Outline

Background:
JavaCard Program Verification e Smart cards and JavaCard
Erik Poll LOOP project at Nijmegen:

verification of JML-annotated JavaCard programs in PVS
a semantics of Java
JML specification language for Java

University of Nijmegen

Joint work with
Joachim van den Berg, Cees-Bart Breunesse,
Engelbert Hubbers, Bart Jacobs, Hans Meijer, Martijn Oostdijk

a logic for JIML

JML specifications for the JavaCard API

JavaCard Program Verification — p.1/61 JavaCard Program Verificat

smart cards

Card with a chip providing CPU and memory (ROM, RAM,
EEPROM) capable of

e storing information (tamper resistant!)
e processing information, notably en/de-cryption

Smart Cards and Java Card NB private keys never have to leave the card !

Applications
e Now: bank card, mobile phone SIM

e Future: ID cards, access control for networks, PKI
support, access control for networks, ...

JavaCard Program Verification — p.3/61 JavaCard Program Verificat

Old vs new smart cards

Traditional smart cards:
e oOne program (or ‘applet’)
e written in chip-specific machine code
e burnt into ROM

New generation smart cards:
e several applets, written in high level language
e compiled to byte code

e stored in EEPROM

e executed on virtual machine and mini-OS,
which hide hardware details

JavaCard Program Verification — p.5/61

Pros & cons

Advantages of new generation smart cards:
e development quicker and cheaper

e multi-application: several (possibly interacting)
applets on one smart card

e post-issuance download: adding or deleting applets
on a card (cf. downloading applets in web browser, but
controlled with digital signatures, using Visa OP)

but additional security threats !

JavaCard Program Verification — p.7/61

Java Card

Subset of Java for programming smart cards,
e without threads, floats, ..., very limited API
extended with
e persistent and transient objects (EEPROM and RAM)
e transaction mechanism
and increased security:
e standard sandbox + firewall between applets.

JavaCard Program Verificat

Security issues for smart cards

Like a virus, a malicious applet could exploit weaknesses in
platform or in other applets.

e Is (an implementation of) the platform secure ?
e |s a given applet secure/not malicious ?

Increasing demands for security evaluation.

Common Criteria (CC), the ISO standard for security
evaluation, distinguishes 7 levels.

Current cards are evaluated up to levels 4+5.
The highest levels (6+7) require formal verification.

JavaCard Program Verificat

JavaCard is an ideal target for use of formal methods:

e Programs involved are small

e Platform is relatively small and simple

e Correctness & security are of vital importance
e Cards are distributed in large numbers

e Smart card industry is open to formal methods

Formal methods for JavaCard

e EU-sponsered IST-project of 2 sr>|/8%’¥(l:gr% %r;c()jdﬁcrecl)éec:t
and 5 academic research groups in tool-assisted

verification for Java(Card).

e Work on
® formal descriptions of platform (JCVM, byte code
verifier) for CC evaluations

® applet verification
® non-interference and information-flow properties
® case studies (banking, GSM) provided by industrial

partners.
Potential killer application for formal methods ?
But if we can’t even do this ... I
JavaCard Program Verification — p.9/61 JavaCard Program Verificatic
VerifiCard: Topics VerifiCard: other partners
Academic:
JavaCard platform applets INRIA Barthe, Bertot France
TU Munich Nipkow Germany
byte v;/rlz/lfi,e?y::icrgdﬁer abstract interpretation szrg\é Hagen | Poetzsch-Heffter CSEerrgany
code > COMP & model checking ! Dam weden
formalisation .
Industrial:
Gemplus Lanet | France
source APl annotation in applet annotation in Schlumberger CP8 | Goire | France
JML & Hoare-style JML & Hoare-style
code e .- e ..
verification verification

JavaCard Program Verification — p.11/61 JavaCard Program Verificatic

The LOOP project

JavaCard Program Verification — p.13/61

LOOP tool for Java/IJML

JML-annotated Java class A.java

LOOP compiler‘

meaning of Java class [A].pvs with
proof obligations as Hoare sentences

‘ PVS theorem prover‘

QED

JavaCard Program Verification — p.15/61

The LOOP Project

Verification of JML-annotated Java(Card) programs based
on

e a denotational semantics for sequential Java,
formalised in PVS

e a compiler — the LOOP tool — which translates A. j ava
to A. pvs describing its semantics.

