
JavaCard Program Verification

Erik Poll

University of Nijmegen

Joint work with
Joachim van den Berg, Cees-Bart Breunesse,

Engelbert Hubbers, Bart Jacobs, Hans Meijer, Martijn Oostdijk

JavaCard Program Verification – p.1/61

Outline

Background:

• Smart cards and JavaCard

LOOP project at Nijmegen:
verification of JML-annotated JavaCard programs in PVS

• a semantics of Java

• JML specification language for Java

• a logic for JML

• JML specifications for the JavaCard API

JavaCard Program Verification – p.2/61

Smart Cards and Java Card

JavaCard Program Verification – p.3/61

smart cards

Card with a chip providing CPU and memory (ROM, RAM,
EEPROM) capable of

• storing information (tamper resistant!)

• processing information, notably en/de-cryption
NB private keys never have to leave the card !

Applications

• Now: bank card, mobile phone SIM

• Future: ID cards, access control for networks, PKI
support, access control for networks, . . .

JavaCard Program Verification – p.4/61

Old vs new smart cards

Traditional smart cards:

• one program (or ‘applet’)

• written in chip-specific machine code

• burnt into ROM

New generation smart cards:

• several applets, written in high level language

• compiled to byte code

• stored in EEPROM

• executed on virtual machine and mini-OS,
which hide hardware details

JavaCard Program Verification – p.5/61

Java Card

Subset of Java for programming smart cards,

• without threads, floats, . . . , very limited API

extended with

• persistent and transient objects (EEPROM and RAM)

• transaction mechanism

and increased security:

• standard sandbox + firewall between applets.

JavaCard Program Verification – p.6/61

Pros & cons

Advantages of new generation smart cards:

• development quicker and cheaper

• multi-application: several (possibly interacting)
applets on one smart card

• post-issuance download: adding or deleting applets
on a card (cf. downloading applets in web browser, but
controlled with digital signatures, using Visa OP)

but additional security threats !

JavaCard Program Verification – p.7/61

Security issues for smart cards

Like a virus, a malicious applet could exploit weaknesses in
platform or in other applets.

• Is (an implementation of) the platform secure ?

• Is a given applet secure/not malicious ?

Increasing demands for security evaluation.

Common Criteria (CC), the ISO standard for security
evaluation, distinguishes 7 levels.

Current cards are evaluated up to levels 4+5.
The highest levels (6+7) require formal verification.

JavaCard Program Verification – p.8/61

Formal methods for JavaCard

JavaCard is an ideal target for use of formal methods:

• Programs involved are small

• Platform is relatively small and simple

• Correctness & security are of vital importance

• Cards are distributed in large numbers

• Smart card industry is open to formal methods

Potential killer application for formal methods ?

But if we can’t even do this . . .

JavaCard Program Verification – p.9/61

VerifiCard Project
• EU-sponsered IST-project of 2 smartcard producers

and 5 academic research groups in tool-assisted
verification for Java(Card).

• Work on
• formal descriptions of platform (JCVM, byte code

verifier) for CC evaluations
• applet verification
• non-interference and information-flow properties
• case studies (banking, GSM) provided by industrial

partners.

JavaCard Program Verification – p.10/61

VerifiCard: Topics

JavaCard platform applets

byte
code

VM, bytecode
verifier, compiler

formalisation

abstract interpretation
& model checking

source
code

API annotation in
JML & Hoare-style

verification

applet annotation in
JML & Hoare-style

verification

JavaCard Program Verification – p.11/61

VerifiCard: other partners

Academic:
INRIA Barthe, Bertot France
TU Munich Nipkow Germany
Univ. Hagen Poetzsch-Heffter Germany
SICS Dam Sweden

Industrial:
Gemplus Lanet France
Schlumberger CP8 Goire France

JavaCard Program Verification – p.12/61

The LOOP project

JavaCard Program Verification – p.13/61

The LOOP Project

Verification of JML-annotated Java(Card) programs based
on

• a denotational semantics for sequential Java,
formalised in PVS

• a compiler – the LOOP tool – which translates A.java
to A.pvs describing its semantics.

