
Specification of a transacted memory
for smart cards in Java and JML

Erik Poll

University of Nijmegen, NL

Joint work with

Pieter Hartel University of Twente
Eduard de Jong Sun Microsystems

Transacted Memory - Erik Poll – p.1/30

Outline

Case study in the use of Java and the specification
language JML to implement/model/specify part of a
smartcard OS.

Reasoning about JavaCard code subject to card tears.

Transacted Memory - Erik Poll – p.2/30

Background

Transacted Memory - Erik Poll – p.3/30

Smart cards

A smart card is a miniature computer with

• with limited resources (ROM,RAM,EEPROM)

• very limited I/O (ISO7816)

Smartcard contains a miniature operating system (OS).

JavaCard smartcard contains VM that can execute applets.

Transacted Memory - Erik Poll – p.4/30

Java Card

Superset of a subset of Java for programming smart cards

• no threads, floats, . . . , very limited API

but

• persistent and transient objects (EEPROM and RAM)

• transaction mechanism

and increased security:

• standard sandbox + firewall between applets.

Interesting target for formal methods: small programs,
simple language, correctness of crucial importance

Transacted Memory - Erik Poll – p.5/30

Card tears & transactions

Tricky issue for smartcards:

• Possible power loss at any moment due to card tear

• OS must support transactions:
atomic writes consisting of several EEPROM writes

• On power-up: OS performs clean-up of any unfinished
transaction

• NB this clean-up can be interrupted by a card tear . . .

Transacted Memory - Erik Poll – p.6/30

Challenges

1. How to implement a transaction mechanism?
Smartcard constraints
• limited RAM (eg 512 bytes)
• EEPROM behaviour:

• atomic write of given word size
• limited life

2. How to specify and verify – and model – this?

3. How to specify and verify code that uses transactions?

Transacted Memory - Erik Poll – p.7/30

An implementation of
Transacted Memory

Transacted Memory - Erik Poll – p.8/30

Transacted Memory

Idea for transacted memory by de Jong & Bos.
NB not as implemented in the JavaCard API.

EEPROM

x | 4 | 6

x | 5 | 7

x | 6 | 9

Logging for free!

Transacted Memory - Erik Poll – p.9/30

Interface

Tag DNewTag(Size)

InfoSeq Read(Tag)

void Write(Tag, InfoSeq)

void Commit(Tag)

InfoSeq ReadGeneration(Tag, Gen)

void Tidy()

Transacted Memory - Erik Poll – p.10/30

Earlier work

abstract
Z spec �� �� �� +3

abstract
Z spec

� �� ��� �� � 	 +3

C/Promela
impl

Deficiencies:

• Z specs do not include card tears

• Big gap – and no real link – between Z specs and
implementation

Transacted Memory - Erik Poll – p.11/30

This work
Initial idea:

• Translate C code to Java
By hand; easy but boring.

• Translate Z specs to JML
By hand; easy but boring. Uses JML

• Tie the two together

Transacted Memory - Erik Poll – p.12/30

Java Modeling Language JML

Specification language by Gary Leavens (Iowa Univ.) for
annotating Java programs with

• pre- and postconditions }

cf. Eiffel and
Design by Contract• invariants

• frame conditions (modifiability constraints)

• specification-only variables (model/ghost variables)

• . . .

Pre-, postconditions, and invariants in JML are Java
boolean expressions, extended with \forall, \exists,
==>, \old(), . . .

Transacted Memory - Erik Poll – p.13/30

Translating abstract Z spec

Transacted Memory - Erik Poll – p.14/30

Z spec

−Commit −−−−−−−−−−−−−−−−−−

∆ MemSys

t? : tags

t? ∈ dom assoc

assoc t? 6= 〈〉

committed

�

= committed ∪ {t?}

Transacted Memory - Erik Poll – p.15/30

JML spec

Using JML library for sets, functions, relations, etc. Z specs
can be translated to JML

public void ACommit(Tag t)
/*@ requires assocs.domain().has(t) &&

@ ! assocs.apply(t).isEmpty() ;
@ ensures committed.equals(
@ \old(committed).insert(t));
@*/

Transacted Memory - Erik Poll – p.16/30

Z vs JML

Z vs JML:

• Z looks much prettier

• JML distinguishes pre- and postcondition

• JML can be easily be made executable

Transacted Memory - Erik Poll – p.17/30

Modelling card tears in Java

• card tear is like an exception

• clean-up is like the exception handler

• card tear is uncatchable exception, caught only in the
main repetition of the OS

• Modelling card tear inside language, allows testing,
specification, and verification

Transacted Memory - Erik Poll – p.18/30

annotated Java implementation

/*@ ensures Read(tag).equals(is);

@ signals (CardTearException)

@ TidyRead(tag).equals(is)

@ || TidyRead(tag).equals(\old(Read(tag)));

@*/

public void Write (Tag tag, InfoSeq is)
throws CardTearException

Expresses atomicity of write operation
Specs still incomplete: nothing said about previous
generations
JML assertion checker can cope with this.