e alogic for reasoning about JML, formalised in PVS

ie. a shallow embedding of Java and JML in PVS

JavaCard Program Verificatic

The LOOP Project: results so far

e translation covers essentially all sequential Java
e translation of JML under construction, but covers
basics.

e case studies:
® non-trivial invariant for Java’s Vector class
® AID class from JavaCard API
® Purse applet (under development)
® large collection of smaller test examples

JavaCard Program Verificatic

Rest of this talk

e Semantics of Java

Java specification language JML

e Hoare logic for Java/JML

JML specifications of JavaCard API

JavaCard Program Verification — p.17/61

Java Semantics

Standard denotational semantics of imperative program P:

P
g [P]

1+ S

where S is the state space and 1 = {_L} stands for
nontermination.

But: Java has abrupt termination because of

e exceptions, t hr om E)

e return that exits a method

e break that exits a repetition

e conti nue that skips remainder of a repetition

so the semantics becomes more complicated ...

JavaCard Program Verification — p.19/61

Semantics of Java

JavaCard Program Verificatic

Example: Java control flow

public int arrayProduct(int[] a)

{
if (a == null) throw new MyNul | Poi nt er Excepti on(
if (a.length == 0) return 1,
int prod = 1;

for (int i=0; i < a.length; i++){
if (a[i]==0) {prod = 0; break;} ;
if (a[i]==1) continue;
prod = prod * a[i];

}.

return prod;

JavaCard Program Verificatic

Java semantics: statements

Semantics of Java statement P:

[P]

S 1 + S 4+ StatAbn
where
StatAbn = (S X RefType) state with exception object
+S return

+(S x (1 4+ string)) br eak with label
+(S x (1 4 string)) conti nue with label

JavaCard Program Verification — p.21/61

Java semantics : expressions

Semantics of Java expression E e:

[e]

S 1+ S X E + ExprAbn

where

ExprAbn = (S X RefType) state with exception object

JavaCard Program Verification — p.23/61

Example: composition

For two statements
81,82 : S — 1+ S + StatAbn

the composition is defined as

(81 ; 82) @ = CASES 357 -2« OF {
hang —— hang
| norm(z’) — sg - x’
| abnorm(a) —— abnorm(a) }

In this way all Java constructs are translated into PVS.

JavaCard Program Verificatic

Example: Addition

For two int-expressions
er,ez : S — 1485 x Int + ExprAbn

addition is defined as (e1+e3) - =

CASES e; - = OF {
hang — hang
| norm(z’, valy)
—— CASES e; - 2’ OF {
hang —— hang
| norm(z”, valy) —— norm(z”,valy + val:
| abnorm(a’) —— abnorm(a’) }
| abnorm(a) —— abnorm(a) }

JavaCard Program Verificatic

LOOP Java semantics

representation of state space (or object model),
mapping references to values

semantics of all Java statements constructs:

it (...) {..lelse { ..}
try {...} catch ... finally {...}

semantics of Java expression constructs:
-, &L, &, X,

semantics of classes incl. inheritance: method tables
of statements/expression-valued functions, generated

by the LOOP tool

Together covering essentially all of sequential Java

JavaCard Program Verification — p.25/61

JML

JavaCard Program Verification — p.27/61

LOOP tool for Java

Java class A.java

LOOP compiler !

meaning of Java class
[A].pvs as PVS theory

PVS theorem prover I

Java Modeling Language JML

PVS theories for object mode
semantics of Java construc

JavaCard Program Verificatic

Specification language by Gary Leavens (lowa Univ.) for
annotating Java programs with
e pre- and postconditions } cf. Eiffel and

e invariants Design by Contract
e frame conditions (modifiability constraints)

e specification-only variables (model variables)

[J

Pre-, postconditions, and invariants in JML are Java
boolean expressions, extended with\ foral | ,\ exi st s,
==>\old(),...

