
Improving software security

by

improving input handling

Erik Poll

Digital Security

Radboud University Nijmegen

Overview

1. General observations about security

• Why software is what matters, and esp. input handling in software

2. Preventing a large class of input security problems by construction

• using LangSec approach, esp. parser generation [http://langsec.org]

3. Our own additions to the LangSec approach

• protocol state machines [LangSec 2015]

• also tackling forwarding flaws (aka injection flaws) [LangSec 2018]

Radboud University NijmegenErik Poll 2

Root cause of security problems: software

• Systems (laptops, servers, phones, cars, planes, industrial plants, …)

can be hacked because there is software in them

• Software is the main root cause of security problems

• The only other important cause of problems: the human factor

• Cyber security is a software engineering problem

• Don’t count on security researchers, network security people,

cryptographers, … to solve this

Radboud University NijmegenErik Poll 3

secure functionality ≠ security functionality

• Some software implements security controls or functionality

• e.g. security protocols, access control mechanisms, login

procedures, …

• Obviously, such software needs to be correct & secure.

We could try to specify & verify it.

• e.g. NICTA’s L4.verified microkernel, INRIA’s miTLS

• However, ALL software needs to be secure, not just the security

software

• incl. device drivers, browsers, Microsoft Office, PDF viewers,

mp3 players, Bluetooth interface, …

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

Radboud University NijmegenErik Poll 4

LangSec
(language-theoretic security)

LangSec (Language-Theoretic Security)

• Interesting look at root causes of large class of security problems,

namely problems with input

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,

not modelling or programming languages.

Sergey Bratus & Meredith Patterson

‘The science of insecurity’

CCC 2012

Erik Poll Radboud University Nijmegen 6

Common theme in security flaws: input
Mishandling malicious input is the common theme in many

attacks

buffer overflows, integer overflows, command injection, path traversal, SQL

injection, XSS, CSRF, Word macros, XML injection, deserialization attacks, …

• Garbage In, Garbage Out

leads to

Malicious Garbage In, Security Incident Out

7Erik Poll Radboud University Nijmegen

applicationmalicious input

Example input problem: PDF

• Root cause: PDF spec is horrendously complex

• These Foxit bugs are mainly memory corruption flaws that allow

remote code execution

• so high impact, and easy to exploit with email attachments

• All PDF viewers suffer from such problems

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

8Erik Poll Radboud University Nijmegen

Example input problem: X.509 certificates

X.509 spec is horribly complex. Example attacks:

• Multiple names, comma-separated, in a certificate Common Name

paypal.com,mafia.org

Different browsers and CAs interpret this in different ways;

such parser differentials can be critical security flaws.

• ANS.1 attacks

Null terminator in ANS.1 BER-encoded string in a Common Name

paypal.com\00mafia.org

[Dan Kaminsky, Meredith Patterson, and Len Sassaman, PKI Layer Cake: New Collision

Attacks against the Global X.509 Infrastructure, Financial Crypto 2010]

9Erik Poll Radboud University Nijmegen

Hand-written parsers of complex languages will go wrong

10Erik Poll

Eg GSM specs

for SMS text messages

Unsurprisingly,

malformed GSM

traffic can trigger

lots of problems

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres,

Security Testing of GSM Implementations, ESSOS 2014]

Even hand-written parsers of simple formats go wrong

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid and fits in buf1 and buf2:

if (!isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// Now copy url up to first '/' into buf1

out = buf1;

do {

// skip spaces

if (*url != ' ') *out++ = *url;

} while (*url++ != '/');

strcpy(buf2, buf1);

...

What if there is no / in the url?

This bug was exploited by the Blaster worm in 2003.

11

LangSec: root causes of security problems

• Input languages play a central role causing security flaws

• aka protocols, file formats, encodings, …

• Any language anywhere in the protocol stack, incl.

