
A Java Reference Model of
Transacted Memory for Smart Cards

Erik Poll University of Nijmegen

Joint work with

Pieter Hartel University of Twente

Eduard de Jong Sun Microsystems

Erik Poll – p.1/23

Overview

• Case study in specifying and testing (i.e. debugging)
a piece of smart card OS software that provides
transactions

• using the formal specification language JML

• using the runtime assertion checking tool for JML

Erik Poll – p.2/23

Transactions

• Possible power loss due to card tear at any moment

• Therefore: smartcard OS supports transactions,
atomic writes consisting of several EEPROM writes

• On power-up: OS cleans up any unfinished transaction

• This clean-up can again be interrupted by a card tear
. . .

Erik Poll – p.3/23

Transactions

• Possible power loss due to card tear at any moment

• Therefore: smartcard OS supports transactions,
atomic writes consisting of several EEPROM writes

• On power-up: OS cleans up any unfinished transaction

• This clean-up can again be interrupted by a card tear
. . .

Erik Poll – p.3/23

Transactions

• Possible power loss due to card tear at any moment

• Therefore: smartcard OS supports transactions,
atomic writes consisting of several EEPROM writes

• On power-up: OS cleans up any unfinished transaction

• This clean-up can again be interrupted by a card tear
. . .

Erik Poll – p.3/23

Transactions

• Possible power loss due to card tear at any moment

• Therefore: smartcard OS supports transactions,
atomic writes consisting of several EEPROM writes

• On power-up: OS cleans up any unfinished transaction

• This clean-up can again be interrupted by a card tear
. . .

Erik Poll – p.3/23

Transacted Memory

Implementation idea by Bos & de Jong:

Tag NewTag(length)

InfoSeq Read(tag)

void Write(tag, infoSeq)

void Commit(tag)

void Tidy()

NB not as implemented in the current JavaCard API.

Provides multiple, concurrent, transactions and logging.

Erik Poll – p.4/23

Transacted Memory

EEPROM

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | | | |

NewTag(4) returns tag1 with length 4

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 0 | 0 | 0 | 0

Write(tag1,[0,0,0,0]) possibly in several EEPROM
writes

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 1 | 1 | 1

Write(tag1,[1,1,1,1])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 3 | 3 | 3 | 3

Write(tag1,[3,3,3,3])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 5 | 5 | 5 | 5

Write(tag1,[5,5,5,5])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

Write(tag1,[1,3,5,7])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

Commit(tag1)

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 2 | 4 | 2 | 4

Write(tag1,[2,4,2,4]), undone in case of card tear

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 4 | 6 | 4 | 2

Write(tag1,[4,6,4,2])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 2 | 4 | 6 | 8

Write(tag1,[2,4,6,8])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

Commit(tag1) , removing previous committed generation

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

tag1 | . . . | 9 | 7 | 5 | 3

Write(tag1,[9,7,5,3]), undone in case of card tear

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

tag1 | . . . | 3 | 5 | 7 | 9

Write(tag1,[3,5,7,9])

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8==============

tag1 | . . . | 3 | 5 | 7 | 9

Commit(tag1) , removing previous committed generation

Erik Poll – p.5/23

Transacted Memory

EEPROM

tag1 | 0. . . | 1 | 3 | 5 | 7

tag1 | 1 . . . | 2 | 4 | 6 | 8

tag1 | 2 . . . | 3 | 5 | 7 | 9

Logging for free, by numbering committed generations

Erik Poll – p.5/23

Earlier work on Transacted Memory

Formal methods – Z and Promela – used for specification &
implementation [Butler, Hartel, de Jong, Longley]:

abstract
Z spec �� �� �� +3

concrete
Z spec

� �� ��� �� � 	 +3
C/Promela

implementation

Model checked in SPIN.

But:

big gap between Z specs and C implementation

no formal relation between them

Erik Poll – p.6/23

Earlier work on Transacted Memory

Formal methods – Z and Promela – used for specification &
implementation [Butler, Hartel, de Jong, Longley]:

abstract
Z spec �� �� �� +3

concrete
Z spec

� �� ��� �� � 	 +3
C/Promela

implementation

Model checked in SPIN.

But:

big gap between Z specs and C implementation

no formal relation between them

Erik Poll – p.6/23

Idea behind this paper

The idea was to

• translate C implementation to Java

• translate Z specs to JML

so that

• spec and code are in comparable languages,

• tools can be used to check implementation against
spec,

• we could ultimately prove that implementation is
correct.

Erik Poll – p.7/23

Idea behind this paper

The idea was to

• translate C implementation to Java

• translate Z specs to JML

so that

• spec and code are in comparable languages,

• tools can be used to check implementation against
spec,

• we could ultimately prove that implementation is
correct.

Erik Poll – p.7/23

Translating C implementation
to Java

Erik Poll – p.8/23

Translating C implementation to Java

Done by hand - doable for a program of this size.

Only real differences between implementations:

• more type-safety in the Java implementation; e.g. for

#define Gen byte /* 0 .. maxgen */

we introduce a Java class Gen.

• exceptions used in Java to model card tears

Erik Poll – p.9/23

modeling card tears in Java

A card tear is a form of abrupt control flow:

• card tear is like an exception

• clean up after power-on is like the exception handler

• card tear is uncatchable exception, caught only in the
main repetition of the OS

A card tear can be faithfully modelled in Java by an
exception, that may be thrown just before or after every
EEPROM write.

Erik Poll – p.10/23

Java implementation

public void Write (Tag t, InfoSeq is)

throws CardTearException

public void Commit (Tag t)

throws CardTearException

...