• a logic for reasoning about JML, formalised in PVS

ie. a shallow embedding of Java and JML in PVS

JavaCard Program Verification – p.14/61

LOOP tool for Java/JML

JML-annotated Java class A.java

��

LOOP compiler

��

meaning of Java class [[A]].pvs with
proof obligations as Hoare sentences

��

PVS theorem prover

��

QED

JavaCard Program Verification – p.15/61

The LOOP Project: results so far

• translation covers essentially all sequential Java

• translation of JML under construction, but covers
basics.

• case studies:
• non-trivial invariant for Java’s Vector class
• AID class from JavaCard API
• Purse applet (under development)
• large collection of smaller test examples

JavaCard Program Verification – p.16/61

Rest of this talk

• Semantics of Java

• Java specification language JML

• Hoare logic for Java/JML

• JML specifications of JavaCard API

JavaCard Program Verification – p.17/61

Semantics of Java

JavaCard Program Verification – p.18/61

Java Semantics

Standard denotational semantics of imperative program P :

S
[[

�

]]
// 1 + S

where S is the state space and 1 = {⊥} stands for
nontermination.

But: Java has abrupt termination because of

• exceptions, throw(E)
• return that exits a method
• break that exits a repetition
• continue that skips remainder of a repetition

so the semantics becomes more complicated . . .

JavaCard Program Verification – p.19/61

Example: Java control flow

public int arrayProduct(int[] a)
{

if (a == null) throw new MyNullPointerException();
if (a.length == 0) return 1;
int prod = 1;
for (int i=0; i < a.length; i++){

if (a[i]==0) {prod = 0; break;} ;
if (a[i]==1) continue;
prod = prod * a[i];

};
return prod;

}

JavaCard Program Verification – p.20/61

Java semantics: statements

Semantics of Java statement P :

S
[[

�

]]
// 1 + S + StatAbn

where

StatAbn = (S × RefType) state with exception object
+S return
+(S × (1 + String)) break with label
+(S × (1 + String)) continue with label

JavaCard Program Verification – p.21/61

Example: composition

For two statements

s1, s2 : S → 1 + S + StatAbn

the composition is defined as

(s1 ; s2) · x = CASES s1 · x OF {

hang 7−→ hang
| norm(x

�

) 7−→ s2 · x

�

| abnorm(a) 7−→ abnorm(a) }

In this way all Java constructs are translated into PVS.

JavaCard Program Verification – p.22/61

Java semantics : expressions

Semantics of Java expression E e:

S
[[�]]

// 1 + S × E + ExprAbn

where

ExprAbn = (S × RefType) state with exception object

JavaCard Program Verification – p.23/61

Example: Addition

For two int-expressions

e1, e2 : S → 1 + S × Int + ExprAbn

addition is defined as (e1+e2) · x =

CASES e1 · x OF {

hang 7−→ hang
| norm(x

�

, val1)

7−→ CASES e2 · x

�

OF {

hang 7−→ hang
| norm(x

� �

, val2) 7−→ norm(x

� �

, val1 + val2)

| abnorm(a

�

) 7−→ abnorm(a

�

) }

| abnorm(a) 7−→ abnorm(a) }

JavaCard Program Verification – p.24/61

LOOP Java semantics

• representation of state space (or object model),
mapping references to values

• semantics of all Java statements constructs:
;
if (...) {...} else {...}
try {...} catch ... finally {...}
. . .

• semantics of Java expression constructs:
+ , - , . . . , && , & , . . . , x = . . . , . . .

• semantics of classes incl. inheritance: method tables
of statements/expression-valued functions, generated
by the LOOP tool

Together covering essentially all of sequential Java

JavaCard Program Verification – p.25/61

LOOP tool for Java

Java class A.java

��

LOOP compiler

��

meaning of Java class
[[A]].pvs as PVS theory

��

+
PVS theories for object model and

semantics of Java constructs

PVS theorem prover

JavaCard Program Verification – p.26/61

JML

JavaCard Program Verification – p.27/61

Java Modeling Language JML

Specification language by Gary Leavens (Iowa Univ.) for
annotating Java programs with

• pre- and postconditions }

cf. Eiffel and
Design by Contract• invariants

• frame conditions (modifiability constraints)

• specification-only variables (model variables)

• . . .

Pre-, postconditions, and invariants in JML are Java
boolean expressions, extended with \forall, \exists,
==>, \old(), . . .