JavaCard Program Verificatic

JML example

class A {
int i;

public void change_i(int j) throws MyException

{if (j ==0) return ;

i f (I+j > MAX) throw new MyException();

i =i+
}
JavaCard Program Verification — p.29/61
JML example
class A {
int i;

[/@invariant 0 <= i && i <= MAX
public void change_i(int j) throws M/Exception
/*@ requires j >= 0;

ensures i = \old(i)¥;

@/
{if (j ==0) return ;

if (i+ > MAX) throw ne
i =0+,

}

pre- and post-condition

ception();

JavaCard Program Verification — p.31/61

JML example

class A {
int i;
[/@invariant 0 <= i && i <= MAX;
public void change_i(int j) throws MyException

{if (j ==0) return ;

if (i+j > MAX) throw new MyException();
=0+

}

JavaCard Program Verificatic

JML example

class A {
int i;
/[/@invariant 0 <= i && i <= MAX;
public void change_i(int j) throws M/Exception
[*@ requires j >= 0;

ensures i = \old(i)+j;
signal s (MyException) i+ > MAX;

@/
{if (j ==0) return ;

if (i+ > MAX) throw new MyExcepti
=04

}

“exceptional” postcondition

JavaCard Program Verificatic

JML example

class A {
int i;
/l@invariant 0 <=1 && i <= NAX
public void change_i(int j) throws M/Exception
I *@ requires j >= 0;

ensures i = \old(i)+j;
signals (MyException) i+ > MAX;
@/
{if (j ==0) return ;
/|l @assert j!=0;
if (i+ > MAX) thyow new MyException();
=0+
¥

JavaCard Program Verification — p.33/61

JML example

class A {
int i;
[/@invariant 0 <= i && i <= MAX;
public void change_i(int j) throws MyException
/*@ requires j >= 0;
nodi fiable i;
ensures i = \old(i)+j;
signals (MyException) i+ > MAX;
@/
{if (j == 0) return ;
/'l @assert j!=0;
if (i+4 > MAX) throw new MyException();
=0+,

}

JavaCard Program Verification — p.35/61

JML example

class A {
int i;
/[l@invariant 0 <=1 && i <= MAX
public void change_i(int j) throws MyException
I *@ requires j >= 0;
nodi fi able i;
ensures i

@/

{if (j ==0) return ;
/|l @assert j!=0;

if (i+ > MAX) throw new MyExceptiwn();
=04

}

JavaCard Program Verificatic

Tool support for IML

e |lowa (Leavens et al.):
parser, typechecker, contract compiler inserting
runtime checks for violations of assertions

e MIT (Ernst):
Daikon tool for runtime detection of invariants

e Compaq (Leino et al.):
extended static checker ESC/Java for automatic
verification of simple assertions,
e.g. no IndexOutOfBoundsExceptions.

e Nijmegen:
LOOP tool as a front-end to theorem prover PVS for
interactive verification of any assertion.

JavaCard Program Verificatic

a logic for IML

JavaCard Program Verification — p.37/61

Hoare 4-tuples

Because of exceptions, instead of a Hoare triple

requires = P
{P} m {Q} ,in our notation: statement = m
ensures = Q@

requires = P

statement =
we need a Hoare 4-tuple m
ensures = Q@
signals = Qexcp

including an exceptional postcondition Qczcp

JavaCard Program Verification — p.39/61

a logic for Java/JML

e Hoare logic not at syntactic, but at semantic level:

ie. not {P} m {Q}, but {P}[m]{Q}

But [s1; s2] = [s1] ; [s2], so proofs still syntax
directed.

e Complicating factors in Java:
® exceptions and other abrupt control flow
® expressions can have side-effects
Therefore
® not Hoare triples but Hoare n-tuples,
® for expressions as well as statements.

JavaCard Program Verificatic

Example Hoare 4-tuple

requires = j >= 0
statement = [if (j == 0) return;
if (i+>MAX) throw new Excepti on(
=i]
ensures = i = \old(i)+
signals = i+ > MAX

JavaCard Program Verificatic

Hoare 5-tuples

Inside method bodies, apart from exceptions, also abrupt
control flow viar et ur n: we need 5-tuples

requires
statement
ensures
signals
return =

P

S

Q

Qecccep

Q'ret

Initially, Q¢ IS equal to the postcondition Q.

