
Advanced JML
Erik Poll

Radboud University Nijmegen

JML – p.1/23

Core JML

Remember the core JML keywords were

• requires

• ensures

• signals

• invariant

• non null

• pure

• \old, \forall, \result

JML – p.2/23

More advanced JML features

• Visibility

• Specification inheritance, ensuring behavioural
subtyping

• normal behavior, exceptional behavior

• model fields

• ghost fields

JML – p.3/23

Visibility

JML imposes visibility rules similar to Java, eg.

public class Bag{

...

private int n;

//@ requires n > 0;

public int extractMin(){ ... }

is not type-correct, because public method extractMin
refers to private field n.

JML – p.4/23

Visibility

public int pub; private int priv;

//@ requires i <= pub;

public void pub1 (int i) { ... }

//@ requires i <= pub && i <= priv;

private void priv1 (int i) ...

//@ requires i <= pub && i <= priv; // WRONG !!

public void pub2(int i) { ... }

JML – p.5/23

Visibility: spec_public

Keyword spec public loosens visibility for specs.
Private spec public fields are allowed in public specs,
e.g.:

public class Bag{

...

private /*@ spec public @*/ int n;

//@ requires n > 0;

public int extractMin(){ ... }

Exposing private details can be ugly, of course. A nicer, but more
advanced alternative is to use public model fields to represent
(abstract away from) private implementation details.

JML – p.6/23

signals and normal_behavior

Exceptions are allowed by default, i.e. the default signals
clause is

signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/

JML – p.7/23

exceptional_behavior

normal behavior has implicit signals(Exception)false
exceptional behavior has implicit ensures false
Eg.

/*@ normal_behavior

requires amount <= balance;

ensures ...

also

exceptional_behavior

requires amount > balance

signals (BankAccountException e) ...

@*/

public int debit(int amount) { ... }
JML – p.8/23

signals vs exceptional_behavior

Beware of the difference between

(1) if P holds, then SomeException is thrown

and

(2) if SomeException is thrown, then P holds

(1) can be expressed with exceptional behavior,
(2) with a signals clause.

JML – p.9/23

Behavioural subtyping

Suppose Child extends Parent.

• Behavioural subtyping = objects from subclass Child
“behave like” objects from superclass Parent

• Principle of substitutivity [Liskov]:
code will behave “as expected” if we provide an
Child object where a Parent object was expected.

JML – p.10/23

Behavioural subtyping

Behavioural subtyping can be enforced by insisting that

• invariant in subclass is stronger than invariant in
superclass

• for every method,
• precondition in subclass is weaker (!) than

precondition is superclass
• postcondition in subclass is stronger than

postcondition is superclass

JML achieves this using specification inheritance: any child
class inherits the specification of its parent.

JML – p.11/23

Specification inheritance for invariants

Invariants are inherited in subclasses. Eg.

class Parent {

...

//@ invariant invParent;

... }

class Child extends Parent {

...

//@ invariant invChild;
... }

the invariant for Child is invChild && invParent

JML – p.12/23

Specification inheritance for methods specs

class Parent {

//@ requires i >= 0;

//@ ensures \result >= i;

int m(int i){ ... }

}

class Child extends Parent {

//@ also

//@ requires i <= 0

//@ ensures \result <= i;

int m(int i){ ... }
}

Keyword also indicates there are inherited specs.

JML – p.13/23

Specification inheritance for methods specs

Method m in Child also has to meet the spec given in
Parent class. So the complete spec for Child is

class Child extends Parent {

//@ requires i >= 0;

//@ ensures \result >= i;

//@ also

//@ requires i <= 0

//@ ensures \result <= i;

int m(int i){ ... }
}

What can result of m(0) be?

JML – p.14/23

Specification inheritance for methods specs

This is equivalent with

class Child extends Parent {

//@ requires i <= 0 || i >= 0;

//@ ensures \old(i) >= 0 ==> \result >= i;

//@ ensures \old(i) <= 0 ==> \result <= i;

int m(int i){ ... }
}

JML – p.15/23

Ghost fields

Sometimes it is convenient to introduce an extra field, only
for the purpose of specification (aka auxiliary variable).

A ghost field is like a normal field, except that it can only
be used in specifications.

A special set command can be used to assign a value to a
ghost field.

JML – p.16/23

Ghost fields - example

Suppose the informal spec of

class SimpleProtocol {

void startProtocol() { ... }

void endProtocol() { ... }
}

says that endProtocol() must only be invoked after
startProtocol(), and vice versa.

This can be expressed using a ghost field, to represent the

“state” of the object.

JML – p.17/23

Ghost fields - example

class SimpleProtocol {

//@ boolean ghost started;

//@ requires !started;

//@ ensures started;

void startProtocol() {

...

//@ set started = true; }

//@ requires started;

//@ ensures !started;

void endProtocol() {

...

//@ set started = false; }

JML – p.18/23

Ghost fields - example

Maybe the object has some internal state that that records if
protocols is in progress, eg.

class SimpleProtocol {

//@ private ProtocolStack st;

...

void startProtocol() {

...

st = new ProtocolStack(...);

... }

void endProtocol() {

...

st = null;

... }

JML – p.19/23

Ghost fields - example

There may be correspondence between the ghost field and
some other field(s), eg.

class SimpleProtocol {

//@ private ProtocolStack st;

//@ boolean ghost started;

//@ invariant started <==> (st !=null);

//@ requires !started;

//@ ensures started;

void startProtocol() { ... }

//@ requires started;

//@ ensures !started;
void endProtocol() { ... }

JML – p.20/23

Ghost fields - example

We could now get rid of the ghost field, and write

class SimpleProtocol {

//@ private ProtocolStack st;

//@ requires !(st!=null);

//@ ensures (st!=null);

void startProtocol() { ... }

//@ requires (st!=null);

//@ ensures !(st!=null);
void endProtocol() { ... }

but this is ugly...

Also, st must now be spec public.

JML – p.21/23

Model fields - example

Solution: use a model field

class SimpleProtocol {

//@ private ProtocolStack st;

//@ boolean model started;

//@ represents started <-- (st!=null);

//@ requires !started;

//@ ensures started;

void startProtocol() { ... }

//@ requires started;

//@ ensures !started;
void endProtocol() { ... }

JML – p.22/23

Model vs ghost fields

Difference between ghost and model is maybe confusing!
Both exist only in JML specification, and not in the code.

• Ghost
• Ghost field is like a normal field.
• You can assign to it, using set, in JML annotations.

• Model
• Model field is an abstract field.
• Model field is a convenient abbreviation.
• You cannot assign to it.
• Model field changes its value whenever the
representation changes.

Model field is like ‘abstract value’ for ADT (algebraic data type),
represent clause is like ‘representation function’.

JML – p.23/23

	Core JML
	More advanced JML features
	Visibility
	Visibility
	Visibility: 	exttt {spec_public}
		exttt {signals} {small and} 	exttt {normal_behavior}
		exttt {exceptional_behavior}
		exttt {signals} {small vs} 	exttt {exceptional_behavior}
	Behavioural subtyping
	Behavioural subtyping
	$!!!$small Specif-ication inheritance for invariants
	$!!!!!$small Specif-ication inheritance for methods specs
	$!!!!!$small Specif-ication inheritance for methods specs
	$!!!!!$small Specification inheritance for methods specs
	Ghost fields
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Ghost fields - example
	Model fields - example
	Model vs ghost fields

