performs as part of any processing

Erik Poll Radboud University Nijmegen 21

SMS of Death

Text message that used to crash iPhones:

• Should telco filter SMS to remove these dangerous Unicode combinations?

• Should the baseband chip in an iPhone filter out these combinations?

• Or should iPhone software be robust in dealing with arbitrary combinations of

Unicode?

So, is input validation always the right way to prevent input problems?

Erik Poll Radboud University Nijmegen 22

LangSec: root causes

• Input languages play a central role causing security flaws

• aka protocols, file formats, encodings, …

• Any language anywhere in the protocol stack, incl.

TCP/IP v4 or v6,

WiFi, GSM/UMTS/LTE, Ethernet,

OpenVPN, SSH,

HTTP(S), TLS, X.509, HTML5 (incl. JavaScript), XML, JSON,

URLs, email addresses, S/MIME,

JPG, doc, PDF, xls, MP3, MPEG, Flash,

Bluetooth,

USB, ...

• This provides a attack surface for the attacker

23Erik Poll Radboud University Nijmegen

huge

LangSec: root causes of security problems

• Ad-hoc, imprecise, or complex notion of input validity

Eg, have you looked at how complex the Flash file format is?

Or HTML5? Or X.509 certificates?

• Mixing input recognition & processing

esp. in shotgun parsers, handwritten code that incrementally parses

& interprets input, in a piece-meal fashion

The buggy parsing & processing then results in weird behaviour

- a weird machine - for attackers to have fun with

Erik Poll Radboud University Nijmegen 24

1. Precisely defined input languages

eg with regular expression or EBNF grammar

2. Generated parser code

3. Complete parsing before processing

So don’t substitute strings & then parse,

but parse & then substitute in parse tree

(eg. parameterised queries instead of dynamic SQL)

4. Keep the input language simple & clear

So that equivalence of parsers is ideally decidable

So that you give minimal processing power to attackers

LangSec principles

25Erik Poll Radboud University Nijmegen

Example input problem: PDF

• Root cause: PDF spec is horrendously complex

• Multiple versions, some include JavaScript, some include Abode’s

proprietary ActionScript....

• These Foxit bugs are mainly memory memory corruption flaws that

allow remote code execution

• so high impact, and easy to exploit with email attachments

• All PDF viewers suffer from such problems

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

26Erik Poll Radboud University Nijmegen

Example input problem: X.509 certificates

X.509 spec is horrendously complex. Example attacks:

• Multiple names, comma-separated, in a certificate Common Name

paypal.com,mafia.org

Different browsers and CAs interpret this in different ways

• ANS.1 attacks in X.509 certificates

Null terminator in ANS.1 BER-encoded string in a certificate Common Name

paypal.com\00mafia.org

• PKCS#10-tunneled SQL injection

SQL command inside a BMPString, UTF8String or UniversalString used as
PKCS#10 Subject Name

[Dan Kaminsky, Meredith Patterson, and Len Sassaman, PKI Layer Cake: New Collision
Attacks against the Global X.509 Infrastructure, Financial Crypto 2010]

27Erik Poll Radboud University Nijmegen

Processing complex input languages will go wrong

28Erik Poll

Eg GSM specs

for SMS text messages

Unsurprisingly,

malformed GSM traffic

will trigger lots of

problems

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres,

Security Testing of GSM Implementations, ESSOS 2014]

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM quickly crashes many phones!

It also reveals weird functionality in GSM standard and phones

29

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM quickly crashes many phones!

It also reveals weird functionality in GSM standard and phones

• eg warnings about receiving faxes (!?)

Only way to get rid if this icon; reboot the phone

30

you have a fax!

LangSec in slogans

[Photoshopped by Kythera of Anevern, see http://langsec.org/occupy]

32

33

LangSec continued:

Protocol state machines

(Advertisement for LearnLib)

[LangSec 2015 paper]

Sequences of inputs

• Many protocols not only involves a language of input messages

but only a notion of session, ie. sequence of messages

• Most specs only describe the happy flow…

• For security protocols, getting unhappy flows

correct is crucial

• Fortunately, we can extract these state machines

from code - or hardware - using active learning

35

Case study: EMV

• Most banking smartcards implement a variant of EMV

• EMV = Europay-Mastercard-Visa

• Specification in 4 books totalling > 700 pages

• Contactless payments: another 7 books with > 2000 pages

36

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

Active model learning of card

37

Active model learning of card

38

merging arrows

with identical

response

Active model learning of card

39

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

Using state machines for comparison

Are both implementations correct & secure? Or compatible?