TCP/IP v4 or v6,

WiFi, GSM/3G/4G, Ethernet, Bluetooth,

OpenVPN, SSH,

HTTP(S), TLS, X.509, HTML5 (incl. JavaScript), XML, JSON,

URLs, email addresses, S/MIME,

JPG, doc, PDF, xls, MP3, MPEG, Flash,

…

• This provides a attack surface for the attacker

12Erik Poll Radboud University Nijmegen

huge

LangSec: root causes of security problems

• Ad-hoc, imprecise, or complex notions of input validity

Eg, have you looked at how complex the Flash file format is? Or HTML5?

Or X.509 certificates?

• Handwritten parsers, which mix input recognition & processing

shotgun parser: code that incrementally parses & interprets input in a

piece-meal fashion

The buggy parsing & processing then results in weird behaviour

- a weird machine - for attackers to have fun with

Erik Poll Radboud University Nijmegen 13

1. Precisely defined input languages

Ideally with regular expression or EBNF grammar.

Common problem: length fields that make format context-sensitive

2. Generated parser code

3. Complete parsing before processing

So also don’t substitute strings & then parse,

but parse & then substitute in parse tree

(c.f. parameterised SQL queries instead of dynamic SQL)

4. Keep the input language simple & clear

So that equivalence of parsers is ideally decidable.

So that you give minimal processing power to attackers.

LangSec principles

14Erik Poll Radboud University Nijmegen

LangSec in slogans

15[Photoshopped by Kythera of Anevern, see http://langsec.org/occupy] Erik Poll

Erik Poll Radboud University Nijmegen 16

17Erik Poll Radboud University Nijmegen

LangSec continued:

protocol state machines

[LangSec 2015 paper]

Sequences of inputs

Many protocols not only involve a language of input messages

but also a notion of session, ie. sequence of messages

• Most specs only describe the happy flow.

For security, getting unhappy flows correct

can be crucial!

• A specification of all flows could be given by a state machine…

• Fortunately, we can extract state machines from systems by

black box testing!

19Erik Poll Radboud University Nijmegen

State machine inference, eg using LearnLib tool

Just try out many sequences of inputs, and observe outputs

Suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred state machine is an under-approximation of real system

Radboud University NijmegenErik Poll 20

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Case study: EMV

• Most banking smartcards implement a variant of EMV

• EMV = Europay-Mastercard-Visa

• Specification in 4 books totalling > 700 pages

• Contactless payments: another 7 books with > 2000 pages

21Erik Poll Radboud University Nijmegen

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

State machine inference of card

22
Erik Poll Radboud University Nijmegen

State machine inference of card

23

merging arrows with

same start & end state

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

Erik Poll Radboud University Nijmegen

Using state machines for comparison

Are both implementations correct & secure? Or compatible?

24

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Erik Poll Radboud University Nijmegen

Using state machine for security analysis

25

Which actions are guarded by PIN check?

Erik Poll Radboud University Nijmegen

State machines inferred for flawed & patched device

State machine of internet banking device

26

27

28

Complete inferred state machine

29

Would you trust this to be secure?

[Georg Chalupar et al.,

Automated reverse engineering using Lego,

WOOT 2014]

Movie at http://tinyurl/legolearn

Erik Poll Radboud University Nijmegen

State machine of TLS

Protocol state machine of the NSS TLS implementation

30Erik Poll Radboud University Nijmegen

State machine of OpenSSL

OpenSSL

31Erik Poll Radboud University Nijmegen

State machine of Java Secure Socket Exchange

32Erik Poll Radboud University Nijmegen

State machine inference of TLS implementations

33

All TLS implementations we analysed were different!

Why doesn’t the TLS spec include a state machine?

