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Overview

1. General observations about security

• Why software is what matters, and esp. input handling in software

2. Preventing a large class of input security problems by construction

• using LangSec approach, esp. parser generation      [http://langsec.org]

3. Our own additions to the LangSec approach

• protocol state machines                                                          [LangSec 2015]

• also tackling forwarding flaws (aka injection flaws)       [LangSec 2018]
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Root cause of security problems: software

• Systems (laptops, servers, phones, cars, planes, industrial plants, …) 

can be hacked because there is software in them

• Software is the main root cause of security problems

• The only other important cause of problems: the human factor 

• Cyber security is a software engineering problem

• Don’t count on security researchers, network security people, 

cryptographers, … to solve this
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secure functionality  ≠ security functionality

• Some software implements security controls or functionality

• e.g. security protocols, access control mechanisms, login 

procedures, …

• Obviously, such software needs to be correct & secure.                                           

We could try to specify & verify it.

• e.g. NICTA’s L4.verified microkernel, INRIA’s miTLS

• However, ALL software needs to be secure, not just the security 

software

• incl. device drivers, browsers, Microsoft Office, PDF viewers,    

mp3 players, Bluetooth interface, …

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen 
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LangSec
(language-theoretic security)



LangSec (Language-Theoretic Security) 

• Interesting look at root causes of large class of security problems, 

namely problems with input

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,                                        

not modelling or programming languages.

Sergey Bratus & Meredith Patterson 

‘The science of  insecurity’

CCC 2012
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Common theme in security flaws:  input
Mishandling malicious input is the common theme in many 

attacks

buffer overflows, integer overflows, command injection, path traversal, SQL 

injection, XSS, CSRF, Word macros, XML injection, deserialization attacks, …

• Garbage In, Garbage Out

leads to

Malicious Garbage In, Security Incident Out
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Example input problem: PDF

• Root cause: PDF spec is horrendously complex

• These Foxit bugs are mainly memory corruption flaws that allow 

remote code execution

• so high impact, and easy to exploit with email attachments

• All PDF viewers suffer from such problems    

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

8Erik Poll Radboud University Nijmegen



Example input problem: X.509 certificates

X.509 spec is horribly complex. Example attacks:

• Multiple names, comma-separated, in a certificate Common Name 

paypal.com,mafia.org

Different browsers and CAs interpret this in different ways;             

such parser differentials can be critical security flaws.

• ANS.1 attacks  

Null terminator in ANS.1 BER-encoded string in a Common Name

paypal.com\00mafia.org

[Dan Kaminsky, Meredith Patterson, and Len Sassaman,  PKI Layer Cake: New Collision 

Attacks against the Global X.509 Infrastructure, Financial Crypto 2010]
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Hand-written parsers of complex languages will go wrong
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Eg GSM specs                                

for SMS text messages

Unsurprisingly,                                                                                                             

malformed GSM                                                                                             

traffic can trigger                                                                                                          

lots of problems

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres, 

Security Testing of GSM Implementations, ESSOS 2014] 



Even hand-written parsers of simple formats go wrong

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid and fits in buf1 and buf2:

if (!isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// Now copy url up to first '/' into buf1

out = buf1;

do {

// skip spaces

if (*url != ' ') *out++ = *url;

} while (*url++ != '/'); 

strcpy(buf2, buf1);

...

What if there is no / in the url?

This bug was exploited by the Blaster worm in 2003. 
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LangSec: root causes of security problems 

• Input languages play a central role causing security flaws

• aka protocols, file formats, encodings, … 

• Any language anywhere in the protocol stack, incl.

TCP/IP v4 or v6,                                                                                                             

WiFi, GSM/3G/4G, Ethernet, Bluetooth,                                                                                            

OpenVPN, SSH,                                                                                                                    

HTTP(S), TLS, X.509, HTML5 (incl. JavaScript), XML,  JSON,                                                                   

URLs, email addresses, S/MIME,                                                                                               

JPG, doc, PDF, xls, MP3, MPEG, Flash,         

…                                           

• This provides a                                  attack surface for the attacker
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LangSec: root causes of security problems

• Ad-hoc, imprecise, or complex  notions of input validity

Eg, have you looked at how complex the Flash file format is?  Or HTML5?       

Or X.509 certificates?

• Handwritten  parsers, which mix input recognition & processing                                          

shotgun parser: code that incrementally parses & interprets input in a 

piece-meal fashion

The buggy parsing & processing then results in weird behaviour           

- a weird machine - for attackers to have fun with
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1. Precisely defined input languages

Ideally with regular expression or EBNF grammar.                                                                    

Common problem: length fields that make format context-sensitive

2. Generated parser code

3. Complete parsing before processing

So also don’t substitute strings & then parse, 

but parse & then substitute in parse tree 

(c.f. parameterised SQL queries instead of dynamic SQL)

4. Keep the input language simple & clear

So that equivalence of parsers is ideally decidable.

So that you give minimal processing power to attackers.

