
JML: some experiences and
directions for future work

Erik Poll

University of Nijmegen

Erik Poll - JML – p.1/42



Outline of this talk

• The specification language JML

Tool-supported Design-by-Contract for Java

• How & what to specify ?

Can we use not(at)ions from UML/OCL ?

Erik Poll - JML – p.2/42



JML

(Java Modeling Language)

Erik Poll - JML – p.3/42



JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design/implementation decisions

by adding assertions to Java source code, for

• preconditions

• postconditions

• invariants

• . . .

as in Eiffel (Design-by-Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

Erik Poll - JML – p.4/42



JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design/implementation decisions

by adding assertions to Java source code, for

• preconditions

• postconditions

• invariants

• . . .

as in Eiffel (Design-by-Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

Erik Poll - JML – p.4/42



JML

To make JML easy to use:

• JML keeps close to Java syntax & semantics

• Properties specified as Java boolean expressions,
extended with a few operators, such as ==>, \old,
\result, \forall, \exists.

• JML assertions added as comments in .java file,
between /*@ . . .@*/, or after //@.

Erik Poll - JML – p.5/42



JML example

Pre- and post-conditions for methods, eg.

/*@ requires amount >= 0;

ensures balance == \old(balance)-amount &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.

Erik Poll - JML – p.6/42



JML example

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ensures true” can be
omitted.

Erik Poll - JML – p.7/42



Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debit, it is the obligation of
the client to ensure that amount is positive. The requires
clause makes this explicit.

Erik Poll - JML – p.8/42



JML example

Exceptional postconditions, saying when exceptions may
be thrown, can be specified with signals keyword

/*@ requires amount >= 0;

ensures true;

signals (ISOException e)

amount > balance &&

balance == \old(balance) &&

e.getReason()==AMOUNT_TOO_BIG;

@*/

public int debit(int amount) {

...

}
Erik Poll - JML – p.9/42



JML example

Again, specs can be as strong or weak as you want.

/*@ requires amount >= 0;

ensures true;

signals (ISOException) true;

@*/

public int debit(int amount) { ...

NB this specifies that an ISOException is the only
exception that can be thrown by debit

Erik Poll - JML – p.10/42



JML example: invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Erik Poll - JML – p.11/42



JML example: invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Invariants must also be preserved if a method throws an
exception!

Erik Poll - JML – p.12/42



JML example: invariants

Invariants (aka class invariants) are properties that must be
maintained by all methods, eg

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance

&& balance <= MAX_BAL;

@*/

...

Note: this invariant is responsible for precondition and
exception in debit.

Erik Poll - JML – p.13/42



JML example

Restrictions on side-effects of methods can be specified
with assignable keyword

/*@ requires ...

assignable balance;

ensures ...

@*/

public int debit(int amount) {

This is also called a frame property

Erik Poll - JML – p.14/42



Invariants & frame properties

JML brings Design-by-Contract and very familiar notions
from Hoare logic (eg. pre- & postconditions) to Java.

But beware that traditional Hoare logics seriously neglect

• frame properties, as expressed by assignable
clauses

• class invariants, and when exactly these should hold,
and who is responsible for establishing them

These notions are tricky because of pointers/references.

Erik Poll - JML – p.15/42



Naive approach to invariants

The naive approach to invariants: treat them as syntactic
sugar, ie. just add them to pre- and postconditions. Eg.

/*@ requires ... && Invariant;

ensures ... && Invariant;

@*/

public int debit(int amount) {

This is not what you want (clients now have to establish
invariant before calling method?!) and does not scale.

When can a class safely hide an invariant from its clients?

Erik Poll - JML – p.16/42



JML Tools

• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution

Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,

ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]

• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]

• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]

• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]

• LOOP + PVS [Nijmegen]
Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT]

Erik Poll - JML – p.17/42



JML Tools
• parsing and typechecking and jmldoc

• runtime assertion checking jmlc, jmlunit [Iowa]
test for violations of assertions during execution
Great to use in testing phase!

• verification: prove (at compile-time) that contracts are
never violated,
ranging from automatic checking of simple properties
to interactive verification of complex properties:

• extended static checker ESC/Java(2) [Compaq]
• Chase [Néstor]
• JACK + B [Gemplus/INRIA]
• Krakatoa + Coq [Orsay]
• LOOP + PVS [Nijmegen]

Verification reveals any hidden assumptions, and
forces these to be specified!

• runtime detection of invariants by Daikon [MIT] Erik Poll - JML – p.17/42



LOOP tool

A compiler which translates Java code to PVS code,
providing

• shallow embedding of sequential Java & JML in PVS

• denotational semantics of Java & JML, but still
executable to a degree (useful for debugging &
verification!)

• Hoare logic

• wp-calculi

Hoare logic and wp-calculi defined & proved sound inside
PVS.

