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Motivation

Case study in checking the security of a program

There is a lot of work on verifying security protocols,
but to secure the weakest link we should look
• not at the cryptographic primitives
• not at the security protocol
• but at the software implementing this
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Context: EU project Mobius 

• Certifying security of mobile code
– formal guarantees about security properties of code
– by means of Proof Carrying Code (PCC)

• Focus for case studies on J2ME CLDC applications
–   Java-enabled mobile phones

• Real interest from telco's in
– checking security properties of code which go beyond what 

the Java sandbox can provide
– more rigorous methods than testing as the basis for putting 

digital signatures of code
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The MIDP-SSH application

• Open source SSH client for Java-enabled mobile phones
– SSH is a protocol similar to SSL
Provides a secure shell  
– ie. confidentiality & integrity of network traffic

• SSH (v2) is secure, but what about this implementation?

Our analysis proceeded in two stages 
6. informal, ad-hoc code inspection
7. formal, systematic verification
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1. Flaws found in ad-hoc, manual code inspection

• Weak/no authentication
      no storage of public server keys

– but fingerprint (hash value) is reported
• Poor use of Java access control (ie. visibility modifiers)

  public static java.lang.Random rnd = ...;

  final static int[] blowfish_sbox = ...;

– Such bugs can be pointed out by automated tools, eg. Findbugs, 
or prevented by tools, eg. JAMIT tool for automated tightening 
of acces modifiers

– Not a real threat (yet) on MIDP, due to current limits on 
running multiple applications.

• Lack of input validation
     missing checks for terminal control characters
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2. Formal, systematic inspection

• Code annotated with formal specification language JML
– specifying pre/postconditions and invariants

• Annotations checked with ESC/Java2 tool
– lightweight program verification aka extended static checking

Two steps in use of JML and ESC/Java2:
e) proving exception freeness

• ie. absence of unexpected runtime exceptions
f) proving adherence to functional spec 
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2a. Proving exception freeness

Example JML annotations specifying preconditions needed to rule out
Nullpointer & ArrayIndexOutOfBounds-exceptions  

/*@ requires

  @     0 <= s && s <= foo.length &&

  @     0 <= l && l <= foo.length - s;

  @*/

public void update(/*@ non_null @*/ byte foo[], 

                   int s, int l)  

 {  ... }

     ESC/Java2 will warn if method calls to update violate this 
precondition, at compile-time
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2a. Proving exception freeness

Example JML annotations specifying object invariants needed to rule
out ArrayIndexOutOfBoundExceptions

public class SshPacket2 extends SshPacket {
    ...
 private int position;
 /*@ invariant phase_packet == PHASE_packet_length ==> 
   @        (0 <= position && position < packet_array.length);
   @*/
 /*@ invariant (phase_packet == PHASE_block && !finished) ==> 
   @               (0 <= position && position < block.length);
   @*/

     
     ESC/Java2 will warn if these invariants are violated, at compile-

time
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2a. Proving exception freeness

Results:
• Improvements in code needed to avoid some runtime 

exceptions 
– esp ArrayIndexOutOfBoundsExceptions, that could occur 

when handling of malformed packets
Note that 

• such cases are hard to catch using testing, because of huge 
search space of possible malformed packets

• in a C(++) application these bugs would be buffer overflow 
vulnerabilities!

• Also spotted: a missing check of a MAC (Message 
Authentication Code)
– process of annotating code forces  a thorough code inspection
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Beyond proving exception freeness:
proving functional correctness

• Exception freeness looks at what application should not do
– it should not crash with unexpected runtime exceptions

• How about looking at what it should do ?

• This requires some formal specification of the SSH protocol
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The SSH protocol

• Official specification given in RFCs 4250-4254
– Over 100 pages of text
– Many options & variants

• effectively, SSH is a collection of protocols

• The official specification far removed from typical formal 
description of security protocols.

• We defined a partial formal specification of SSH as Finite 
State Machine (FSM) aka automaton
– SSH client effectively implements a FSM,  which has to 

respond to 20  kinds of messages in right way
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The basic SSH protocol as FSM

This FSM defines a typical, 
correct protocol run
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 SSH as abstract security protocol

• This FSM can also be written in the common notation used for 
security protocol verification

1. C → S : CONNECT
2. S → C : VC                                       // VERSION of the server
3. C → S : VS                                       // VERSION of the client
4. S → C : IS                                       // KEXINIT
5. C → S : IC                                       // KEXINIT
6. C → S : exp(g,X)                             // KEXDH INIT
7. S → C : KS.exp(g, Y ).{H} inv(KS)        // KEXDH REPLY 
8. ...



