
Assertions
&

Design-by-Contract using JML

Erik Poll

University of Nijmegen

Erik Poll - JML – p.1/39

Overview

• Assertions
• Design-by-Contract for Java using JML
• Contracts and Inheritance
• Tools for JML
• Demo ESC/Java2 static checker

Erik Poll - JML – p.2/39

Assertions

Erik Poll - JML – p.3/39

Assertions

An assertion expresses a property that should hold at some
program point.

Assertions are a very basic software engineering tool for
testting, debugging, and documentation.

Assertions occur in many guises in (test) code.

Erik Poll - JML – p.4/39

Assertions in C(++)

For example:

p = getDirectory(file);

#ifdef DEBUG

if (p==NULL){ print("file not in any directory");

println("this should never happen");

exit; }

#endif

or

p = getDirectory(file);
assert(p!=NULL);

Erik Poll - JML – p.5/39

Assertions in C(++)

Standard practice at MicroSoft: definieer

#ifdef DEBUG

#define ASSERT(b,str)

if (b) { } else {report(str); assert (false)}

#else #define ASSERT(b,str)

#endif

en dan

...

p = getDirectory(file);
ASSERT(p!=NULL, "file not in any directory");

Erik Poll - JML – p.6/39

Assertions

Assertions used in testing/debugging phase, but omitted in
production code to avoid performance penalty.

(However, assertions sometimes left in production code to
automate filing of bug reports.)

Assertions should have no side effects,

so that turning them on or off doesn’t affect execution!

Erik Poll - JML – p.7/39

Assertions in Java

Java 1.4 introduces assert command.
Support for assertions was the most requested feature!

Usage
assert BooleanExpression;

or
assert BooleanExpression: AnyExpression;

Assertions are enabled/disabled by java -ea/-da

Code must be compiled with javac -source 1.4

Erik Poll - JML – p.8/39

Why/when use assertions ?

There are several standard situations where assertions are
useful.

Eg consider

if (i <= 0 || j < 0) {

...

} else if (j == 0) {

...

} else {

...
}

Erik Poll - JML – p.9/39

When use assertions ?

Comments can be used to explain this, eg.

if (i <= 0 || j < 0) {

...

} else if (j == 0) {

// here i > 0 and j is 0

...

} else {

// here i > 0 and j > 0

...
}

Erik Poll - JML – p.10/39

Typical use: assert for control-flow

Use assert’s in complicated nested conditionals

if (i <= 0 || j < 0) {

...

} else if (j == 0) {

assert i > 0 && j == 0;

...

} else {

assert i > 0 && j > 0;

...
}

Better than comments!! (Why?)

Erik Poll - JML – p.11/39

Typical use: assert for control-flow

...

for (i=0; i<a.length; i++)

if (a[i]==null) break;

...

Erik Poll - JML – p.12/39

Typical use: assert for control-flow

Use assert’s after repetitions with complicated exits

...

for (i=0; i<a.length; i++)

if (a[i]==null) break;

assert i == a.length || a[i] == null;
...

Erik Poll - JML – p.13/39

Typical use: assert for control-flow

switch (day) {

case Day.MAANDAG:

...

break;

...

case Day.ZONDAG:

...

break;

}
...

Wat if day is not equal to any day ?

Erik Poll - JML – p.14/39

Typical use: assert for control-flow

Use assert’s in switch without default case

switch (day) {

case Day.MAANDAG:

...

break;

...

case Day.ZONDAG:

...

break;

default:

assert false;

}
...

Erik Poll - JML – p.15/39

Typical use: data consistency

In a class Directory with fields

private Directory[] child;

private Directory parent;
private int nr_of_children;

you can expect assertions such as

assert parent != null;

assert child != null;

assert 0 <= nr_of_children

&& nr_of_children <= child.length;

assert child[i] != null;
assert child[i].parent == this;

If these properties are invariants, they should be mentioned
in the javadoc for the respective fields.