Erik Poll - JML – p.18/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually

• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs

• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs
• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



Strong points of JML

• Easy to learn: syntax & semantics very close to Java

• Range of tools support possible

• No need for a formal model:

the Java source code is the formal model

Consequently:
• use of JML can be introduced gradually
• JML can be used for existing (legacy) code & APIs
• No gap between model and implementation

But:
• JML does not provide (or impose) any design

methodology, as UML, B, VDM, . . . do

Erik Poll - JML – p.19/42



The model-code gap

In most formal models there is a gap between the model
and the real implementation.
In annotation-based approaches such as JML there is not.

Platonic world of models Ugly reality

formal
model

Java
code

Erik Poll - JML – p.20/42



The model-code gap

In most formal models there is a gap between the model
and the real implementation.
In annotation-based approaches such as JML there is not.

Platonic world of models Ugly reality

formal
model

Java
code

generate code

Erik Poll - JML – p.21/42



The model-code gap

In most formal models there is a gap between the model
and the real implementation.
In annotation-based approaches such as JML there is not.

Platonic world of models Ugly reality

formal
model

Java
codeextract model

Erik Poll - JML – p.22/42



The model-code gap

In most formal models there is a gap between the model
and the real implementation.
In annotation-based approaches such as JML there is not.

Platonic world of models Ugly reality

formal
model

Java
code

?

Con: the gap must be bridged
Pro: nice formal world to work in (eg. IN, not short)

Erik Poll - JML – p.23/42



Issues for JML

• Improving the language and tool support

(incl. support for concurrency)

• How to use JML? What and how to specify?

Detailed & complete functional specs as in debit
example unworkable in practice: it quickly becomes
undoable and unreadable

Can we use existing (in)formal techniques used for
specification here?

Erik Poll - JML – p.24/42



Issues for JML

• Improving the language and tool support

(incl. support for concurrency)

• How to use JML? What and how to specify?

Detailed & complete functional specs as in debit
example unworkable in practice: it quickly becomes
undoable and unreadable

Can we use existing (in)formal techniques used for
specification here?

Erik Poll - JML – p.24/42



What and how to specify?

You can of course start with any property expressible in
JML.

But two standard approaches to start:

• Eliminate runtime exceptions

• Specify invariants (for “data consistency”)

Erik Poll - JML – p.25/42



What and how to specify?

You can of course start with any property expressible in
JML.

But two standard approaches to start:

• Eliminate runtime exceptions

• Specify invariants (for “data consistency”)

Erik Poll - JML – p.25/42



What and how to specify?

You can of course start with any property expressible in
JML.

But two standard approaches to start:

• Eliminate runtime exceptions

• Specify invariants (for “data consistency”)

Erik Poll - JML – p.25/42



Eliminating runtime exceptions

• Easy to specify

//@ signals (Exception e) false;

and intuitively clear

• In practice, trying to rule out runtime exceptions
reveals many (hidden) assumptions in code, incl. class
invariants

(This approach also proved effective for SPARK/Ada)

Erik Poll - JML – p.26/42



Eliminating runtime exceptions

• Easy to specify

//@ signals (Exception e) false;

and intuitively clear

• In practice, trying to rule out runtime exceptions
reveals many (hidden) assumptions in code, incl. class
invariants

(This approach also proved effective for SPARK/Ada)

Erik Poll - JML – p.26/42



Eliminating runtime exceptions

• Easy to specify

//@ signals (Exception e) false;

and intuitively clear

• In practice, trying to rule out runtime exceptions
reveals many (hidden) assumptions in code, incl. class
invariants

(This approach also proved effective for SPARK/Ada)

Erik Poll - JML – p.26/42



Eliminating runtime exceptions

We can push this idea by introducing runtime exceptions
for things that shouldn’t happen:

• Assume checked arithmetic for Java, where numeric
overflow results in runtime exception

• Assume possible exception for allocation of memory
with new

This departs from the official Java semantics, but this can
be justified.

Erik Poll - JML – p.27/42



Invariants for data consistency

For non-trival pieces of code, say a file system, writing
functional specs quickly become too complicated, and
typically you would not even know where to begin.

(Maybe a nice formal model, seperate from the code, would be
useful . . . )

However, there are typically many invariants expressing
“data consistency” requirements.

Erik Poll - JML – p.28/42



Invariants for data consistency

For non-trival pieces of code, say a file system, writing
functional specs quickly become too complicated, and
typically you would not even know where to begin.

(Maybe a nice formal model, seperate from the code, would be
useful . . . )

However, there are typically many invariants expressing
“data consistency” requirements.

Erik Poll - JML – p.28/42



Invariants for data consistency

For non-trival pieces of code, say a file system, writing
functional specs quickly become too complicated, and
typically you would not even know where to begin.

