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Overview

• Case study in specifying and testing (i.e. debugging)
a piece of smart card OS software that provides
transactions

• using the formal specification language JML

• using the runtime assertion checking tool for JML
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Transactions

• Possible power loss due to card tear at any moment

• Therefore: smartcard OS supports transactions,
atomic writes consisting of several EEPROM writes

• On power-up: OS cleans up any unfinished transaction

• This clean-up can again be interrupted by a card tear
. . .
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Transacted Memory

Implementation idea by Bos & de Jong:

Tag NewTag(length)

InfoSeq Read(tag)

void Write(tag, infoSeq)

void Commit(tag)

void Tidy()

NB not as implemented in the current JavaCard API.

Provides multiple, concurrent, transactions and logging.
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Transacted Memory

EEPROM
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Transacted Memory

EEPROM

tag1 | . . . | | | |

NewTag(4) returns tag1 with length 4
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Transacted Memory

EEPROM

tag1 | . . . | 0 | 0 | 0 | 0

Write(tag1,[0,0,0,0]) possibly in several EEPROM
writes
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 1 | 1 | 1

Write(tag1,[1,1,1,1])
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Transacted Memory

EEPROM

tag1 | . . . | 3 | 3 | 3 | 3

Write(tag1,[3,3,3,3])
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Transacted Memory

EEPROM

tag1 | . . . | 5 | 5 | 5 | 5

Write(tag1,[5,5,5,5])
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

Write(tag1,[1,3,5,7])
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

Commit(tag1)
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 2 | 4 | 2 | 4

Write(tag1,[2,4,2,4]), undone in case of card tear
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 4 | 6 | 4 | 2

Write(tag1,[4,6,4,2])
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7

tag1 | . . . | 2 | 4 | 6 | 8

Write(tag1,[2,4,6,8])
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

Commit(tag1) , removing previous committed generation
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

tag1 | . . . | 9 | 7 | 5 | 3

Write(tag1,[9,7,5,3]), undone in case of card tear
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8

tag1 | . . . | 3 | 5 | 7 | 9

Write(tag1,[3,5,7,9])
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Transacted Memory

EEPROM

tag1 | . . . | 1 | 3 | 5 | 7==============

tag1 | . . . | 2 | 4 | 6 | 8==============

tag1 | . . . | 3 | 5 | 7 | 9

Commit(tag1) , removing previous committed generation
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Transacted Memory

EEPROM

tag1 | 0. . . | 1 | 3 | 5 | 7

tag1 | 1 . . . | 2 | 4 | 6 | 8

tag1 | 2 . . . | 3 | 5 | 7 | 9

Logging for free, by numbering committed generations
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Earlier work on Transacted Memory

Formal methods – Z and Promela – used for specification &
implementation [Butler, Hartel, de Jong, Longley]:

abstract
Z spec �� �� �� +3

concrete
Z spec

� �� ��� �� � 	 +3
C/Promela

implementation

Model checked in SPIN.

But:

big gap between Z specs and C implementation

no formal relation between them
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Idea behind this paper

The idea was to

• translate C implementation to Java

• translate Z specs to JML

so that

• spec and code are in comparable languages,

• tools can be used to check implementation against
spec,

• we could ultimately prove that implementation is
correct.
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Translating C implementation
to Java
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Translating C implementation to Java

Done by hand - doable for a program of this size.

Only real differences between implementations:

• more type-safety in the Java implementation; e.g. for

#define Gen byte /* 0 .. maxgen */

we introduce a Java class Gen.

• exceptions used in Java to model card tears
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modeling card tears in Java

A card tear is a form of abrupt control flow:

• card tear is like an exception

• clean up after power-on is like the exception handler

• card tear is uncatchable exception, caught only in the
main repetition of the OS

A card tear can be faithfully modelled in Java by an
exception, that may be thrown just before or after every
EEPROM write.
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Java implementation

public void Write (Tag t, InfoSeq is)

throws CardTearException

public void Commit (Tag t)

throws CardTearException

...

When testing, we randomly throw CardTearException’s
to simulate card tears.
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Specifying the Java
implementation using JML
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Java Modeling Language JML

Formal specification language tailored to Java

JML can be used to annotate Java programs with

• pre- and postconditions

• invariants

• . . .

Similar to Eiffel (‘Design by Contract’) but more powerful.

Several tools available, incl. runtime assertion checker by
Gary Leavens et al (from www.jmlspecs.org)
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JML spec for Write

public void Write (Tag t, InfoSeq is)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(is)
@*/

This gives a pre- and postcondition for Write.
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JML spec for Commit (1)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))
@*/

Here \old is used to refer to the value that Read(t) had in
the pre-state.

Of course, this spec is far from complete . . .
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JML spec for Commit (2)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))

@ && ReadCommitted(t).equals(\old(Read(t)));
@*/

where ReadCommitted(t) returns most recent committed
generation for t.

This spec is still not complete: what if a card tear happens
during Commit . . . ?
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JML spec for Commit (3)

public void Commit (Tag t)

throws CardTearException

/*@ requires inUse(t);

@ ensures

@ Read(t).equals(\old(Read(t)))

@ && ReadCommitted(t).equals(\old(Read(t)));

@ signals (CardTearException)

@ ReadCommitted(t).equals(\old(ReadCommitted(t)))

@ || ReadCommitted(t).equals(\old(Read(t)));
@*/

Exceptional postcondition expresses atomicity of Commit
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JML spec for Tidy (1)

public void Tidy() throws CardTearException

/*@ ensures (\forall Tag t; 0 <= t && t < MAXTAG;

@ Read(t).equals(

@ \old(CommittedRead(t))));
@*/

Postcondition says that after Tidy-ing all tags are restored
to their old committed values.

Here \forall is used to quantify over all tags.

Erik Poll – p.18/23



JML spec for Tidy (2)

public void Tidy() throws CardTearException

/*@ ensures (\forall Tag t; 0 <= t && t < MAXTAG;

@ Read(t).equals(

@ \old(CommittedRead(t))));

@ signals (CardTearException)

@ (\forall Tag t; 0 <= t && t < MAXTAG;

@ CommittedRead(t).equals(

@ \old(CommittedRead(t))));
@*/

Exceptional postcondition says that if Tidy is interrupted
none of the committed values change.

Erik Poll – p.19/23



Runtime assertion checking

We have translated

• C implementation to Java

• (parts of) the Z spec to JML

The runtime assertion checker can now be used to test the
Java implementation against the JML specs.

The runtime assertion checker checks pre-, post-, and
exceptional post-conditions, including uses of \old and
\forall, if the domain of quantification is finite.
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Results

Bugs found:

• one typo - giving ‘version number’ instead of ‘generation
number’
Found during typechecking Java code

• one serious error - card tear at certain point is fatal
Found using runtime assertion testing
Repairing this bug was non-trivial!

Improvements made to code:

• throwing an exception when no unused EEPROM is
available

• throwing an exception when no fresh tags are available
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Future/Ongoing work

• VHDL implementation

• fine-tuning the implementation: storing some data in
RAM rather than EEPROM

• more detailed specs: translating the complete
functional specification from Z to JML

• going beyond testing:
verification using theorem prover PVS & LOOP tool
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Conclusions

Modeling of card tears as Java exceptions allows

• realistic testing

• precise specification in JML

Benefit of formal JML specs (& runtime assertion checking)

• detailed & precise interface spec

• reduced effort for writing test code

• improved feedback when testing

JML-annotated Java code is a very accessible formal spec;
spec and code together in same file, in similar languages
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