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Erik Poll Radboud University Nijmegen

Erik Poll Radboud University Nijmegen 34

Forwarding flaws

[LangSec 2018]

[Strings considered harmful, Usenix login magazine, 2018]

Two types of input problems

1. Buggy parsing & processing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote

code execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end service/system/API, to cause

damage there

• Classic examples: SQL injection, path traversal, XSS, Word macros

This is intended behaviour of the back-end, introduced deliberately,

but exposed by mistake by the front-end

36Erik Poll Radboud University Nijmegen

Processing vs Forwarding Flaws

37

(abuse of)

a feature !
Forwarding Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !Processing Flaws

eg buffer overflow

in PDF viewer

Erik Poll Radboud University Nijmegen

More back-ends, more languages, more problems

38Erik Poll

SQL

database
malicious

input

web

application

OS

web

browser

XSS

command

injection

SQL

injection

file

systempath

traversal

format

string attack C library

Radboud University Nijmegen

How & where to tackle input problems?

39

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

Where will this
input end up?

?

?

validation/sanitisation:

filtering and/or escaping?

Which bits
are input?

LangSec approach:
Simple & clear language spec;

generated parser code;

complete parsing before

processing

Erik Poll Radboud University Nijmegen

Anti-patterns

in tackling forwarding flaws

Anti-pattern: string concatenation

• Standard recipe for security disaster:

1. concatenate several pieces of data, some of them user input,

2. pass the result to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

41Erik Poll Radboud University Nijmegen

Anti-pattern: strings

The use of strings in itself is already troublesome

• be it char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:

eg. name, file name, email address, URL, shell command, bit of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing often

involve some interpretation (incl. parsing)

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a

very expressive & powerful language

42Erik Poll Radboud University Nijmegen

Remedies

to tackle forwarding flaws

Types to the rescue!

Remedy: Types (1) to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data

44Erik Poll Radboud University Nijmegen

Remedy: Types (2) to distinguish trust levels

• Use information flow types to track the origins of data

and/or to control destinations

• Eg distinguish untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

45Erik Poll Radboud University Nijmegen

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out.

The DOM API is string-based, where strings can be HTML snippets,

pieces of javascript, URLs, …

Google’s Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based DOM API with a typed API

• using TrustedHtml, TrustedUrl, TrustedScriptUrl,

TrustedJavaScript,…

• ‘safe’ APIs for back-ends which auto-escape or reject untrusted

inputs

Now released as a Chrome browser feature

[https://developers.google.com/web/updates/2019/02/trusted-types]

46Erik Poll Radboud University Nijmegen

Conclusions

Conclusions

• Software play central role in cyber security

• Many security problems arise in handling

• buggy parsing

• buggy protocol state machines

• unintended parsing due to forwarding

Ironically, parsing is a well-understood area of computer science…

• LangSec provides some constructive remedies to tackle this

• Have clear, simple & well-specified input languages

• Generate parser code

• Don’t use strings

• Do use types, to distinguish languages & trust levels

Radboud University NijmegenErik Poll 48

input

Postel’s Law

‘Be liberal in what you expect, be strict in what you send’

• aka Robustness Principle, originates from the RFC for TCP

• In the short run:

a great way to quickly get implementations to work together

• In the long run:

a recipe for lots of security headaches

Radboud University NijmegenErik Poll 49

Thanks for your attention

Erik Poll Radboud University Nijmegen 50

References

On LangSec

• Lots of papers at http://langsec.org,

e.g. the LangSec manifesto http://langsec.org/bof-handout.pdf

On state machine inference:

• Georg Chalupar, Stefan Peherstorfer, Erik Poll and Joeri de Ruiter,

Automated Reverse Engineering using LEGO, WOOT 2014

• Joeri de Ruiter and Erik Poll,

Protocol state fuzzing of TLS implementations, Usenix Security 2015

• Erik Poll, Joeri de Ruiter and Aleksy Schubert,

Protocol state machines and session languages, LangSec 2015

On forwarding attacks

• Erik Poll, LangSec revisited: input security flaws of the 2nd kind, LangSec 2018

• Erik Poll, Strings considered harmful, Usenix login magazine, 2018

Radboud University NijmegenErik Poll 51