Transacted Memory - Erik Poll – p.19/30

Java impl with JML assertions

Bugs found:

• one typo - giving ‘version number’ instead of
‘generation number’
Found during typechecking Java code

• clumsy interface - 4 write operations with disjoint
preconditions
Found writing JML assertions

• one serious error - card tear at certain point
Found using runtime assertion testing

Transacted Memory - Erik Poll – p.20/30

Java impl with JML specs

By translating

1. abstract Z spec to (executable) JML spec

2. C implementation to Java implementation

abstract spec & implementation in same language.
We can tie them together, by

• running same test scenario on 1. and 2.

• including 1. in 2. using ghost/model variables

Conventional programming language (Java) useful to built
formal model (of VHDL implementation).

Transacted Memory - Erik Poll – p.21/30

Using Transacted Memory

Transacted Memory - Erik Poll – p.22/30

The LOOP project

Currrent JavaCard API offers transactions

beginTransaction();

beginTransaction();

abortTransaction();

Transacted Memory - Erik Poll – p.23/30

The LOOP project

Verification of JML-annotated Java(Card) programs based
on

• a denotational semantics for sequential Java,

• a compiler – the LOOP tool – which translates A.java
to A.pvs describing its semantics.

• a Hoare logic for reasoning about JML,

• associated WP calculus,

All formalised in PVS: ie. a shallow embedding of Java and
JML in PVS
How to allow for card tears?

Transacted Memory - Erik Poll – p.24/30

Trick to model card tear as an exception also work when
specifying and verifiying Java Card code.

For example

/*@ ensures \old(x+y) == x+y;
@ signals (CardTearException) \old(x+y) <= x+y;
@*/

void bla(){
x++ ; y--;

}

Transacted Memory - Erik Poll – p.25/30

Invariants

Java:
Invariant may temporarily be violated, but must hold at end
of method - also if an exception is thrown

JavaCard:
Invariant may never be violated, except during transactions

Transacted Memory - Erik Poll – p.26/30











requires = P

statement = s1

ensures = P

�

∧ Q� �� �

signals = Q� � � �





















requires = P

�

statement = s2

ensures = Q

signals = Q� � � �





















requires = P

statement = s1; s2

ensures = Q

signals = Q� �� �










Transacted Memory - Erik Poll – p.27/30

Syntactic desugaring

beginTransaction();
x++ ; y--;
endTransaction();

can be desugared into
x’=x; y’=y;
try {
x++ ; y--;
} catch (CardException e) {

x=x’; y=y’;
throw e;

}

Transacted Memory - Erik Poll – p.28/30

Limits of this approach

It can’t deal with
void mn() {

m(); n();
}
void m() {

beginTransaction();
x++

}
void n() {

y--;
endTransaction();

}

Transacted Memory - Erik Poll – p.29/30

Alternative

Alternative approach:
including transactions in denotational semantics
Easy enough, but coming up with associated proof rules
isn’t.

Transacted Memory - Erik Poll – p.30/30

Conclusions

Conventional programming language (Java) maybe an
interesting formal model
Future work:

• fixing bug

• verification of Transacted Memory using PVS & LOOP
coping with model variables in LOOP

• verification of applets incl. card tears

• VHDL implementation

Worry: ensuring C code = Java code = VHDL code

Transacted Memory - Erik Poll – p.31/30

	Outline
	{Large
ed Background}
	Smart cards
	Java Card
	Card tears & transactions
	Challenges
	{Large
ed An implementation of Transacted Memory}
	Transacted Memory
	Interface
	Earlier work
	This work
	Java Modeling Language JML
	{Large
ed Translating abstract Z spec}
	Z spec
	JML spec
	Z vs JML
	Modelling card tears in Java
	annotated Java implementation
	Java impl with JML assertions
	Java impl with JML specs
	{Large
ed Using Transacted Memory }
	The LOOP project
	The LOOP project
	
	Invariants
	
	Syntactic desugaring
	Limits of this approach
	Alternative
	Conclusions