Erik Poll - JML – p.16/39

Asserts for postconditions

public class Directory {

private Directory[] child;

private Directory parent;

public addDirectory(Directory d) {

...

assert d.parent == this;

}
}

This property is a postcondition of addDirectory. It
could be mentioned in the javadoc for addDirectory.

Erik Poll - JML – p.17/39

Assert for locks or preconditions

private Object[] v;

public synchronized update(int i, String s){

synchronized (v[i]) {

updateTime(v[i]); helper(v[i],s);

} }

private void helper(Object o, String s) {

assert Thread.holdsLock(this);

assert Thread.holdsLock(o);

...
}

Holding these locks is a precondition for helper. It should
be mentioned in the javadoc that helper assumes these
locks to be held!

Erik Poll - JML – p.18/39

Assertions

Assertion serve to
• document - making assumptions & design decisions of

the programmer explicit

• improve readability
• help in testing

Erik Poll - JML – p.19/39

Design by Contract for Java
using JML

Erik Poll - JML – p.20/39

Design by Contract

Systematic use of assertions, introduced by Bertrand
Meyer for the Eiffel language.

Idea: give assertions to express
• preconditions and postconditions

of individual methods and constructors
• class invariants

Erik Poll - JML – p.21/39

JML (Java Modeling Langauge)

JML provides Design-by-Contract for Java.

• More expressive than Eiffel
• JML extends the Java boolean expressions with a few

operators, such as ==>, \old, \result, \forall,
\exists,

• JML assertions are added as special comments in
.java file, between /*@ . . .@*/, or after //@.
Java compiler ignores these comments, but special
JML tools can use them.

• More tool support than just testing

Erik Poll - JML – p.22/39

Pre- and postconditions

Pre- and post-conditions for methods, eg.

/*@ requires d != null;

@ ensures d.parent == this;

@*/

public addDirectory(Directory d){

...

}

As usual, this is only an incomplete specification.

Erik Poll - JML – p.23/39

Design-by-Contract

Pre- and postcondition define a contract between a method
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example spec for addDirectory(d), it is the
obligation of the client to ensure that d is not null.
The requires clause makes this explicit.

Erik Poll - JML – p.24/39

Pre- and postconditions

JML specs can be as strong or as weak as you want.

/*@ requires d != null;

@ ensures true;

@*/

public addDirectory(Directory d){

...

}

This default postcondition “ensures true” can be
omitted.

Erik Poll - JML – p.25/39

Exceptional postconditions

signals clauses specify when exceptions may be thrown.

/*@ requires d != null;

@ ensures d.parent == this;

@ signals (DirectoryException e)

@ e.getReason() == "Directory full" &&

@ d.parent == \old(d.parent);

@*/

public addDirectory(Directory d){

...

}

Erik Poll - JML – p.26/39

Invariants

Invariants (aka class invariants) are properties that
“always” hold.

More precisely, invariants should be

• established by constructors
• maintained by methods

In other words, invariants are implicity included in
• the postcondition of constructors
• both pre- and postcondition of methods

Erik Poll - JML – p.27/39

Invariants: example

private Directory[] child;

private Directory parent;

private int nr_of_children;

/*@ invariant

@ parent != null &&

@ children != null &&

@ 0 <= nr_of_children &&

@ nr_of_children <= child.length &&

@ (\forall int i; 0 <= i && i < nr_of_children;

@ child[i] != null &&

@ chlid[i].parent == this) &&

@ (\forall int i; nr_of_children <= i && i < child.length;

@ child[i] == null);

@*/

Erik Poll - JML – p.28/39

Invariants & exceptions

NB: invariants should also be re-established if an exception
is thrown! (Why?)

In other words, invariants also implicity included in
exceptional postconditions.

Erik Poll - JML – p.29/39

Invariants

Invariants document design decisions.

Making them explicit helps in understanding, maintaining,
and debugging the code.