LangSec principles
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LangSec in slogans
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LangSec continued:

protocol state machines

[LangSec 2015 paper]



Sequences of inputs

Many protocols not only involve a language of input messages

but also a notion of session,  ie. sequence of messages

• Most specs only describe the happy flow.                                                              

For security, getting unhappy flows correct                                                    

can be crucial!

• A specification of all flows could be given by a state machine… 

• Fortunately, we can extract state machines from systems by

black box testing!
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State machine inference, eg using LearnLib tool

Just try out many sequences of inputs, and observe outputs

Suppose input A results in output X 

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ... 

to e.g. infer

The inferred state machine is an under-approximation of real system                          
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Case study: EMV

• Most banking smartcards implement a variant of EMV

• EMV = Europay-Mastercard-Visa

• Specification in 4 books totalling > 700 pages

• Contactless payments: another 7 books with > 2000 pages

21Erik Poll Radboud University Nijmegen

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1


State machine inference of              card
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State machine inference of              card
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merging arrows with 

same start & end state

[Fides Aarts et al., Formal models of  bank cards for free, SECTEST 2013]
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Using state machines for comparison

Are both implementations correct & secure? Or compatible?
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Volksbank Maestro

implementation

Rabobank Maestro

implementation
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Using state machine for security analysis
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Which actions are guarded by PIN check? 
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State machines inferred for flawed & patched device

State machine of internet banking device
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Complete inferred state machine
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Would you trust this to be secure?

[Georg Chalupar et al.,                                                                                                                      

Automated reverse engineering using Lego,                                                                                    

WOOT 2014]

Movie at http://tinyurl/legolearn
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State machine of TLS

Protocol state machine of  the NSS TLS implementation
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State machine of OpenSSL

OpenSSL
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State machine of Java Secure Socket Exchange
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State machine inference of TLS implementations
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All TLS implementations we analysed were different!

Why doesn’t the TLS spec include a state machine?

[Joeri de Ruiter et al., Protocol state fuzzing of  TLS implementations, Usenix Security 2015]
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Forwarding flaws

[LangSec 2018]

[Strings considered harmful, Usenix login magazine,  2018]



Two types of  input problems 

1. Buggy parsing & processing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote 

code execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)   

• Input is forwarded to back-end  service/system/API, to cause 

damage there

• Classic examples: SQL injection, path traversal, XSS, Word macros

This is intended behaviour of the back-end, introduced deliberately, 

but exposed by mistake by the front-end
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Processing vs Forwarding Flaws 
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Erik Poll Radboud University Nijmegen



More back-ends, more languages, more problems
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How & where to tackle input problems?
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application
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input

Tackling processing  flaws
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Tackling forwarding flaws? 

Where will this 
input end up?

?

?

validation/sanitisation: 

filtering and/or escaping?

Which bits
are input?

LangSec approach:
Simple & clear language spec;

generated parser code;

complete parsing before

processing 
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Anti-patterns

in tackling forwarding flaws



Anti-pattern:  string concatenation

• Standard recipe for security disaster: 

1. concatenate several pieces of data, some of them user input,

2. pass the result to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

41Erik Poll Radboud University Nijmegen



Anti-pattern:  strings

The use of strings in itself is already troublesome

• be it char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:            

eg. name, file name, email address, URL, shell command, bit of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing often 

involve some interpretation (incl. parsing)  

2. The same string may be handled & interpreted in many                              

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a 

very expressive & powerful language
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Remedies

to tackle forwarding flaws

Types to the rescue!



Remedy: Types (1) to distinguish languages

• Instead of using strings for everything, 

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data
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Remedy: Types (2) to distinguish trust levels 

• Use information flow types to track the origins of data                                        

and/or to control destinations

• Eg distinguish untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,    

are orthogonal and can be combined.
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Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out.

The DOM API  is string-based, where strings can be HTML snippets, 

pieces of javascript, URLs, …

Google’s Trusted Types initiative  [https://github.com/WICG/trusted-types]

replaces string-based DOM API with a typed API 

• using TrustedHtml, TrustedUrl, TrustedScriptUrl, 

TrustedJavaScript,…

• ‘safe’ APIs for back-ends which auto-escape or reject untrusted 

inputs  

Now released as a Chrome browser feature   

[https://developers.google.com/web/updates/2019/02/trusted-types]              

46Erik Poll Radboud University Nijmegen



Conclusions



Conclusions

• Software play central role in cyber security

• Many security problems arise in               handling

• buggy parsing

• buggy protocol state machines                                                                       

• unintended parsing due to forwarding

Ironically, parsing is a well-understood area of computer science…

• LangSec provides some constructive remedies to tackle this

• Have clear, simple & well-specified input languages

• Generate parser code

• Don’t use strings

• Do use types, to distinguish languages & trust levels 
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Postel’s Law 

‘Be liberal in what you expect, be strict in what you send’ 

• aka Robustness Principle, originates from the RFC for TCP

• In the short run:                                                                                                                      

a great way to quickly get implementations to work together

• In the long run: 

a recipe for lots of security headaches
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Thanks for your attention
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