
Software security
specification and verification

Erik Poll
Security of Systems (SoS) group

Radboud University Nijmegen

Software (in)security
specification and verification/detection

Erik Poll
Security of Systems (SoS) group

Radboud University Nijmegen

Erik Poll SoS - Radboud Univ. Nijmegen 3

How I got interested in software security

• Tool-supported formal specification and
verification of Java software

• JavaCard programs for smartcards ideal
target for verification

• But... what are the security properties to verify ??
• Physical attacks on smartcards better understood

than “logical” attacks on software
• Properties to verify: absence of runtime exceptions or

integer overflow, preservation of invariants, ... rather than
complete functional specs

Erik Poll SoS - Radboud Univ. Nijmegen 4

Software security

• Vast majority of security problems are
caused by software

• Software security excludes
– crypto, but not implementation of crypto
– social engineering attacks
– hardware security, eg. tamper-resistance

Erik Poll SoS - Radboud Univ. Nijmegen 5

Getting software secure is difficult!

Eg, from www.cert.org/advisories for (Open)SSH
CA-2001-35 Recent Activity Against Secure Shell Daemons (Dec 13) There are

multiple vulnerabilities in several implementations of SSH. ...

CA-2002-18 OpenSSH Vulnerability in challenge-response handling (Jun 26)
There are vulnerabilities in challenge response handling code ...

CA-2002-23 Multiple Vulnerabilities in OpenSSH (July 30) There are four remotely
exploitable buffer overflows in ...

 CA-2002-24 Trojan Horse OpenSSH Distribution (Aug 1) Some copies of the source
code of OpenSSH package contain a Trojan horse.

 CA-2002-36 Multiple Vulnerabilities in SSH Implementations (Dec 16) Multiple
vendors' implementations of SSH contain vulnerabilities ...

CA-2003-24: Buffer Management Vulnerability in OpenSSH (Sept 16) There is a
remotely exploitable buffer overflow in versions of OpenSSH prior to 3.7

Will there be more ?
Note that crypto is not the solution to our problems.

Erik Poll SoS - Radboud Univ. Nijmegen 6

Some reasons why security is difficult

• Security concerns are always secondary
– primary goal of software is to provide some functionality

or services; managing risks this introduces is a
derived/secondary concern.

• Saying what is not secure is easier than saying
what is secure

• Security problems can go unnoticed during normal
use and testing

• Security may conflict with functionality and
convenience
– for users, but also for programmers and sys-admins

Erik Poll SoS - Radboud Univ. Nijmegen 7

Example: programmer convenience vs security

• generally accepted Java coding standard:
 “prefer protected to private”

– motivation: allows useful subclassing

• but Java security guideline:
 “avoid using protected”

– motivation: protected really means unprotected

Erik Poll SoS - Radboud Univ. Nijmegen 8

Security in software development life cycle

• Security is a concern throughout SDLC
• Ideally, catch problems as early as possible
• Still, many software vulnerabilities are

introduced in the coding phase.
 Namely coding bugs

– eg buffer overflows
 as opposed to architectural flaws

– eg use of RPC under Windows

Erik Poll SoS - Radboud Univ. Nijmegen 9

Typical software vulnerabilities

Security bugs found in Microsoft bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow
input validation
code defect
design defect
crypto

Erik Poll SoS - Radboud Univ. Nijmegen 10

Example: famous Java security bug in JDK1.1

 package java.lang;

 public class Class {
 private Object[] signers;
 ...
 public Object[] getSigners() { return signers; }
 ...

 This bug won’t be caught by typical functional
specs, or detected by typical tests

Erik Poll SoS - Radboud Univ. Nijmegen 11

The bad news

• There are many things that can go wrong in
coding phase:
– long lists of dont’s

• These may involve interaction of features,
and can be hard to spot (or test)

• Programmers often not aware of them

 Eg. one major creditcard company lists 214
requirements for JavaCard smartcard code, to be
checked in source code reviews.

Erik Poll SoS - Radboud Univ. Nijmegen 12

The good news

• The same things tend to go wrong
• Largely independent of application, but

depending on
– the programming language

• eg. buffer overflows in C(++)
– the platform/OS

• eg. unsafe use of system calls and
environment variables

– the kind of application
• eg. SQL command injections in webservers

Erik Poll SoS - Radboud Univ. Nijmegen 13

The problem with long checklists of “dont’s”

• Are programmers even aware of them ?
– Educate programmers

• How do we know the list is complete ?
– Publish & discuss these lists
– Challenge for scientific research

• How do we check them ?
– Automate this!
 Using static checkers aka source code analysers

Erik Poll SoS - Radboud Univ. Nijmegen 14

Some (free) source code analysers

• ITS4 (C/C++)
• RATS (C/C++/Perl/PHP)
• Flawfinder (C/C++)
• FindBugs (Java)
•

 Source code analysis not just for security,
but for general software quality

Erik Poll SoS - Radboud Univ. Nijmegen 15

Example: FindBugs source code analyser

Erik Poll SoS - Radboud Univ. Nijmegen 16

• Of course, ideally flaws should be
prevented at the language level.

• Eg
– no buffer overflows in Java or C#
– tainted mode for input data in Perl
– escaping meta-characters in PHP

Erik Poll SoS - Radboud Univ. Nijmegen 17

Conclusions – the bad news

• Be aware that security tends to be ignored
• Security is hard to specify

– long lists of dont’s
• Software flaws are main cause of security

problems
• Software flaws can be hard to uncover

with testing or detect with normal use

Erik Poll SoS - Radboud Univ. Nijmegen 18

Conclusions – some good news

• More standard patterns of security
vulnerabilities are widely known

• Improving static checkers can detect such
patterns (also thanks to Moore’s Law)

• Newer languages and platforms will have
fewer vulnerabilities ?