JavaCard Program Verification – p.28/61

JML example

class A {
int i;

public void change_i(int j) throws MyException

{ if (j == 0) return ;

if (i+j > MAX) throw new MyException();
i = i+j;

}

JavaCard Program Verification – p.29/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException

{ if (j == 0) return ;

if (i+j > MAX) throw new MyException();
i = i+j;

}

JavaCard Program Verification – p.30/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException
/*@ requires j >= 0;

ensures i = \old(i)+j;

@*/
{ if (j == 0) return ;

if (i+j > MAX) throw new MyException();
i = i+j;

}

pre- and post-condition

JavaCard Program Verification – p.31/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException
/*@ requires j >= 0;

ensures i = \old(i)+j;
signals (MyException) i+j > MAX;

@*/
{ if (j == 0) return ;

if (i+j > MAX) throw new MyException();
i = i+j;

}

“exceptional” postcondition

JavaCard Program Verification – p.32/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException
/*@ requires j >= 0;

ensures i = \old(i)+j;
signals (MyException) i+j > MAX;

@*/
{ if (j == 0) return ;

//@ assert j!=0;
if (i+j > MAX) throw new MyException();
i = i+j;

}

assertions in code

JavaCard Program Verification – p.33/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException
/*@ requires j >= 0;

modifiable i;
ensures i = \old(i)+j;
signals (MyException) i+j > MAX;

@*/
{ if (j == 0) return ;

//@ assert j!=0;
if (i+j > MAX) throw new MyException();
i = i+j;

}

NB just pre- and postconditions do not suffice!

JavaCard Program Verification – p.34/61

JML example

class A {
int i;
//@ invariant 0 <= i && i <= MAX;

public void change_i(int j) throws MyException
/*@ requires j >= 0;

modifiable i;
ensures i = \old(i)+j;
signals (MyException) i+j > MAX;

@*/
{ if (j == 0) return ;

//@ assert j!=0;
if (i+j > MAX) throw new MyException();
i = i+j;

}

JavaCard Program Verification – p.35/61

Tool support for JML

• Iowa (Leavens et al.):
parser, typechecker, contract compiler inserting
runtime checks for violations of assertions

• MIT (Ernst):
Daikon tool for runtime detection of invariants

• Compaq (Leino et al.):
extended static checker ESC/Java for automatic
verification of simple assertions,
e.g. no IndexOutOfBoundsExceptions.

• Nijmegen:
LOOP tool as a front-end to theorem prover PVS for
interactive verification of any assertion.

JavaCard Program Verification – p.36/61

a logic for JML

JavaCard Program Verification – p.37/61

a logic for Java/JML

• Hoare logic not at syntactic, but at semantic level:

ie. not {P} m {Q} , but {P}[[m]]{Q}

But [[s1; s2]] = [[s1]] ; [[s2]], so proofs still syntax
directed.

• Complicating factors in Java:
• exceptions and other abrupt control flow
• expressions can have side-effects

Therefore
• not Hoare triples but Hoare n-tuples,
• for expressions as well as statements.

JavaCard Program Verification – p.38/61

Hoare 4-tuples

Because of exceptions, instead of a Hoare triple

{P} m {Q} , in our notation:







requires = P

statement = m

ensures = Q







we need a Hoare 4-tuple











requires = P

statement = m

ensures = Q

signals = Q � �� �











including an exceptional postcondition Q � �� �

JavaCard Program Verification – p.39/61

Example Hoare 4-tuple





















requires = j >= 0
statement = [[if (j == 0) return;

if (i+j>MAX) throw new Exception();
i = i+j;]]

ensures = i = \old(i)+j
signals = i+j > MAX





















NB I leave out the invariant 0 ≤ i ≤ MAX and
the modifiabilility constraint!

JavaCard Program Verification – p.40/61

Hoare 5-tuples

Inside method bodies, apart from exceptions, also abrupt
control flow via return: we need 5-tuples















requires = P

statement = s

ensures = Q

signals = Q � � � � �

return = Q � � �















Initially, Q � � � is equal to the postcondition Q.