JavaCard Program Verification — p.41/61

Rule for Composition

requires = P requires = P’
statement = s; statement = so
ensures = P’ ensures = Q
signals = Qeacp signals = Qeazcp
return = Qe return = Qe
requires = P
statement = s1;s5
ensures = Q@
signals = Qecacp
return = Qe

NB this is a lemma in PVS! I

JavaCard Program Verification — p.43/61

Example Hoare 5-tuple

requires = j >0
statement = [if (j == 0) return;
if (i+>MAX) throw new Exception()
i =i+]
ensures = i = \old(i)+j
signals = i+ > MAX
return = i = \old(i)+j

JavaCard Program Verificatic

Example: applying composition rule

What predicate will hold here? | > 0
requires = j >= 0
statement = [if (j == 0) return ;

if (i+>MAX) throw new Exception();
i =i]

ensures = i = \old(i)+j] >0

signals = i+ > MAX

return = i = \old(i)+

JavaCard Program Verificatic

Example: applying composition rule

requires = | > 0
statement = [
if (i+j>MAX) throw new Exception();
=i]
ensures = i = \old(i)+
signals = i+ > MAX
return = i = \old(i)+j

JavaCard Program Verification — p.45/61

Hoare 7-tuples

Apart from exceptions and r et ur n’s, also abrupt control
flow via br eak and cont i nue:

requires = P
statement = s
ensures = Q@
signals = Qe:ccep
return = Qget
continue = Qcont
break = Qpreak

Initially Qprear aNd Qcont are false; they only get a value
inside repetitions (namely the postcondition of the
repetition and the invariant, resp.)

JavaCard Program Verification — p.47/61

requires = P

Rule for if-then

: requires = P’
expression = cond
statement = s
ensures(b) = IFb THEN P’
ELSE Q eqsures = Q
signals = Qexcp signals - = Qeae
return = Qpet
return = Qe
requires = P
statement = if (cond)s;
ensures = Q@
signals = Qeazcp
return = Qe
Again, this is a lemma in PVS.
JavaCard Program Verificatic
Rule for while
requires = in
requires = inv statement = s
expression = cond ensures = in
ensures(b) = IFb THEN inv’ continue = in
ELSE Q break = ¢
signals = Qecacp signals = (
return = (
requires = inv
statement = whil e(cond){s}
ensures = Q@
signals = Qezcp
return = Qgret

and cont i nue’s for nested repetitions . ..

It gets a bit more complicated with labelled br eak’s]
JavaCard Proglam Verificatic

Atomic statements

To prove properties of atomic statements, e.g.

requires = P
statement = [obj.i=€]
ensures = Q@Q
signals = Qezcp
return = Qe

we go back to the definition of Hoare n-tuples, i.e. we prove
Vz. P(x) = CASES [obj.i=e]-xz OF{
norm(z’) — Q(x’)

excp(z’,e) — Qeaep(x’,€)

ret(z’) — Qret(z’) }

JavaCard Program Verification — p.49/61

JML specifications for the
JavaCard API

JavaCard Program Verification — p.51/61

Hoare logic for IML/Java

For more info, see FASE’2001.

Logic used to verify
e AID class from the JavaCard API (see JCW’2000).
e Purse applet (under construction)

Future work:
e better PVS strategies

e how to deal with invariants:
when is it safe to assume an invariant holds ?

e how to handle the heap:
ownership models ?

JavaCard Program Verificatic

JML specs for the JavaCard API

The JavaCard API includes 47 classes (incl. Object,
Throwable, NullPointerException, ...) of which 25 trivial.

Formal JML specs are needed to verify applets that use the
API, and to verify implementations of the API.

Basis for these specs: the detailed informal specs, and the
reference implementation

So far we developed

e lightweight specs for the whole API (checked using
ESC/Java)

e complete specs for some classes (incl. those needed to
verify the AID class)

Serious case study in the use of JML (> 7000 lines of JML)

JavaCard Program Verificatic

Lightweight specs

e Try to find a precondition that rules out all exceptions

(or most of them).

e Take postcondition as weak as possible

but

Usually just t r ue but sometimes we may need
\result !'= null or\result >0

JavaCard Program Verification — p.53/61

Example: Util.arrayCompare

al so
behavi or
requires true;
nodi fi abl e not hi ng;
ensures true;
signal s (Null Poi nter Excepti on)
src == null || dest == null
signal s (Arrayl ndexQut O BoundsExcepti on)
srcOf <0 ||
srcOf + length > src.length ||

CISIOISISISISISIOIGISIGIS)

~

do we need this ?

