
LangSec revisited:

input security flaws of the 2nd kind

Erik Poll

Digital Security

Radboud University Nijmegen

Motivations

• Lots of (well-justified!) LangSec efforts to eliminate parser bugs,

but what about input problems that do not involve parser bugs?

• (How) do existing efforts to tackle such input problems fit in with the

LangSec paradigm?

• Eg efforts at Google to combat XSS

• Can we extend the taxonomy of LangSec anti-patterns & remedies?

Caveats:

• Some answers are obvious, but took me some time to spot

• I’m only connecting some dots I happen to be aware of;

there may well be others

2Erik Poll

(At least) two types of input problems

1. Buggy processing

• Bug in processing input causes application to go of the rails

• Eg buggy parsing, parser differentials, flaw in program logic

• Classic example: buffer overflow in a PDF viewer, leading to remote code

execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end service/system/API, to cause damage there

• Classic example: SQL injection, XSS, Word macros

This is intended behaviour of the back-end, introduced deliberately,

but exposed by mistake by the front-end

3Erik Poll

Processing vs Forwarding Flaws

4

(abuse of) a feature !
Forwarding Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !

Processing Flaws

Erik Poll

More back-ends, more languages, more problems

5

SQL

database

malicious

input

web

application OS

web

browser

LDAP

server

XSS

command

injection

SQLi

LDAP

injection

Erik Poll

Familiar root causes of forwarding flaws

• Input languages:

too many, overly complex, ill-specified, and overly expressive

• eg SQL, OS commands, path names, HTML (incl. CSS & javascript), …

• Parsing:

but unintended parsing, rather than buggy parsing.

• Some shotgun parsing is unavoidable, as back-end will have to do

some parsing

Erik Poll 6

How & where to tackle input problems?

7

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

Where will this
input end up?

Erik Poll

?

?

validation

and/or

sanitisation (aka encoding aka escaping)?

Which bits
are input?

Simple & clear language spec,

generated parser code,

complete parsing before

any further processing

Anti-patterns

in tackling forwarding flaws

Anti-pattern: input escaping

• Input escaping, eg. processing inputs to escape dangerous

meta-characters, is a bad idea

• at the point of input, the context in which inputs will be used

(eg as path name, in SQL query, or as HTML)

is unclear, and different contexts require different solutions

• classic anti-example: PHP magic-quotes

• Output escaping makes more sense, because there context is known

• but there it can be unclear which data originates from input

Erik Poll 9

back-end

service

application

p
a

rs
e

r

input validation,
rejecting invalid input output sanitisation

aka escaping to make output harmless

Anti-pattern: string concatenation

• Recipe for disaster: concatenate several pieces of data,

some of them user input, and pass this on to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

• Forwarding flaws can be parsing problems, namely if back-end parses

data differently than the front-end serialised it

• but, you can still have forwarding problems without any

serialisation in the front-end, eg in format string attack like

printf(user_input);

Erik Poll 10

Anti-pattern: strings

More generally, the use of strings in itself is already troublesome

• incl. String, string, char*, char[], StringBuilder, ...

• Strings are useful, because you use them to represent many things:

eg. name, file name, email address, URL, shell command, bit of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing may

involve some interpretation

• If you have a shotgun parser, your code will use strings

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a

very expressive & powerful language

Erik Poll 11

Remedies

to tackle forwarding flaws

Remedy: Parameterised queries

• The best-known & most robust way to tackle SQL injection is to use

parameterised queries (or stored procedures)

• reduces the expressive power of the interface to the back-end

• avoids unparsing in front-end & (hence) parsing in back-end

• Note: this replaces a generic API call that takes a single string as

argument

Erik Poll 13

p
a

rs
e

r

Remedy: Types (1) to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data

Erik Poll 14

Remedy: Types (2) to distinguish trust levels

• Information flow types can be used to track the origins of data and/or

control destinations

• Ancient idea, going back to [Denning 1976]

• Eg untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

Erik Poll 15

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out

• as attacks using script gadgets demonstrate
[Lekies et al., Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script

Gadgets, CCS’17]

Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based APIs with typed APIs

• using TrustedHtml, TrustedUrl, TrustedScriptUrl, TrustedJavaScript,…

• ‘safe’ APIs for back-ends that auto-escape untrusted inputs

[Sebastian Lekies’ talk at OWASP Benelux 2017: Don't trust the DOM]

[Christoph Kern, Securing the Tangled Web, CACM 2014]

16Erik Poll

Beyond types: extending programming language

Wyvern programming language by Jonathan Aldrich et al.

allows domain-specific extensions, eg

where HTML and SQL are ‘built-in’ types of the programming language

Added advantage over types: more convenient syntax

[D. Kurilova et al, Wyvern: Impacting Software Security via

Programming Language Design, PLATEAU 2014, ACM]

Erik Poll 17

Conclusions

• Forwarding flaws vs processing flaws is a useful taxonomy to analyse

input problems & LangSec solutions

• Don’t use strings

• Do use types, to distinguish

1) different languages, and/or

2) different trust levels

Output escaping then becomes safe(r) & sane(r)

• Or even extend the programming language for this

These do’s are (programming) language-based security

as much as (input) language-theoretic security

Are there more forwarding anti-patterns & remedies,
or more good examples of these?

18Erik Poll

Thanks for your attention

Erik Poll 19