Erik Poll - Radboud University Nijmegen 14

The basic SSH protocol as FSM

However, this FSM defines 
• only one correct protocol run
• no incorrect protocol runs

How do we specify:
vi. optional features in the RFCs, 

which allow various correct 
protocol runs?

vii. how incorrect protocol runs 
should be handled?
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Specifying SSH protocol as FSM (i)

Incl. optional features allowed by RFCs we get
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Specifying SSH protocol as FSM (ii)

To handle incorrect runs, there are, in every state X, 
additional messages that
• should be ignored, or
• should be ignored after a reply "UNIMPLEMENTED", or
• should lead to disconnection.
In every state X, we have to add an 'aspect' of the form below
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Specifying SSH protocol as FSM

• Obtaining these FSM from the informal specification of SSH 
given in the RFCs is hard:
– notion of state is completely implicit in the RFCs
– constraints of correct sequences of messages given in 

many places
• Eg constraints such as "once a party sends a SSH_MSG_KEXINIT 

message [. . .], until it sends a SSH_MSG_NEWKEYS message, it 
MUST NOT send any messages other than [. . . ]"

– not clear if underspecification is always deliberate
• eg order of VERSION messages from client to server and vv.

• Note that anyone implementing SSH will effectively have to 
extract the same information from the RFCs as is given by our FSM
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2b. Verifying the code against FSM

• AutoJML tool used to produce JML annotations from FSM
– tool extended to cope with multiple of diagrams 

• Obvious security flaw: 
     implementation doesn't record the state correctly (at all!)

– Hence, an attacker can ask for username/password before 
session key has been established

• Improved code was successfully verified against the FSM
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Effort

• Formal specification & verification of the protocol 
implementation (4.5 kloc) took around 6 weeks
– ie. proving 

a) exception freeness, and
b) adherence to our formal specification given by FSM

a) catches errors in handling malformed messages
b) catches errors in handling incorrect/unusual sequences of 

messages

– incl. 2 weeks understanding & formalising SSH specs
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Central problem: how to relate

official spec of SSH:
>100 pages of RFCs

code:
4.5 kloc of  Java

?

typical abstract security protols:
tens of lines
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How to formally specify SSH?

• Traditional format for specifying security protocols used for 
protocol verification

     Eg
1. C → S : CONNECT
2. S → C : VC                                       // VERSION of the server
3. C → S : VS                                       // VERSION of the client
4. S → C : IS                                       // KEXINIT
5. C → S : IC                                       // KEXINIT
6. C → S : exp(g,X)                             // KEXDH INIT
7. S → C : KS.exp(g, Y ).{H} inv(KS)        // KEXDH REPLY 

     cannot conveniently capture
– options and allowed variants in the behaviour
– required/allowed responses to deviations from this 

correct protocol run
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How to formally specify SSH?

• Our FSM is an attempt to bridge the big gap between
– real security protocols, and
– formal descriptions of abstract protocols studied for 

protocol verification 

• Bridging this gap could result in
– better specs of real security protocols
– formal verification of more realistic protocols
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Conclusions – about MIDP-SSH

• Of course, an incorrect implementation of a secure protocol 
can be completely insecure...

• We successfully found & removed flaws from the MIDP-SSH 
implementation
– by informal and formal methods

• Our verification can catch errors in handling 
– incorrectly formatted messages, and 
– incorrect sequences of messages

• But, our verification is not complete, as our formal 
specification is only a partial formal specification of SSH,



Erik Poll - Radboud University Nijmegen 24

Conclusions – about SSH 

• The official specification of SSH can be improved. 
   
     In particular, including an explicit notion of state would help 

(and make security flaws as found in MIDP-SSH much less 
likely)

•  Note that anyone implementing SSH will effectively have to 
extract the same information from the RFCs as is given by 
our FSM
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Ongoing work
• FSM specification is still only a partial specification:

– it specifies the order, but not format of messages
    What would be a convenient format for a complete formal 

specification of SSH?
– Graphical notation of FSM quickly becomes unwieldy 

Future work
• Other implementations of SSH
• Other protocols , eg SSL/TLS
• Using FSM as basis for model-based testing to check for 

flaws in implementations

       [For more info: http://www.cs.ru.nl/~erikpoll/papers/wits.pdf]