JavaCard Program Verification – p.41/61

Example Hoare 5-tuple

























requires = j ≥ 0

statement = [[if (j == 0) return;
if (i+j>MAX) throw new Exception();
i = i+j;]]

ensures = i = \old(i)+j
signals = i+j > MAX
return = i = \old(i)+j

























JavaCard Program Verification – p.42/61

Rule for Composition















requires = P

statement = s1

ensures = P

�

signals = Q � � � �

return = Q � � �





























requires = P

�

statement = s2

ensures = Q

signals = Q � �� �

return = Q � � �





























requires = P

statement = s1; s2

ensures = Q

signals = Q � � � �
return = Q � � �















NB this is a lemma in PVS!

JavaCard Program Verification – p.43/61

Example: applying composition rule

What predicate will hold here ? j > 0

























requires = j >= 0
statement = [[if (j == 0) return ;

if (i+j>MAX) throw new Exception();
i = i+j;]]

ensures = i = \old(i)+jj > 0
signals = i+j > MAX
return = i = \old(i)+j

























JavaCard Program Verification – p.44/61

Example: applying composition rule

























requires = j > 0
statement = [[

if (i+j>MAX) throw new Exception();
i = i+j;]]

ensures = i = \old(i)+j
signals = i+j > MAX
return = i = \old(i)+j

























JavaCard Program Verification – p.45/61

Rule for if-then





















requires = P

expression = cond

ensures(b) = IF b THEN P

�

ELSE Q

signals = Q � � � �

return = Q � � �



































requires = P

�

statement = s

ensures = Q

signals = Q � � � �

return = Q � � �





























requires = P

statement = if(cond)s;

ensures = Q

signals = Q � �� �

return = Q � � �















Again, this is a lemma in PVS.

JavaCard Program Verification – p.46/61

Hoare 7-tuples

Apart from exceptions and return’s, also abrupt control
flow via break and continue:

























requires = P

statement = s

ensures = Q

signals = Q � �� � �

return = Q � � �

continue = Q� � � �

break = Q � � �� �

























Initially Q � � �� � and Q� � � � are false; they only get a value
inside repetitions (namely the postcondition of the
repetition and the invariant, resp.)

JavaCard Program Verification – p.47/61

Rule for while















requires = inv

expression = cond

ensures(b) = IF b THEN inv’

ELSE Q

signals = Q � � � �







































requires = inv’

statement = s

ensures = inv

continue = inv

break = Q

signals = Q

return = Q







































requires = inv

statement = while(cond){s}

ensures = Q

signals = Q � �� �

return = Q � � �















It gets a bit more complicated with labelled break’s
and continue’s for nested repetitions . . . JavaCard Program Verification – p.48/61

Atomic statements

To prove properties of atomic statements, e.g.















requires = P

statement = [[obj.i=e]]
ensures = Q

signals = Q � � � �

return = Q � � �















we go back to the definition of Hoare n-tuples, i.e. we prove

∀x. P (x) ⇒ CASES [[obj.i=e]] · x OF{

norm(x

�

) 7→ Q(x

�

)

excp(x

�

, e) 7→ Q � �� �(x

�

, e)

ret(x

�

) 7→ Q � � �(x

�

) }

JavaCard Program Verification – p.49/61

Hoare logic for JML/Java

For more info, see FASE’2001.

Logic used to verify

• AID class from the JavaCard API (see JCW’2000).

• Purse applet (under construction)

Future work:

• better PVS strategies

• how to deal with invariants:
when is it safe to assume an invariant holds ?

• how to handle the heap:
ownership models ?

JavaCard Program Verification – p.50/61

JML specifications for the
JavaCard API

JavaCard Program Verification – p.51/61

JML specs for the JavaCard API

The JavaCard API includes 47 classes (incl. Object,
Throwable, NullPointerException, . . .) of which 25 trivial.

Formal JML specs are needed to verify applets that use the
API, and to verify implementations of the API.

Basis for these specs: the detailed informal specs, and the
reference implementation

So far we developed

• lightweight specs for the whole API (checked using
ESC/Java)

• complete specs for some classes (incl. those needed to
verify the AID class)

Serious case study in the use of JML (> 7000 lines of JML)

JavaCard Program Verification – p.52/61

Lightweight specs

• Try to find a precondition that rules out all exceptions
(or most of them).