JavaCard Program Verification — p.55/61

Example: Util.arrayCompare

public byte arrayConpare(byte[] src, short srcOf
byte[] dest, short dest O
short | ength)
t hrows Nul | Poi nt er Excepti on,
| ndexCQut Of BoundsExcepti on;
/*@ nor mal _behavi or
requires src !'=null && dest != null &&
srcOf >= 0 & destOFf >= 0 &&
length >= 0 &&
srcOf + length <= src.length &
dest O f + length <= dest. | ength;
nodi fi abl e not hi ng;
ensures true;

QEAPOOO®

JavaCard Program Verificatic

Example: Util.arrayCopy

public short arrayCopy(byte[] src, short srcOf,
byte[] dest, short destOf,
short | ength)
throws Nul | Poi nt er Excepti on,
I ndexQut OF BoundsExcepti on,
Transacti onExcepti on;
/ * @ behavi or
@ requires ...
@ nodifiable dest[srcOf..srcOf+l ength-1];
@ ensures true;
@ exsures (Transacti onException) true;
@/

JavaCard Program Verificatic

Experience writing JML specs

The lightweight JML specs for the JavaCard API
e often straightforward translations of informal specs to

JML

e easy to read, write, and (informally) verify,
(though writing can take several iterations)

e improve existing documentation, because of
® precise declaration of exceptions
® declaration of invariants

e Writing specs you (re)discover — and make explicit —
some of the assumptions and considerations that have
gone into the design of code

(See CARDIS’00 and Computer Networks’01.)

JavaCard Program Verification — p.57/61

Conclusions

Verification of JML-annotated Java(Card) programs
using a shallow embedding of Java and JML in PVS,
incl.

e a denotational semantics for sequential Java
e a compiler which translates A. j ava to A. pvs
e alogic for IML

Used in several case studies

e invariant for Java’s Vector class
e JavaCard’s AID class
e Purse applet (under development)

JavaCard Program Verification — p.59/61

Conclusions

JavaCard Program Verificatic

Future work

e Covering more of JML, notably model variables

e More case studies

e More complete functional specs for the JavaCard API
e The big challenge: scaling up!

® petter PVS strategies ?

® More modular/OO style verification ?
® when can you assume an invariant holds ?
® ownership models, ...?

e Looking at security properties (confidentiality, integrity,
...) of JavaCard programs as part of larger systems

JavaCard Program Verificatic

	Outline
	{Large
ed Smart Cards and Java Card}
	smart cards
	Old vs new smart cards
	Java Card
	Pros & cons
	Security issues for smart cards
	Formal methods for JavaCard
	VerifiCard Project
	VerifiCard: Topics
	VerifiCard: other partners
	{Large
ed The LOOP project}
	The LOOP Project
	LOOP tool for Java/JML
	The LOOP Project: results so far
	Rest of this talk
	{Large
ed Semantics of Java}
	Java Semantics
	Example: Java control flow
	Java semantics: statements
	Example: {
ed composition}
	Java semantics : expressions
	Example: {
ed Addition}
	LOOP Java semantics
	LOOP tool for Java
	{Large
ed JML}
	Java Modeling Language JML
	JML example
	JML example
	JML example
	JML example
	JML example
	JML example
	JML example
	Tool support for JML
	{Large
ed a logic for JML}
	a logic for Java/JML
	Hoare 4-tuples
	Example Hoare 4-tuple
	Hoare 5-tuples
	Example Hoare 5-tuple
	Rule for Composition
	Example: applying composition rule
	Example: applying composition rule
	Rule for if-then
	Hoare 7-tuples
	Rule for while
	Atomic statements
	Hoare logic for JML/Java
	{Large
ed JML specifications for the JavaCard API}
	JML specs for the JavaCard API
	Lightweight specs
	Example: Util.arrayCompare
	Example: Util.arrayCompare
	Example: Util.arrayCopy
	Experience writing JML specs
	{Large
ed Conclusions}
	Conclusions
	Future work
	Problems with invariants {scriptsize (See FTfJP'01)}