40

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Using state machine for security analysis

41

Which actions are guarded by PIN check?

State machines inferred for flawed & patched device

[Georg Chalupar et al.,

Automated reverse engineering using Lego,
WOOT 2014]

Movie at http://tinyurl/legolearn

Active learning of internet banking device

Active learning of internet banking device

45

Would you trust this to be secure?

More complete state machine

Active learning of TLS

Protocol state machine of the NSS TLS implementation

46

State machine of OpenSSL

OpenSSL

47

State machine of Java Secure Socket Exchange

48

Active learning of TLS

49

All implementations we analysed are different!

Why doesn’t the TLS spec include a state machine?

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Forwarding flaws

[LangSec 2018]

[Strings considered harmful, Usenix ;login: , to appear]

(At least) two types of input problems

1. Buggy processing & parsing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote code

execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end service/system/API, to cause damage there

• Classic examples: SQL injection, XSS, format string attack, Word macros

This is intended behaviour of the back-end, introduced deliberately,

but exposed by mistake by the front-end

52Erik Poll Radboud University Nijmegen

Processing vs Forwarding Flaws

53

(abuse of) a feature !

Forwarding Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !
Processing Flaws

eg buffer overflow

in PDF viewer

Erik Poll Radboud University Nijmegen

More back-ends, more languages, more problems

54Erik Poll

SQL

database
malicious

input

web

application

OS

web

browser

XSS

command

injection

SQLi

file

systempath

traversal

format

string attack C library

Radboud University Nijmegen

How & where to tackle input problems?

55

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

Where will this
input end up?

?

?

validation/sanitisation:

filtering and/or escaping?

Which bits
are input?

LangSec approach:
Simple & clear language spec;

generated parser code;

complete parsing before

any further processing

(no shotgun parsing)

Erik Poll Radboud University Nijmegen

Anti-patterns

in tackling forwarding flaws

Anti-pattern: string concatenation

• Standard recipe for security disaster: concatenating several pieces of

data, some of them user input, and passing the result on to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

57Erik Poll Radboud University Nijmegen

Avoiding SQL injection with prepared statement

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username

+ "AND Password = " + $password;

give a string with placeholders and the parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?" ,

$username ,

$password

58

Anti-pattern: strings

The use of strings in itself is already troublesome

• be it char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:

eg. name, file name, email address, URL, shell command, bit of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing often

involve some interpretation (incl. parsing)

• If you have a shotgun parser, your code will use strings

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a

very expressive & powerful language

59

Remedies

to tackle forwarding flaws

Types to the rescue!

Remedy: Types (1) to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data

61Erik Poll Radboud University Nijmegen

Remedy: Types (2) to distinguish trust levels

• Use information flow types to track the origins of data

and/or to control destinations

• Eg distinguish untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

62Erik Poll Radboud University Nijmegen

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out

• as latest attacks using script gadgets demonstrate

[Lekies et al., Code-Reuse Attacks for the Web: Breaking Cross-Site
Scripting Mitigations via Script Gadgets, CCS’17]

Google’s Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based APIs with typed APIs

• using TrustedHtml, TrustedUrl, TrustedScriptUrl,

TrustedJavaScript,…

• ‘safe’ APIs for back-ends which auto-escape untrusted inputs

63Erik Poll Radboud University Nijmegen

Beyond types: extending programming language

Wyvern programming language by Jonathan Aldrich et al.

allows domain-specific extensions, eg

where HTML and SQL are ‘built-in’ types of the programming language

Added advantage over types: more convenient syntax

[D. Kurilova et al, Wyvern: Impacting Software Security via

Programming Language Design, PLATEAU 2014, ACM]

Radboud University NijmegenErik Poll 64

Conclusions

Security is about software!

• Software plays the central role in cyber (in)security

• Hence: it’s an important challenge to the software engineering

community – incl. the ISoLA community - to improve software security

Radboud University NijmegenErik Poll 66

Conclusions

• Many security problems arise in handling

• buggy parsing

• buggy protocol state machines

• unintended parsing due to forwarding

Ironically, parsing is a well-understood area of computer science…

• LangSec provides some constructive remedies to tackle this

• Have clear, simple & well-specified input languages

• Generate parser code

• Don’t use strings

• Do use types, to distinguish languages & trust levels

• Tools for test case generation can be very useful for security testing!

• There’s been an upsurge in interest in fuzzing over the past years

Radboud University NijmegenErik Poll 67

input

Thanks for your attention

Submit your papers to LangSec 2019!

