
Verifying an implementation of SSH

 Erik Poll Aleksy Schubert

Security of Systems (SoS)
Radboud University Nijmegen,

and
Warsaw University

work supported by EU project Mobius
and EU Marie Fellowship Sojourn

Erik Poll - Radboud University Nijmegen 2

Motivation

Case study in checking the security of a program

There is a lot of work on verifying security protocols,
but to secure the weakest link we should look
• not at the cryptographic primitives
• not at the security protocol
• but at the software implementing this

Erik Poll - Radboud University Nijmegen 3

Context: EU project Mobius

• Certifying security of mobile code
– formal guarantees about security properties of code
– by means of Proof Carrying Code (PCC)

• Focus for case studies on J2ME CLDC applications
– Java-enabled mobile phones

• Real interest from telco's in
– checking security properties of code which go beyond what

the Java sandbox can provide
– more rigorous methods than testing as the basis for putting

digital signatures of code

Erik Poll - Radboud University Nijmegen 4

The MIDP-SSH application

• Open source SSH client for Java-enabled mobile phones
– SSH is a protocol similar to SSL
Provides a secure shell
– ie. confidentiality & integrity of network traffic

• SSH (v2) is secure, but what about this implementation?

Our analysis proceeded in two stages
6. informal, ad-hoc code inspection
7. formal, systematic verification

Erik Poll - Radboud University Nijmegen 5

1. Flaws found in ad-hoc, manual code inspection

• Weak/no authentication
 no storage of public server keys

– but fingerprint (hash value) is reported
• Poor use of Java access control (ie. visibility modifiers)

 public static java.lang.Random rnd = ...;

 final static int[] blowfish_sbox = ...;

– Such bugs can be pointed out by automated tools, eg. Findbugs,
or prevented by tools, eg. JAMIT tool for automated tightening
of acces modifiers

– Not a real threat (yet) on MIDP, due to current limits on
running multiple applications.

• Lack of input validation
 missing checks for terminal control characters

Erik Poll - Radboud University Nijmegen 6

2. Formal, systematic inspection

• Code annotated with formal specification language JML
– specifying pre/postconditions and invariants

• Annotations checked with ESC/Java2 tool
– lightweight program verification aka extended static checking

Two steps in use of JML and ESC/Java2:
e) proving exception freeness

• ie. absence of unexpected runtime exceptions
f) proving adherence to functional spec

Erik Poll - Radboud University Nijmegen 7

2a. Proving exception freeness

Example JML annotations specifying preconditions needed to rule out
Nullpointer & ArrayIndexOutOfBounds-exceptions

/*@ requires

 @ 0 <= s && s <= foo.length &&

 @ 0 <= l && l <= foo.length - s;

 @*/

public void update(/*@ non_null @*/ byte foo[],

 int s, int l)

 { ... }

 ESC/Java2 will warn if method calls to update violate this
precondition, at compile-time

Erik Poll - Radboud University Nijmegen 8

2a. Proving exception freeness

Example JML annotations specifying object invariants needed to rule
out ArrayIndexOutOfBoundExceptions

public class SshPacket2 extends SshPacket {
 ...
 private int position;
 /*@ invariant phase_packet == PHASE_packet_length ==>
 @ (0 <= position && position < packet_array.length);
 @*/
 /*@ invariant (phase_packet == PHASE_block && !finished) ==>
 @ (0 <= position && position < block.length);
 @*/

 ESC/Java2 will warn if these invariants are violated, at compile-

time

Erik Poll - Radboud University Nijmegen 9

2a. Proving exception freeness

Results:
• Improvements in code needed to avoid some runtime

exceptions
– esp ArrayIndexOutOfBoundsExceptions, that could occur

when handling of malformed packets
Note that

• such cases are hard to catch using testing, because of huge
search space of possible malformed packets

• in a C(++) application these bugs would be buffer overflow
vulnerabilities!

• Also spotted: a missing check of a MAC (Message
Authentication Code)
– process of annotating code forces a thorough code inspection

Erik Poll - Radboud University Nijmegen 10

Beyond proving exception freeness:
proving functional correctness

• Exception freeness looks at what application should not do
– it should not crash with unexpected runtime exceptions

• How about looking at what it should do ?

• This requires some formal specification of the SSH protocol

Erik Poll - Radboud University Nijmegen 11

The SSH protocol

• Official specification given in RFCs 4250-4254
– Over 100 pages of text
– Many options & variants

• effectively, SSH is a collection of protocols

• The official specification far removed from typical formal
description of security protocols.

• We defined a partial formal specification of SSH as Finite
State Machine (FSM) aka automaton
– SSH client effectively implements a FSM, which has to

respond to 20 kinds of messages in right way

Erik Poll - Radboud University Nijmegen 12

The basic SSH protocol as FSM

This FSM defines a typical,
correct protocol run

Erik Poll - Radboud University Nijmegen 13

 SSH as abstract security protocol

• This FSM can also be written in the common notation used for
security protocol verification

1. C → S : CONNECT
2. S → C : VC // VERSION of the server
3. C → S : VS // VERSION of the client
4. S → C : IS // KEXINIT
5. C → S : IC // KEXINIT
6. C → S : exp(g,X) // KEXDH INIT
7. S → C : KS.exp(g, Y).{H} inv(KS) // KEXDH REPLY
8. ...

