Opportunities and challenges
for formal specification
of Java programs

Joe Kiniry Erik Poll
LOOP group

University of Nijmegen
supported by NWO and the EU IST project VerifiCard



Definitions for this talk

Component
= Java object/class/package/APT

Trusted
= says something it does

with JML specification (contract)
that we can have some confidence in



Overview

1. Java verification using the LOOP ool
2. JML

3. JavaCard
— where the high road meets the low road ?

4. Conclusions



Java verification
using the LOOP tool



The LOOP project

« Interactive verification of sequential Java
programs using theorem prover PVS

JML-annotated, JlRelel
g .. Rt /s pdte

prelude
theories



Evolution of the LOOP project

1. Denotational semantics of sequential Java
— (symbolically) executable in PVS

2. Hoare logic
— set of proven lemmas

— incl. abrupt termination, side-effects in
expressions, ...

3. WP calculus

— no need to supply PVS with infermediate
predicates



Ongoing work
 covering more JML constructs

* more automation in proofs
— PVS tactics
— suitable collections of (generated) lemmas

to reduce user-interaction

 but lack of good feedback when proofs fail
may remain a fundamental limitation



JML
Java Modeling Language



JML (www.jmlspecs.org)

 Assertion language for Java - based on
Eiffel, Larch... - by Gary Leavens et al.
— pre- and (exceptional) postconditions
— invariants
— assignhable aka modifies clauses
— model variables and refinement

— using Java boolean expressions extended with
\forall, \exists, ==>, \old, \result, ...

— pure, non_null, \nonnullelements, etc.



Example: exceptional postconditions

/*@ requires buffer '= null &&
offset >= 0 &&
length >= 0 &&
offset + length <= buffer.length;
assignable triesRemaining;
ensures
e*/
public boolean checkPIN(byte[] buffer,
short offset,
short len)



Example: exceptional postconditions

/*@ requires buffer !'= null;
assignable triesRemaining;
ensures e
signals (ArrayBoundsException)
offset < 0 Il length < 0
|l offset + length > buffer.length:;

@*/
public boolean checkPIN(byte[] buffer,
short offset,

short len)



Example: more detailed spec

/*@ requires buffer !'= null;
assignable triesRemaining;
ensures e
signals (ArrayBoundsException)
offset < 0 Il length < 0
|l offset + length > buffer.length:;
signals (PINException)
\old(getTriesRemaining()) <= 0;
@x*/
public boolean checkPIN(byte[] buffer,
short offset,
short len)



Tools for TML

typechecker, runtime assertion checker, jmlunit
(Gary Leavens et al, Iowa State)

jmldoc
(Gary Leavens et al and David Cok, Kodak)

ESC/Java — automatic “extended” static checking
(Rustan Leino et al, Compaq)

Chase —automatic static checking of modifies clauses
(Nestor Cantafio, INRIA Sophia-Antipolis)

LOOP — interactive verification
(Bart Jacobs et al, Nijmegen)

Daikon invariant generator
(Michael Ernst, MIT)



Call for cooperation

JML is an open, cooperative project.

People interested in developing or using

assertion languages and tools are welcome
to join.

Having compatible specs & tools
will greatly benefit everyonel!



JavaCard



JavaCard

« Superset of a subset of Java for
programming smart cards

— subseft: no reals, no threads, no strings, no gc,
very restricted APT

— superset: APTI for communication, persistent &
transient objects (EEPROM & RAM),
transactions

 Ideal target for formal methods: small
programs whose correctness is critical



JavaCard case studies

JML specs for JavaCard APT (48 classes)

[www.verificard.org]

using ESC/Java on electronic purse (9000 lines)
[Nestor Catafio & Marieke Huisman, FME' 02]

using LOOP tool on Decimal implementation
[Cees-Bart Breunesse, Joachim vd Berg, Bart Jacobs, AMAST 02]

using ESC/Java on file system applet (3000 lines)
[under NDA]

using LOOP tool on EMV case study (700 lines)
[under NDA]



Potential impact

« Some transfer to industry is starting...

— One smartcard manufacturer has developed own
“extended static checker” integrated with the IDE that

their developers use

— VLSI design company using for specification and
validation of CAD tools

e Common Criteria —new ISO standard for IT
security —requires formal methods for highest
levels of evaluation



Some remarks...



Embarrassing open problem:
pointers and call semantics

Java, C, C++, ... offer no form of
encapsulation or information hiding

Some mechanism for specifying and
proving/enforcing alias confinement and
preventing representation exposure is
needed!

Upcalls and callbacks

Specification and reasoning is terrifically
difficulty — still no good answers



Who cares about trusted components ?

In some niche markets —eg JavaCard —
people may be interested in “trusted
components”

But getting people really interested will
always require a lot of effort

Telling them it is important is not enough,
showing them the benefits and results is
necessary

It must be an economic necessity



Problems with specification (and solutions)

« Functional specification - saying what a
program does - is hard
— Most specs will have to be incomplete
— Training and methodological changes necessary
— Social and psychology issues are most critical

« Starting with basic safety properties
(“lightweight specs”), eq invariants, and/or

requires ...
ensures true;
signals (Exception) false;

can be a good way to get started



Problems with specification (and solutions)

Extra complexity, maintenance, and training must
have payoffs

Quality tool support is essential

Specification language size and complexity
continues to grow (even experts do not know
corners)

Introduce methodology and tool support to help
developer write and sanity check specs



Problems with specification (and solutions)

« Public-only specifications is insufficient

 Language visibility notions are
improvement, but semantics are unclear
and they are often too coarse-grained

* Organizational-centric visibility (exposure
between teams, Q/A, clients, etfc.) is being
demanded



Key opportunity

« Assertion languages - such as JML - are the most
promising way of getting formal methods (thus
trusted components) used and developed in
industry
— easy to learn:

e little new syntax
 no model other than the source code needed
— can be introduced incrementally

— runtime assertion checking, static checking, and unit test
generation is mature and usable technology