• Take postcondition as weak as possible
Usually just true but sometimes we may need
\result != null or \result > 0

JavaCard Program Verification – p.53/61

Example: Util.arrayCompare

public byte arrayCompare(byte[] src, short srcOff,
byte[] dest, short destOff,
short length)

throws NullPointerException,
IndexOutOfBoundsException;

/*@ normal_behavior
@ requires src != null && dest != null &&
@ srcOff >= 0 && destOff >= 0 &&
@ length >= 0 &&
@ srcOff + length <= src.length &&
@ destOff + length <= dest.length;
@ modifiable nothing;
@ ensures true;
@*/

JavaCard Program Verification – p.54/61

Example: Util.arrayCompare

/*@...
@ also
@ behavior
@ requires true;
@ modifiable nothing;
@ ensures true;
@ signals (NullPointerException)
@ src == null || dest == null;
@ signals (ArrayIndexOutOfBoundsException)
@ srcOff < 0 ||
@ srcOff + length > src.length ||
@ ...
@*/

but do we need this ?

JavaCard Program Verification – p.55/61

Example: Util.arrayCopy

public short arrayCopy(byte[] src, short srcOff,
byte[] dest, short destOff,
short length)

throws NullPointerException,
IndexOutOfBoundsException,
TransactionException;

/*@ behavior
@ requires ...
@ modifiable dest[srcOff..srcOff+length-1];
@ ensures true;
@ exsures (TransactionException) true;
@*/

JavaCard Program Verification – p.56/61

Experience writing JML specs

The lightweight JML specs for the JavaCard API

• often straightforward translations of informal specs to
JML

• easy to read, write, and (informally) verify,
(though writing can take several iterations)

• improve existing documentation, because of
• precise declaration of exceptions
• declaration of invariants

• Writing specs you (re)discover – and make explicit –
some of the assumptions and considerations that have
gone into the design of code

(See CARDIS’00 and Computer Networks’01.)

JavaCard Program Verification – p.57/61

Conclusions

JavaCard Program Verification – p.58/61

Conclusions

Verification of JML-annotated Java(Card) programs
using a shallow embedding of Java and JML in PVS,
incl.

• a denotational semantics for sequential Java

• a compiler which translates A.java to A.pvs

• a logic for JML

Used in several case studies

• invariant for Java’s Vector class

• JavaCard’s AID class

• Purse applet (under development)

NB real programs, written in a real programming language

JavaCard Program Verification – p.59/61

Future work

• Covering more of JML, notably model variables

• More case studies

• More complete functional specs for the JavaCard API

• The big challenge: scaling up!
• better PVS strategies ?
• More modular/OO style verification ?

• when can you assume an invariant holds ?
• ownership models, . . . ?

• Looking at security properties (confidentiality, integrity,
. . .) of JavaCard programs as part of larger systems

JavaCard Program Verification – p.60/61

	Outline
	{Large
ed Smart Cards and Java Card}
	smart cards
	Old vs new smart cards
	Java Card
	Pros & cons
	Security issues for smart cards
	Formal methods for JavaCard
	VerifiCard Project
	VerifiCard: Topics
	VerifiCard: other partners
	{Large
ed The LOOP project}
	The LOOP Project
	LOOP tool for Java/JML
	The LOOP Project: results so far
	Rest of this talk
	{Large
ed Semantics of Java}
	Java Semantics
	Example: Java control flow
	Java semantics: statements
	Example: {
ed composition}
	Java semantics : expressions
	Example: {
ed Addition}
	LOOP Java semantics
	LOOP tool for Java
	{Large
ed JML}
	Java Modeling Language JML
	JML example
	JML example
	JML example
	JML example
	JML example
	JML example
	JML example
	Tool support for JML
	{Large
ed a logic for JML}
	a logic for Java/JML
	Hoare 4-tuples
	Example Hoare 4-tuple
	Hoare 5-tuples
	Example Hoare 5-tuple
	Rule for Composition
	Example: applying composition rule
	Example: applying composition rule
	Rule for if-then
	Hoare 7-tuples
	Rule for while
	Atomic statements
	Hoare logic for JML/Java
	{Large
ed JML specifications for the JavaCard API}
	JML specs for the JavaCard API
	Lightweight specs
	Example: Util.arrayCompare
	Example: Util.arrayCompare
	Example: Util.arrayCopy
	Experience writing JML specs
	{Large
ed Conclusions}
	Conclusions
	Future work
	Problems with invariants {scriptsize (See FTfJP'01)}

