
/*@ immutable @*/ objects

Erik Poll

SoS group (aka the LOOP group)
Radboud University Nijmegen

KeY workshop – June 2005

Erik Poll Immutable Objects 2

yet another JML keyword...

• Java provides final – ie. immutable - fields
What about immutable objects?

• It would be nice to have a notion of immutable object,
that
– can be specified in JML,
– statically enforced,
– guarantees immutability, and
– can be exploited in program verification...

Erik Poll Immutable Objects 3

overview

• Why would we want immutable objects ?

• How do we enforce immutability ?

• How to exploit immutability ?

Erik Poll Immutable Objects 4

why immutability ?

• Good software engineering practice
 “immutable objects greatly simplify your life”
 Knowing that an object is immutable rules out

– problems with aliasing
– problems with race conditions

• Performance
– compiler optimisations, no need for synchronisation

• Specification
– immutability is an important integrity property
– eg. immutability of Strings, URLs, Permissions, etc.

vital for security

Erik Poll Immutable Objects 5

why immutability ?

Useful in program verification

 char[] a;

 String s;

 if (s.equals(“abc”)) {

 a[1]=‘d’;

 //@ assert s.equals(“abc”);

 }

 ...

Knowing that strings are immutable allows us to prove this.

Erik Poll Immutable Objects 6

why immutability ?

 JML has a library of – supposedly immutable - model
classes, for mathematical objects such as sets, relations,

//@ public model JMLObjectSet s;

//@ requires ! s.contains(o);

//@ ensures s.equals(\old(s).union(o));

public void addListener(Object o) { ... }

Enforcing immutability

Erik Poll Immutable Objects 8

starting point: pure

JML has notion of pure to specify absence of side-effects:

• pure method has no side-effects
• pure constructor has no side-effects, except
 on newly allocated state
• pure class only has pure methods, pure constructors, and

pure sub-classes

Erik Poll Immutable Objects 9

pure does not imply immutable

public /*@ pure @*/ class Integer{

 public int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

 methods of an Integer object don’t have any side-
effects, but maybe methods of some other class have
side-effects an Integer object’s state

Erik Poll Immutable Objects 10

is this pure class immutable ?

public /*@ immutable?? @*/ class Integer {

 private int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

 Still not immutable, because field i is not final:
 an object created with new Integer(5) may be
observed to change from 0 to 5 in a multi-threaded
program

Erik Poll Immutable Objects 11

counterexample

Thread 1 creates object
 x = new Integer(5);

This takes three steps:
5. a new Integer object is

allocated, with i field 0
6. i field is set to 5
7. x is set to point to this

newly allocated object

Steps 2 and 3 can be reordered
by compiler or VM!

Thread 2 observes this object
 int j = x.getValue();

Thread 2 may observe value 0,
namely if it observes x after 3
and before 2.

Erik Poll Immutable Objects 12

fields must be final to ensure immutability

public /*@ immutable @*/ class Integer {

 private final int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

 This class has immutable objects, thanks to the newly
revised Java Memory Model (JSR-133, 2004)

 People tend to forget final declarations...

Erik Poll Immutable Objects 13

final fields may still be mutable...

public /*@ immutable?? @*/ class Integer {

 public static Integer latest;

 private final int i;

 public Integer(int j){ i = j;

 latest = this;} // leaks

 public int getValue(){ return i;)

}

Constructor leaks this, hence field i not immutable:
Integer(5) may be observed to change from 0 to 5.

There are a few more ways to leak this

Erik Poll Immutable Objects 14

ensuring immutability

 A pure class is immutable if
1. all instance fields are final, and
2. constructors don’t leak this

 This definition is implicit in JSR-133, but it is not
strong enough if we want immutable objects with
immutable sub-objects

Erik Poll Immutable Objects 15

what about sub-objects?

public /*@ immutable @*/ BankTransfer {

 final Integer amount;

 final byte[] transferID;

 final BankAccount src, dest;

 ...

}

• amount and transferID objects part of the
Banktransfer object

• src and dest objects probably not

Erik Poll Immutable Objects 16

what about sub-objects?

public /*@ immutable @*/ BankTransfer {

 final Integer amount;

 final byte[] transferID;

 final BankAccount src, dest;

 ...

}

• amount and transferID objects part of the
Banktransfer object, and should also be immutable

• src and dest objects probably not, and may be mutable

Erik Poll Immutable Objects 17

specifying the “state” of an object

public /*@ immutable @*/ BankTransfer {

 final /*@ rep @*/ Integer amount;

 final /*@ rep @*/ byte[] transferID;

 final BankAccount src, dest;

 ...