When testing, we randomly throw CardTearException’s
to simulate card tears.

Erik Poll – p.11/23

Specifying the Java
implementation using JML

Erik Poll – p.12/23

Java Modeling Language JML

Formal specification language tailored to Java

JML can be used to annotate Java programs with

• pre- and postconditions

• invariants

• . . .

Similar to Eiffel (‘Design by Contract’) but more powerful.

Several tools available, incl. runtime assertion checker by
Gary Leavens et al (from www.jmlspecs.org)

Erik Poll – p.13/23

JML spec for Write

public void Write (Tag t, InfoSeq is)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(is)
@*/

This gives a pre- and postcondition for Write.

Erik Poll – p.14/23

JML spec for Commit (1)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))
@*/

Here \old is used to refer to the value that Read(t) had in
the pre-state.

Of course, this spec is far from complete . . .

Erik Poll – p.15/23

JML spec for Commit (2)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))

@ && ReadCommitted(t).equals(\old(Read(t)));
@*/

where ReadCommitted(t) returns most recent committed
generation for t.

This spec is still not complete: what if a card tear happens
during Commit . . . ?

Erik Poll – p.16/23

JML spec for Commit (3)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))

@ && ReadCommitted(t).equals(\old(Read(t)));

@ signals (CardTearException)

@ ReadCommitted(t).equals(\old(ReadCommitted(t)))

@ || ReadCommitted(t).equals(\old(Read(t)));
@*/

Exceptional postcondition expresses atomicity of Commit

Erik Poll – p.17/23

JML spec for Tidy (1)

public void Tidy() throws CardTearException

/*@ ensures (\forall Tag t; 0 <= t && t < MAXTAG;

@ Read(t).equals(

@ \old(CommittedRead(t))));
@*/

Postcondition says that after Tidy-ing all tags are restored
to their old committed values.

Here \forall is used to quantify over all tags.

Erik Poll – p.18/23

JML spec for Tidy (2)

public void Tidy() throws CardTearException

/*@ ensures (\forall Tag t; 0 <= t && t < MAXTAG;

@ Read(t).equals(

@ \old(CommittedRead(t))));

@ signals (CardTearException)

@ (\forall Tag t; 0 <= t && t < MAXTAG;

@ CommittedRead(t).equals(

@ \old(CommittedRead(t))));
@*/

Exceptional postcondition says that if Tidy is interrupted
none of the committed values change.

Erik Poll – p.19/23

Runtime assertion checking

We have translated

• C implementation to Java

• (parts of) the Z spec to JML

The runtime assertion checker can now be used to test the
Java implementation against the JML specs.

The runtime assertion checker checks pre-, post-, and
exceptional post-conditions, including uses of \old and
\forall, if the domain of quantification is finite.

Erik Poll – p.20/23

Runtime assertion checking

We have translated

• C implementation to Java

• (parts of) the Z spec to JML

The runtime assertion checker can now be used to test the
Java implementation against the JML specs.

The runtime assertion checker checks pre-, post-, and
exceptional post-conditions, including uses of \old and
\forall, if the domain of quantification is finite.

Erik Poll – p.20/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available

Erik Poll – p.21/23

Future/Ongoing work

• VHDL implementation

• fine-tuning the implementation: storing some data in
RAM rather than EEPROM

• more detailed specs: translating the complete
functional specification from Z to JML

• going beyond testing:
verification using theorem prover PVS & LOOP tool

Erik Poll – p.22/23

Conclusions

Modeling of card tears as Java exceptions allows

• realistic testing

• precise specification in JML

Benefit of formal JML specs (& runtime assertion checking)

• detailed & precise interface spec

• reduced effort for writing test code

• improved feedback when testing

JML-annotated Java code is a very accessible formal spec;
spec and code together in same file, in similar languages

Erik Poll – p.23/23

Conclusions

Modeling of card tears as Java exceptions allows

• realistic testing

• precise specification in JML

Benefit of formal JML specs (& runtime assertion checking)

• detailed & precise interface spec

• reduced effort for writing test code

• improved feedback when testing

JML-annotated Java code is a very accessible formal spec;
spec and code together in same file, in similar languages

Erik Poll – p.23/23

Conclusions

Modeling of card tears as Java exceptions allows

• realistic testing

• precise specification in JML

Benefit of formal JML specs (& runtime assertion checking)

• detailed & precise interface spec

• reduced effort for writing test code

• improved feedback when testing

JML-annotated Java code is a very accessible formal spec;
spec and code together in same file, in similar languages

Erik Poll – p.23/23

Conclusions

Modeling of card tears as Java exceptions allows

• realistic testing

• precise specification in JML

Benefit of formal JML specs (& runtime assertion checking)

• detailed & precise interface spec

• reduced effort for writing test code

• improved feedback when testing

JML-annotated Java code is a very accessible formal spec;
spec and code together in same file, in similar languages

Erik Poll – p.23/23

	Overview
	Transactions
	Transacted Memory
	Transacted Memory
	Earlier work on Transacted Memory
	Idea behind this paper
	{Large ed Translating C implementation to Java }
	$!!$Translating C implementation to Java
	modeling card tears in Java
	Java implementation
	{Large ed Specifying the Java implementation using JML }
	Java Modeling Language JML
	JML spec for Write
	JML spec for Commit (1)
	JML spec for Commit (2)
	JML spec for Commit (3)
	JML spec for Tidy (1)
	JML spec for Tidy (2)
	Runtime assertion checking
	Results
	Future/Ongoing work
	Conclusions