For example, the invariant for Directory warns us that
special care is needed with addDirectory(null)

Erik Poll - JML – p.30/39

requires vs. signals

There is often a trade-off between precondition and
exceptional postcondition. Eg

/*@ requires d != null;

@ ensures d.parent == this;

@*/

public addDirectory(Directory d) {

vs

/*@ requires true;

@ ensures d.parent == this;

@ signals (NullPointerException) d == null;

@*/

public addDirectory(Directory d) {

This is a design decision!

Erik Poll - JML – p.31/39

assert clauses

JML assert clause is now also supported by Java 1.4, but
JML offers more expressivity. Eg,

...

for (i = 0; i < a.length; i++)

if (a[i]==null) break;

//@ assert i != a.length ==> a[i] == null;

/*@ assert (\forall int j; 0 <= j && j < i

; a[i] != null);

@*/

Erik Poll - JML – p.32/39

Contracts and inheritance

Erik Poll - JML – p.33/39

Contracts and inheritance

Contracts can be used to understand the consequences of
inheritance, overriding, etc.
What should a subclass do about contracts of its parent
class ?
Respect them! Because:

• Breaking invariants in the subclass, by new or
overriden methods, can break inherited code (How?)

• Breaking method contracts in the subclass, by
overriden methods, can break inherited code (How?)
and can break client code (How?)

Erik Poll - JML – p.34/39

Contracts and inheritance

A subclass is called a behavioural subtype if it
• introduce additional invariants
• give new pre- and postconditions for new methods
• weaken preconditions and strengthen postconditions

of existing methods

This garantees that no existing code, of the subclass itself
and of clients of the parent, breaks.

NB all methods should maintain all invariants; in particular,
the inherited parent methods should also maintain any
additional invariants!

Erik Poll - JML – p.35/39

Contracts and inheritance

Inheritance provides two kinds of code reuse:

1. child reusing the code of its parent

2. client code written for parent also works on children

If you’re only interested in 1 and not 2, then it is acceptable
for overriden methods to break contracts of the parent.
Still, you should check that this doesn’t break the inherited
parent code.

Eg., sometimes inheritance is used just to get access to
protected fields, and not because a is-a relation holds.

Erik Poll - JML – p.36/39

Tools for JML

Erik Poll - JML – p.37/39

Tools for JML

• Runtime assertion checking with jmlc [Iowa Univ.]

Special compiler inserts runtime tests for all JML
assertions

Any assertion violation results in a special exception.

• Extended static checking with ESC/Java [Compaq -
KUN/Kodak]

Automatically tries to prove simple JML assertions at
compile time

• Program verification with LOOP tool + PVS [KUN]

Interactively prove any JML assertions at compile
time, using a theorem prover

Erik Poll - JML – p.38/39

Tools for JML
Runtime assertion checking

• low cost & effort
• easy to do as part of normal testing

Extended checking with ESC/Java
• higher cost & effort
• higher assurance: independent of any test suite
• But: not 100 % reliable

Program verification with LOOP tool + PVS
• much higher cost & effort
• much higher assurance
• 100 % reliable

Erik Poll - JML – p.39/39

	Overview
	{Large
ed Assertions }
	Assertions
	Assertions in C(++)
	Assertions in C(++)
	Assertions
	Assertions in Java
	Why/when use assertions ?
	When use assertions ?
	Typical use: assert for control-flow
	Typical use: assert for control-flow
	Typical use: assert for control-flow
	Typical use: assert for control-flow
	Typical use: assert for control-flow
	Typical use: data consistency
	Asserts for postconditions
	Assert for locks or preconditions
	Assertions
	{Large
ed Design by Contract for Java using JML}
	Design by Contract
	JML {�ootnotesize (Java Modeling Langauge)}
	Pre- and postconditions
	Design-by-Contract
	Pre- and postconditions
	Exceptional postconditions
	Invariants
	Invariants: example
	Invariants & exceptions
	Invariants
	requires vs. signals
	assert clauses
	{Large
ed Contracts and inheritance}
	Contracts and inheritance
	Contracts and inheritance
	Contracts and inheritance
	{Large
ed Tools for JML }
	Tools for JML
	Tools for JML