}

 Sub-object amount and tranferID should be immutable.
– This means transferID should not be aliased!
– JML universes type system – or some other form of

alias control/confinement/ownership – guarantees this.

– amount can be aliased, because it’s immutable.

Erik Poll Immutable Objects 18

ensuring immutability

A pure class is immutable if
1. all instance fields are final, and
2. constructors don’t leak this, and
3. all instance fields that are references either

i. have immutable types, or
ii. are part of the “state” and cannot be aliased, or
iii. are excluded from the “state”

Erik Poll Immutable Objects 19

still not enough...

public /*@ immutable?? @*/ StrangeInteger {

 private final int i;

 StrangeInteger(int j){ i = j; }

 int getValue(){ return SomeClass.someStaticField;}

}

 As well as specifying and checking
 what a method writes (assignable aka modifies clauses)

we also need to check
 what a method reads (readable clauses)

Erik Poll Immutable Objects 20

Ensuring immutability

Def. A pure class is immutable if
1. all instance fields are final, and
2. constructors don’t leak this, and
3. all instance fields that are references

i. have immutable types, or
ii. are part of the state and cannot be aliased, or
iii. are excluded from the “state”

4. its methods don’t read mutable state (outside its
own state)

Erik Poll Immutable Objects 21

Related work on enforcing immutability

• Javari [Birka & Ernst at MIT, OOPSLA’04]
– proposal to add readonly modifier to Java
– more refined notion of immutability, eg allowing both

mutable and immutable (readonly) references to the
same object

– doesn’t deal with sub-objects (3) or reading mutable
state(4)

• Jan Schäfer at TU Kaiserslautern
– system for enforcing immutability
– forgets check on leaking this (2)

Exploiting immutability

Erik Poll Immutable Objects 23

exploiting immutability

Immutability is easily to exploit in
• alias control system
• relaxing synchronisation in multi-threaded programs

How about exploiting immutability in verification ?

Erik Poll Immutable Objects 24

observational immutability

• Example: bankTransfer.getAmount() is a constant

• object is “observationally immutable” if we cannot
observe any mutation by invoking its methods

• if o is observationally immutable, then
 o.m(x1,...,xn)
 always returns the same result, if xi are primitive values

or immutable objects

Erik Poll Immutable Objects 25

exploiting immutability in verification?

A method
 C m(C1 x1, ..., Cn xn)
is interpreted/modeled as function
 m : GlobalState×Ref×C1×..×Cn —> C

For immutable objects we can omit state argument
 m : Ref×C1×..×Cn —> C
if all Ci are primitive or immutable types

Implemented by David Cok in ESC/Java2

Erik Poll Immutable Objects 26

exploiting immutability in verification?

 public /*@ immutable @*/ class Integer {

 ...

 public Integer add(Integer i) {

 return new Integer(getValue()+i.getValue);

 }

Here we get add: Ref x Ref —> Ref
But this means
 i == j ⇒ k.add(i) == k.add(j)
not
 i.equals(j) ⇒ k.add(i).equals(k.add(j))
which is what we’d really want...

Erik Poll Immutable Objects 27

exploiting immutability in verification?

• Trick to exploit immutability by ommiting state argument
is perfect if arguments and result have primitive types

• But if result is a reference type, it may not be sound.
 Eg add always returns the same result, but here the

same means the same modulo == , not .equals

• If an argument is of reference type, it is not complete
 Eg add always returns the same result for .equal

arguments, not just == arguments

Erik Poll Immutable Objects 28

alternative approaches

• We could specify the properties of an immutable type as
axioms to the back-end theorem prover.

• We could also give a native implementation of the
immutable Integer class in our back-end theorem prover.

• But how do we know this is sound ?

Erik Poll Immutable Objects 29

maybe we also want /*@constant@*/ methods?

 (Mutable) object can have “constant” methods which
always return the same result

 For example

 public class Object {

 ...

 public /*@ constant @*/ int hashCode(){...};

 public /*@ constant @*/ Class getClass(){...};

 ...

 }

Erik Poll Immutable Objects 30

conclusions & future work

• Immutability is nice property, that deserves to be
documented, if not in Java then in JML:

 stresses design decision; specifies important integrity
property; enables checks that people don’t forget final;
simplifies alias control & synchronisation.

• Enforcing immutability is possible, but complicated
– requires alias control and readable clauses

(in addition to assignable/modifies clauses)
• Exploiting immutability in verification is tricky, except

for primitive types
– Can we devise a provably sound approach ?

