Specification of a transacted memory
for smart cards in Java and JML

Erik Poll

University of Nijmegen, NL

Joint work with

Pieter Hartel University of Twente
Eduard de Jong Sun Microsystems

Transacted Memory - Erik Poll — p.1/3(

Outline

Case study in the use of Java and the specification
language JML to implement/model/specify part of a
smartcard OS.

Reasoning about JavaCard code subject to card tears.

Transacted Memory - Erik Poll — p.2/3(

Background

Transacted Memory - Erik Poll — p.3/3(

Smart cards

A smart card Is a miniature computer with
e with limited resources (ROM,RAM,EEPROM)
e very limited I/O (1ISO7816)

Smartcard contains a miniature operating system (0OS).

JavaCard smartcard contains VM that can execute applets.

Transacted Memory - Erik Poll — p.4/3(

Java Card

Superset of a subset of Java for programming smart cards
e NoO threads, floats, ..., very limited API

but
e persistent and transient objects (EEPROM and RAM)

e transaction mechanism
and increased security:
e standard sandbox + firewall between applets.

Interesting target for formal methods: small programs,
simple language, correctness of crucial importance

Transacted Memory - Erik Poll — p.5/3(

Card tears & transactions

Tricky iIssue for smartcards:

e Possible power loss at any moment due to card tear

e OS must support transactions:
atomic writes consisting of several EEPROM writes

e On power-up: OS performs clean-up of any unfinished
transaction

e NB this clean-up can be interrupted by a card tear ...

Transacted Memory - Erik Poll — p.6/3(

Challenges

. How to implement a transaction mechanism?
Smartcard constraints

e limited RAM (eg 512 bytes)

e EEPROM behaviour:
® atomic write of given word size

® |imited life
. How to specify and verify — and model — this?
. How to specify and verify code that uses transactions?

Transacted Memory - Erik Poll — p.7/3(

An iImplementation of
Transacted Memory

nsacted Memory - Erik Poll — p.8/3(

Transacted Memory

|Idea for transacted memory by de Jong & Bos.
NB not as implemented in the JavaCard API.

416

EEPROM

x|5|7

x|6]|9

Logging for free!

Transacted Memory - Erik Poll — p.9/3(

Interface

Tag DNewTag(Si ze)

| nf 0Seq Read(Taq)

voi d Wite(Tag, |nfoSeq)
voi d Comm t (Tag)

| nf 0Seq ReadCGenerati on(Tag, Gen)
voi d Tidy()

Transacted Memory - Erik Poll — p.10/3(

abstract
Z spec

Deficiencies:

refine

abstract
Z spec

Earlier work

>

rmplement

e Z specs do not include card tears

C/Promela
impl

e Big gap — and no real link — between Z specs and
Implementation

Transacted Memory - Erik Poll — p.11/3(

This work
Initial idea:

e Translate C code to Java
By hand; easy but boring.

e Translate Z specs to JML
By hand; easy but boring. Uses JML

e Tie the two together

Transacted Memory - Erik Poll — p.12/3(

Java Modeling Language JML

Specification language by Gary Leavens (lowa Univ.) for
annotating Java programs with

pre- and postconditions \ cf. Eiffel and
invariants } Design by Contract

frame conditions (modifiability constraints)
specification-only variables (model/ghost variables)

Pre-, postconditions, and invariants in JML are Java

boolean expressions, extended with\foral | , \ exi st s,
==>\old(),...

Transacted Memory - Erik Poll — p.13/3(

Translating abstract Z spec

Transacted Memory - Erik Poll — p.14/3(

Z spec

—Commat

A MemSys
t? : tags

t? € dom assoc
assoc t? # ()
committed’ = committed U {t7}

Transacted Memory - Erik Poll — p.15/3(

JML spec

Using JML library for sets, functions, relations, etc. Z specs
can be translated to JML

public void ACommt(Tag t)
[*@requires assocs.domain(). has(t) &&

@ l assocs. appl y(t).isEmty() ;
@ensures commtted. equal s(
@ \old(commtted).insert(t));

@/

Transacted Memory - Erik Poll — p.16/3(

Zvs JML

Z vs JML:

e Z looks much prettier
e JML distinguishes pre- and postcondition
e JML can be easily be made executable

Transacted Memory - Erik Poll — p.17/3(

Modelling card tears in Java

card tear is like an exception
clean-up is like the exception handler

card tear is uncatchable exception, caught only in the
main repetition of the OS

Modelling card tear inside language, allows testing,
specification, and verification

Transacted Memory - Erik Poll — p.18/3(

annotated Java implementation

/| *@ensures Read(tag).equal s(is);
@signal s (CardTear Excepti on)

@ Ti dyRead(t ag) . equal s(i s)
@ || TidyRead(tag).equal s(\old(Read(tag)));
@/

public void Wite (Tag tag, InfoSeq i5s)
t hrows CardTear Excepti on

Expresses atomicity of write operation

Specs still incomplete: nothing said about previous
generations

JML assertion checker can cope with this.

