Software security
specification and verification

Erik Poll

Security of Systems (S0S) group
Radboud University Nijmegen

Software (in)security
specification and verification/detection

Erik Poll

Security of Systems (S0S) group
Radboud University Nijmegen

How I got interested in software security

» Tool-supported formal specification and
verification of Java software

- JavaCard programs for smartcards ideal
target for verification

* But... what are the security properties to verify ??
* Physical attacks on smartcards better understood

than “logical” attacks on software

Properties to verify: absence of runtime exceptions or
integer overflow, preservation of invariants, ... rather than
complete functional specs

Erik Poll 50S - Radboud Univ. Nijmegen 3

Software security

* Vast majority of security problems are
caused by software

+ Software security excludes
- crypto, but not implementation of crypto
- social engineering attacks
- hardware security, eg. tamper-resistance

Erik Poll 50S - Radboud Univ. Nijmegen

Getting software secure is difficult!

Eg, from www.cert.org/advisories for (Open)SSH
CA-2001-35 Recent Activity Against Secure Shell Daemons (Dec 13) There are

multiple vulnerabilities in several implementations of SSH. ...

CA-2002-18 OpenSSH Vulnerability in challenge-response handling (Jun 26)

There are vulnerabilities in challenge response handling code ...

CA-2002-23 Mu|1'|p|e Vulnerabilities in OPCHSSH (JUIY 30) There are four remotely

exploitable buffer overflows in ...

CA-2002-24 Tr'ojan Horse OPCNSSH Distribution (Aug 1) Some copies of the source

code of OpenSSH package contain a Trojan horse.

CA-2002-36 Multiple Vulnerabilities in SSH Implementations (Dec 16) multiple

vendors' implementations of SSH contain vulnerabilities ...

CA-2003-24: Buffer Management Vulnerability in OpenSSH (Sept 16) thereisa

remotely exploitable buffer overflow in versions of OpenSSH prior to 3.7

Will there be more ?
Note that crypto is not the solution to our problems.

Erik Poll 50S - Radboud Univ. Nijmegen S

Some reasons why security is difficult

- Security concerns are always secondary

- primary goal of software is to provide some functionality
or services; managing risks this introduces is a
derived/secondary concern.

- Saying what is not secure is easier than saying
what is secure

- Security problems can go unnoticed during normal
use and testing

+ Security may conflict with functionality and
conhvenience
- for users, but also for programmers and sys-admins

Erik Poll 50S - Radboud Univ. Nijmegen

Example: programmer convenience vs security

- generally accepted Java coding standard:

“prefer protected to private”
- motivation: allows useful subclassing

- but Java security guideline:

“avoid using protected”
- motivation: protected really means unprotected

Erik Poll 50S - Radboud Univ. Nijmegen

Security in software development life cycle

» Security is a concern throughout SDLC
» Ideadlly, catch problems as early as possible

- Still, many software vulnerabilities are
intfroduced in the coding phase.
Namely coding bugs
- eg buffer overflows
as opposed to architectural flaws
- eg use of RPC under Windows

Erik Poll 50S - Radboud Univ. Nijmegen 8

Typical software vulnerabilities

0%

I buffer overflow
37% . .
® input validation

M code defect

B design defect
26%

I crypto

20%
Security bugs found in Microsoft bug fix month (2002)

Erik Poll S0S - Radboud Univ. Nijmegen ?

Example: famous Java security bug in JDK1.1
package java.lang;

public class Class {
private Object[] signers;

public Object[] getSigners() { return signers; }

This bug won't be caught by typical functional
specs, or detected by typical tests

Erik Poll 50S - Radboud Univ. Nijmegen

10

The bad news

* There are many things that can go wrong in
coding phase:

- long lists of dont's

* These may involve interaction of features,
and can be hard to spot (or test)

* Programmers often not aware of them

Eg. one major creditcard company lists 214
requirements for JavaCard smartcard code, to be
checked in source code reviews.

Erik Poll 50S - Radboud Univ. Nijmegen 1

The good news

* The same things tend to go wrong

» Largely independent of application, but
depending on
- the programming language
» eg. buffer overflows in C(++)
- the platform/0OS

* eg. unsafe use of system calls and
environment variables

- the kind of application
- eg. SQL command injections in webservers

Erik Poll 50S - Radboud Univ. Nijmegen 12

The problem with long checklists of "dont's"”

* Are programmers even aware of them ?
- Educate programmers

* How do we know the list is complete ?
- Publish & discuss these lists
- Challenge for scientific research

+ How do we check them ?

- Automate this!
Using static checkers aka source code analysers

Erik Poll 50S - Radboud Univ. Nijmegen 13

Some (free) source code analysers

« ITTS4 (C/C++)

+ RATS (¢/C++/Perl/PHP)
+ Flawfinder (C/C++)

» FindBugs (Java)

00000

Source code analysis not just for security,
but for general software quality

Erik Poll 50S - Radboud Univ. Nijmegen

14

Example: FindBugs source code analyser

| File “iews Settings Help

b4 FindBugs - <<unnamed project=>

By Class

@ & Class (1)

@ ¥ EI: Class.getSigners) may expose internal representation by returning Class. signers

| Details [Source Code | Annotations |

Method may expose internal representation
by returning reference to mutable object

Returning a reference to a rmutable object value stored in one of the object's fields
exposes the internal representation of the object. 1f instances are accessed by
untrusted code, and unchecked changes to the mutable object would compromise
security or other important properties, you will need to do something different.
Returning a new copy of the object is better approach in many situations.

Erik Poll

NIVERSITY F
EmEugS - http Hfmdbugﬁ Suurcefurge net,f @ Mm

SoS - Radboud Univ. NlJmegen

15

» Of course, ideally flaws should be
prevented at the language level.

- Eg
- ho buffer overflows in Java or C#

- tainted mode for input data in Perl
- escaping meta-characters in PHP

Erik Poll 50S - Radboud Univ. Nijmegen 16

Conclusions - the bad news

* Be aware that security tends to be ighored
- Security is hard to specify
- long lists of dont's

+ Software flaws are main cause of security
problems

- Software flaws can be hard to uncover
with testing or detect with normal use

Erik Poll 50S - Radboud Univ. Nijmegen 17

Conclusions - some good hews

* More standard patterns of security
vulnerabilities are widely known

* Improving static checkers can detect such
patterns (also thanks to Moore's Law)

* Newer languages and platforms will have
fewer vulnerabilities ?

Erik Poll 50S - Radboud Univ. Nijmegen 18

