
Software security for no one?

Erik Poll

Digital Security

Radboud University Nijmegen

This talk

• We can’t seem to produce secure IT systems

Over 6189 CVEs recorded in 2018 at cve.mitre.org

• What are root causes behind many security vulnerabilities?

• Can we tackle some of them?

• Much of this talk revolves around parsing

• Most of this should be familiar if you know about LangSec

2Erik Poll

How come systems can be hacked?

1. Software (“hacking”)

Classical example: the buffer overflow

Every line of code processing input from outside is a potential

security problem.

2. Humans (“social engineering”)

Classic example: send phishing emails to get passwords

3. The combination of software and humans

Classic example: email Word attachments with malicious macros

3

a bug!

a feature?

Erik Poll

Common theme: input
• Software or people mishandling malicious input is the common theme

in many attacks

• eg buffer overflow, format string attack, command injection, path

traversal, SQL injection, XSS (Cross Site Scripting), Word macros,

XML injection, LDAP injection, zip bombs, deserialization attacks, …

• Garbage In, Garbage Out

` leads to

Malicious Garbage In, Security Incident Out

4Erik Poll

Two types of input problems in software

1. Buggy processing

• Eg buffer overflows

This is unintended behaviour, introduced by mistake

2. Unintended processing

• Eg Word macros, SQL injection

This is intended behaviour, introduced deliberately, but exposed by

mistake

This processing can come as a complete surprise:

• systems often involve many more languages (or protocols) than we expect

• these languages may be much more expressive than we expect

5

bugs

‘features’

Erik Poll

Example surprise in processing input

• Windows supports many notations for path names

• classic MS-DOS notation C:\MyData\file.txt

• file URLs file:///C|/MyData/file.txt

• UNC (Uniform Naming Convention) \\192.1.1.1\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt

• Some notations induce unexpected behaviour , eg

• UNC paths to remote servers are handled by the SMB protocol

• SMB sends your password hash to remote server to authentication

– aka pass the hash

• This can be exploited by SMB relay attacks on applications handling file names

- CVE-2000-0834 in Windows telnet,

- CVE-2008-4037 in Windows XP/Server/Vista, …

- CVE-2016-5166 in Chromium,

- CVE-2017-3085 & CVE-2016-4271 in Adobe Flash,

- ZDI-16-395 in Foxit PDF viewer

[Example thanks to Björn Ruytenberg, https://blog.bjornweb.nl]
Erik Poll 6

Making input problems worse

• Complex input languages

making bugs in parsing likely

• Eg Adobe Flash = JPG+GIF+PNG+H.264/MPEG4+VP6

……………………...+MP3+AAC+Speex+PCM+ADPCM+Nellymoser+G7.11+..

• Eg see https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

• Many input languages & formats

making unintended & unexpected processing likely

• Very expressive input languages

making it easy for attackers to do lots of damage

Eg Powershell Macros in Word,

Javascript & DOM in HTML5,

ActionScript in Flash

Erik Poll 7

What to do about this

• Ideally, we’d like prevent input problems by

• by using small number of well-defined & simple languages

• by generating parser code to avoid buggy parsing

(See langsec.org)

• How can we recognise that we may have problems

• with unintended processing? Strings

• with buggy parsing? Fuzzing

Erik Poll 8

Strings considered harmful

Danger sign for unintended processing:

• Strings and string concatenation

• API calls that takes a string as argument

• Strings are useful, because you can represent all sort of things as strings:

eg. file names, URLs, email addresses, shell commands, bits of SQL or HTML,…

• Strings are dangerous, because you can represent all sort of things as strings:

Hard to know if some API somewhere won’t interpret them in way that can do

damage

• Proposals to root out DOM-based XSS flaws replace string-based APIs

with typed APIs

• using TrustedHtml, TrustedUrl, TrustedScriptUrl, TrustedJavaScript,…

[Sebastian Lekies, Don't trust the DOM: Bypassing XSS mitigations via

script gadgets, OWASP Benelux 2017]

9Erik Poll

Even processing simple input languages can go wrong

Sending an extended length APDU can crash a contactless payment

terminal.

[Jordi van den Breekel, A security evaluation and proof-of-concept relay attack on

Dutch EMV contactless transactions, MSc thesis, 2014]

Erik Poll 10

Processing complex input languages will go wrong

11Erik Poll

Eg GSM specs

for SMS text messages

Unsurprisingly,

malformed GSM traffic

will trigger lots of

problems

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres,

Security Testing of GSM Implementations, ESSOS 2014]

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

12Erik Poll

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

• eg warnings about receiving faxes (!?)

Only way to get rid if this icon; reboot the phone

13

you have a fax!

Erik Poll

Example: Fuzzing OCPP [ongoing research by Ivar Derksen]

• OCPP is a protocol for charge points

• to talk to back-end server

• OCPP can use XML or JSN messages

• Simple classification of messages in

1. malformed JSN/XML

2. well-formed JSN/XML, but not legal OCPP

3. well-formed OCPP

provides an interesting test oracle:

do mal-/well-formed requests trigger mal-/well-formed responses?

This does not involve any understanding of the protocol semantics yet!

14Erik Poll

Test results with fuzzing an OCPP server

• Mutation fuzzer generates 26,400 variants from 22 example OCPP

messages in JSN format

• Problems spotted by our simple test oracle:

• 945 malformed JSN requests result in malformed JSN response.

Server should never emit malformed JSN!

• 75 malformed JSN requests and 40 malformed OCPP requests

result in a valid OCPP response that is not an error message.

Server should not process malformed requests!

• So server violates LangSec principle of no processing before full

recognition

• Code is a open-source project touted as ‘premium software’

15Erik Poll

Conclusions

• Buggy or unintended parsing are root causes of much security trouble

• As highlighted by the LangSec (langsec.org) approach,

though that emphasises buggy parsing over unintended parsing

• Ironically, parsing is one the best-understood techniques in computer

science

• We have regular expressions, context-free grammars, EBNF,

ABNF, finite automata, … and tools to generate code from these.

Apparently, nobody is using these…?

• Heavy use of strings in code is a warning sign

• Fuzzing is a great way to get a first impression of the quality of code,

even without understanding any protocol semantics.

16Erik Poll

Thanks for your attention

17Erik Poll

http://langsec.org

Paper deadline for LangSec 2018 @ IEEE S&P: January 31th