(Maybe a nice formal model, seperate from the code, would be
useful . . . )

However, there are typically many invariants expressing
“data consistency” requirements.

Erik Poll - JML – p.28/42



Example invariants

public class Directory {

Directory parent;

//@ invariant parent==null <==> this==FileSystem.ROOT;

Directory[] subdirs;

/*@ invariant

(\forall int i; 0<= i && i < subdirs.length

; subdirs[i] != null &&

subdirs[i].parent == this);
@*/

Erik Poll - JML – p.29/42



Example invariants

public class Directory {

Directory parent;

//@ invariant parent==null <==> this==FileSystem.ROOT;

Directory[] subdirs;

/*@ invariant

(\forall int i; 0<= i && i < subdirs.length

; subdirs[i] != null &&

subdirs[i].parent == this);

@*/

Such invariants also typically needed to rule out exceptions...

Erik Poll - JML – p.30/42



What and how to specify?

In addition to these 2 standard approaches to write specs,
can we re-use existing specification techniques to develop
JML specs?

For example

• State machines/automata aka UML state diagrams

• UML class diagrams

• OCL constraints

Erik Poll - JML – p.31/42



State diagrams

UML state diagrams, (extended) finite state machines, state
transition diagrams, . . . are convenient for specification, to
specify allowed method invocation traces.

Init

Issued

Charging

Locked

SetKey_Nor!

counter >= 5
GetChallenge_Exc!

GetChallenge_Nor!
counter < 5
counter := counter + 1

Respond_Nor!
balance := newbalance, counter := 0

DecBalance_Nor!
balance > 0
balance := balance - 1

Respond_Exc!

GetBalance_Exc!

DecBalance_Exc!

GetBalance_Nor!

Specifying such properties in JML is possible, but clumsy.

Erik Poll - JML – p.32/42



State diagrams

UML state diagrams, (extended) finite state machines, state
transition diagrams, . . . are convenient for specification, to
specify allowed method invocation traces.

Init

Issued

Charging

Locked

SetKey_Nor!

counter >= 5
GetChallenge_Exc!

GetChallenge_Nor!
counter < 5
counter := counter + 1

Respond_Nor!
balance := newbalance, counter := 0

DecBalance_Nor!
balance > 0
balance := balance - 1

Respond_Exc!

GetBalance_Exc!

DecBalance_Exc!

GetBalance_Nor!

Specifying such properties in JML is possible, but clumsy.

Erik Poll - JML – p.32/42



State diagram in JML

/*@ invariant

@ (mode==INIT || mode==ISSUED || mode==CHARGING || mode==LOCKED);

@*/

/*@ constraint

@ (\old(mode)==LOCKED ==> mode==LOCKED) &&

@ (mode==LOCKED ==> \old(mode)==ISSUED || \old(mode)==LOCKED) &&

@ ...

/*@ requires mode==ISSUED || mode==CHARGING;

@ assignable mode;

@ ensures mode==ISSUED;

@ signals (ISOException e) mode==\old(MODE);

@*/

private void getValue(APDU apdu) {

Erik Poll - JML – p.33/42



State diagrams

AutoJML tool (by Martijn Oostdijk and Engelbert Hubbers)
translates state diagrams to lots of such JML annotations

Uses auxiliary variable for state (ghost or model field)

Supports various imput formats, incl. UML, Uppaal, Casper.
Can also be used for security automata.

Erik Poll - JML – p.34/42



UML vs JML?

Are there other parts of UML that can be useful to produce
JML specs?

Experiment in translating (by hand) UML/OCL specs for the
BART case study (Bay Area Rapid Transport System) to JML.

UML/OCL model of BART consist of associations in class
diagrams and additional OCL contraints

Erik Poll - JML – p.35/42



Class diagrams: associations

Associations in class diagram with multiplicity 1-to-1 (eg.
between Station and StationPlatform) give rise to JML
invariants,

public class Station {

private StationPlatform pf;

//@ invariant pf != null;

//@ invariant pf.getStation() == this;

...

and something similar in StationPlatform.

Erik Poll - JML – p.36/42



Class diagrams: associations

Invariants such as

//@ invariant pf.getStation() == this;

are tricky, as they involve two objects: the invariant will be
broken when one of the objects is under construction

Erik Poll - JML – p.37/42



Class diagrams: associations

Invariants such as

//@ invariant pf.getStation() == this;

are tricky, as they involve two objects: the invariant will be
broken when one of the objects is under construction

Ad-hoc solution: put invariant only in one of the classes.

A general solution to deal with such situations would be
nicer . . .

Erik Poll - JML – p.38/42



Class diagrams: associations

Associations using *, eg. 1-to-*, already have to be dealt
with in Java, as opposed to JML

Associations using 0..1, eg. 1-to-0..1, signal that a reference
may be null, so that usual invariant about non null
should be omitted!
(These 0..1 associations can be Undefined in OCL)

Any further OCL invariants given can be turned into JML
invariants.