Erik Poll - Radboud University Nijmegen 14

The basic SSH protocol as FSM

However, this FSM defines
• only one correct protocol run
• no incorrect protocol runs

How do we specify:
vi. optional features in the RFCs,

which allow various correct
protocol runs?

vii. how incorrect protocol runs
should be handled?

Erik Poll - Radboud University Nijmegen 15

Specifying SSH protocol as FSM (i)

Incl. optional features allowed by RFCs we get

Erik Poll - Radboud University Nijmegen 16

Specifying SSH protocol as FSM (ii)

To handle incorrect runs, there are, in every state X,
additional messages that
• should be ignored, or
• should be ignored after a reply "UNIMPLEMENTED", or
• should lead to disconnection.
In every state X, we have to add an 'aspect' of the form below

Erik Poll - Radboud University Nijmegen 17

Specifying SSH protocol as FSM

• Obtaining these FSM from the informal specification of SSH
given in the RFCs is hard:
– notion of state is completely implicit in the RFCs
– constraints of correct sequences of messages given in

many places
• Eg constraints such as "once a party sends a SSH_MSG_KEXINIT

message [. . .], until it sends a SSH_MSG_NEWKEYS message, it
MUST NOT send any messages other than [. . .]"

– not clear if underspecification is always deliberate
• eg order of VERSION messages from client to server and vv.

• Note that anyone implementing SSH will effectively have to
extract the same information from the RFCs as is given by our FSM

Erik Poll - Radboud University Nijmegen 18

2b. Verifying the code against FSM

• AutoJML tool used to produce JML annotations from FSM
– tool extended to cope with multiple of diagrams

• Obvious security flaw:
 implementation doesn't record the state correctly (at all!)

– Hence, an attacker can ask for username/password before
session key has been established

• Improved code was successfully verified against the FSM

Erik Poll - Radboud University Nijmegen 19

Effort

• Formal specification & verification of the protocol
implementation (4.5 kloc) took around 6 weeks
– ie. proving

a) exception freeness, and
b) adherence to our formal specification given by FSM

a) catches errors in handling malformed messages
b) catches errors in handling incorrect/unusual sequences of

messages

– incl. 2 weeks understanding & formalising SSH specs

Erik Poll - Radboud University Nijmegen 20

Central problem: how to relate

official spec of SSH:
>100 pages of RFCs

code:
4.5 kloc of Java

?

typical abstract security protols:
tens of lines

Erik Poll - Radboud University Nijmegen 21

How to formally specify SSH?

• Traditional format for specifying security protocols used for
protocol verification

 Eg
1. C → S : CONNECT
2. S → C : VC // VERSION of the server
3. C → S : VS // VERSION of the client
4. S → C : IS // KEXINIT
5. C → S : IC // KEXINIT
6. C → S : exp(g,X) // KEXDH INIT
7. S → C : KS.exp(g, Y).{H} inv(KS) // KEXDH REPLY

 cannot conveniently capture
– options and allowed variants in the behaviour
– required/allowed responses to deviations from this

correct protocol run

Erik Poll - Radboud University Nijmegen 22

How to formally specify SSH?

• Our FSM is an attempt to bridge the big gap between
– real security protocols, and
– formal descriptions of abstract protocols studied for

protocol verification

• Bridging this gap could result in
– better specs of real security protocols
– formal verification of more realistic protocols

Erik Poll - Radboud University Nijmegen 23

Conclusions – about MIDP-SSH

• Of course, an incorrect implementation of a secure protocol
can be completely insecure...

• We successfully found & removed flaws from the MIDP-SSH
implementation
– by informal and formal methods

• Our verification can catch errors in handling
– incorrectly formatted messages, and
– incorrect sequences of messages

• But, our verification is not complete, as our formal
specification is only a partial formal specification of SSH,

Erik Poll - Radboud University Nijmegen 24

Conclusions – about SSH

• The official specification of SSH can be improved.

 In particular, including an explicit notion of state would help

(and make security flaws as found in MIDP-SSH much less
likely)

• Note that anyone implementing SSH will effectively have to
extract the same information from the RFCs as is given by
our FSM

Erik Poll - Radboud University Nijmegen 25

Ongoing work
• FSM specification is still only a partial specification:

– it specifies the order, but not format of messages
 What would be a convenient format for a complete formal

specification of SSH?
– Graphical notation of FSM quickly becomes unwieldy

Future work
• Other implementations of SSH
• Other protocols , eg SSL/TLS
• Using FSM as basis for model-based testing to check for

flaws in implementations

 [For more info: http://www.cs.ru.nl/~erikpoll/papers/wits.pdf]