Transacted Memory - Erik Poll — p.19/3(

Java impl with JML assertions

Bugs found:

e oONhe typo - giving ‘version number’ instead of
‘generation number’

Found during typechecking Java code

e clumsy interface - 4 write operations with disjoint
preconditions

Found writing JML assertions

e ONe serious error - card tear at certain point
Found using runtime assertion testing

Transacted Memory - Erik Poll — p.20/3(

Java impl with JML specs

By translating
1. abstract Z spec to (executable) JML spec
2. C implementation to Java implementation

abstract spec & implementation in same language.
We can tie them together, by

e running same test scenario on 1. and 2.
e including 1. in 2. using ghost/model variables

Conventional programming language (Java) useful to built
formal model (of VHDL implementation).

Transacted Memory - Erik Poll — p.21/3(

Using Transacted Memory

Transacted Memory - Erik Poll — p.22/3(

The LOOP project

Currrent JavaCard API offers transactions

begi nTransacti on();
begi nTransacti on();

abort Transacti on();

Transacted Memory - Erik Poll — p.23/3(

The LOOP project

Verification of JML-annotated Java(Card) programs based
on

e a denotational semantics for sequential Java,

e a compiler —the LOOP tool — which translates A. | ava
to A. pvs describing its semantics.

e a Hoare logic for reasoning about JML,
e associated WP calculus,

All formalised in PVS: ie. a shallow embedding of Java and

JML in PVS
How to allow for card tears?

Transacted Memory - Erik Poll — p.24/3(

Trick to model card tear as an exception also work when
specifying and verifiying Java Card code.

For example

[*@ensures \ol d(x+y) == Xx+y;
@signals (CardTear Exception) \old(x+ty) <= x+y,;
@/

void bla(){
X++ 5 y--;

}

Transacted Memory - Erik Poll — p.25/3(

Invariants

Java.

Invariant may temporarily be violated, but must hold at end
of method - also if an exception is thrown

JavaCard:
Invariant may never be violated, except during transactions

Transacted Memory - Erik Poll — p.26/3(

requires = P \ requires = P’ \
statement = s, statement = so
ensures = P’ A Qeacp ensures = Q
\ signals = Qezcp \ sighals = Qewcp)
requires = P \
statement = sq;s2
ensures = Q
\ sighals = Qewcp)

Transacted Memory - Erik Poll — p.27/3(

Syntactic desugaring

begi nTransaction();
Xt+ | y--,
endTransacti on();

can be desugared into

X" =X, Y EY;

try {

X++ y--;

} catch (CardException e) {
X=X y:y’ ;
t hrow e;

}

Transacted Memory - Erik Poll — p.28/3(

It can’t deal with
void m() {

}IT(); n();
void m) {

begi nTransacti on();

X++

}
void n() {

y--,
endTransaction();

}

Limits of this approach

Transacted Memory - Erik Poll — p.29/3(

Alternative

Alternative approach:
Including transactions in denotational semantics

Easy enough, but coming up with associated proof rules
Isn’t.

Transacted Memory - Erik Poll — p.30/3(

Conclusions

Conventional programming language (Java) maybe an
Interesting formal model
Future work:

e fixing bug

e Vverification of Transacted Memory using PVS & LOOP
coping with model variables in LOOP

e Vverification of applets incl. card tears
e VHDL implementation
Worry: ensuring C code = Java code = VHDL code

Transacted Memory - Erik Poll — p.31/3(

	Outline
	{Large
ed Background}
	Smart cards
	Java Card
	Card tears & transactions
	Challenges
	{Large
ed An implementation of Transacted Memory}
	Transacted Memory
	Interface
	Earlier work
	This work
	Java Modeling Language JML
	{Large
ed Translating abstract Z spec}
	Z spec
	JML spec
	Z vs JML
	Modelling card tears in Java
	annotated Java implementation
	Java impl with JML assertions
	Java impl with JML specs
	{Large
ed Using Transacted Memory }
	The LOOP project
	The LOOP project
	
	Invariants
	
	Syntactic desugaring
	Limits of this approach
	Alternative
	Conclusions