Erik Poll - JML – p.39/42



Class diagrams: associations

Associations using *, eg. 1-to-*, already have to be dealt
with in Java, as opposed to JML

Associations using 0..1, eg. 1-to-0..1, signal that a reference
may be null, so that usual invariant about non null
should be omitted!
(These 0..1 associations can be Undefined in OCL)

Any further OCL invariants given can be turned into JML
invariants.

Erik Poll - JML – p.39/42



Class diagrams: associations

Associations using *, eg. 1-to-*, already have to be dealt
with in Java, as opposed to JML

Associations using 0..1, eg. 1-to-0..1, signal that a reference
may be null, so that usual invariant about non null
should be omitted!
(These 0..1 associations can be Undefined in OCL)

Any further OCL invariants given can be turned into JML
invariants.

Erik Poll - JML – p.39/42



Translating OCL to JML

Some conclusions from translating BART case study:

• JML is much more verbose, as Java is much more
verbose then UML (Eg. visibility modifiers, get- &
set-methods . . . )

• Tricky differences:
• OCL uses =, but JML often should use equals
• all Java references can be null, only some OCL

refences can be Undefined

• Much of JML specs have to do with basic issues, eg.
references not being null, that do not show up in OCL

In that sense OCL specs complement JML specs for
excluding runtime exceptions.

Erik Poll - JML – p.40/42



Translating OCL to JML

Some conclusions from translating BART case study:

• JML is much more verbose, as Java is much more
verbose then UML (Eg. visibility modifiers, get- &
set-methods . . . )

• Tricky differences:
• OCL uses =, but JML often should use equals
• all Java references can be null, only some OCL

refences can be Undefined

• Much of JML specs have to do with basic issues, eg.
references not being null, that do not show up in OCL

In that sense OCL specs complement JML specs for
excluding runtime exceptions.

Erik Poll - JML – p.40/42



Translating OCL to JML

Some conclusions from translating BART case study:

• JML is much more verbose, as Java is much more
verbose then UML (Eg. visibility modifiers, get- &
set-methods . . . )

• Tricky differences:
• OCL uses =, but JML often should use equals
• all Java references can be null, only some OCL

refences can be Undefined

• Much of JML specs have to do with basic issues, eg.
references not being null, that do not show up in OCL

In that sense OCL specs complement JML specs for
excluding runtime exceptions.

Erik Poll - JML – p.40/42



Translating OCL to JML

Some conclusions from translating BART case study:

• JML is much more verbose, as Java is much more
verbose then UML (Eg. visibility modifiers, get- &
set-methods . . . )

• Tricky differences:
• OCL uses =, but JML often should use equals
• all Java references can be null, only some OCL

refences can be Undefined

• Much of JML specs have to do with basic issues, eg.
references not being null, that do not show up in OCL

In that sense OCL specs complement JML specs for
excluding runtime exceptions.

Erik Poll - JML – p.40/42



Related work to JML: SPARK/Ada

Initiative similar to JML, but much more mature, and
targeting Ada instead of Java.

SPARK is a subset of Ada95, extended with annotations to
enable tool-support, for building high-integrity systems

Tool support for data/information flow, testing, and
verification.

Succesfully used for Common Criteria evaluations (eg. for
MULTOS certification authority)

Establishing exception freedom claimed as important &
useful achievement.

More info: www.sparkada.com

Erik Poll - JML – p.41/42



Conclusions

• JML represents an opportunity to transfer some formal
methods to real use - in industry, or in teaching.

• JML as common specification language of benefit to
tool developers and users.

• Work to be done in improving the language and tool
support, including support for concurrency!

• but also, work & experience needed on how to use
JML, and find out what & how to specify.

More info: www.jmlspecs.org

Erik Poll - JML – p.42/42


	Outline of this talk
	{Large 
ed JML \[1em] {
ormalsize (Java Modeling Language)}
}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	JML example
	JML example
	Design-by-Contract
	JML example
	JML example
	JML example: invariants
	JML example: invariants
	JML example: invariants
	JML example
	Invariants & frame properties
	Naive approach to invariants
	JML Tools
	LOOP tool
	Strong points of JML
	The model-code gap
	The model-code gap
	The model-code gap
	The model-code gap
	Issues for JML
	What and how to specify?
	Eliminating runtime exceptions
	Eliminating runtime exceptions
	Invariants for data consistency
	Example invariants
	Example invariants
	What and how to specify?
	State diagrams
	State diagram in JML
	State diagrams
	UML vs JML?
	Class diagrams: associations
	Class diagrams: associations
	Class diagrams: associations
	Class diagrams: associations
	Translating OCL to JML
	Related work to JML: SPARK/Ada
	Conclusions

