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Abstract. This paper presents aut, a modern Automath checker. It is a straight-
forward re-implementation of the Zandleven Automath checker from the seventies.
It was implemented about five years ago, in the programming language C. It accepts
both the AUT-68 and AUT-QE dialects of Automath. This program was written to
restore a damaged version of Jutting’s translation of Landau’s Grundlagen. Some
notable features:

− It is fast. On a 1GHz machine it will check the full Jutting formalization (736K
of non-whitespace Automath source) in 0.6 seconds.

− Its implementation of λ-terms does not use named variables or de Bruijn indices
(the two common approaches) but instead uses a graph representation. In this
representation variables are represented by pointers to a binder.

− The program can compile an Automath text into one big ‘Automath single line’
style λ-term. It outputs such a term using de Bruijn indices. (These λ-terms
cannot be checked by modern systems like Coq or Agda, because the λ-typed
λ-calculi of de Bruijn are different from the Π-typed λ-calculi of modern type
theory.)

The source of aut is freely available on the Web at the address <http://www.cs.

kun.nl/~freek/aut/>.
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1. Introduction

1.1. Automath

This paper describes an implementation of the mathematical language
Automath. The Automath project was the first significant attempt to
use a computer to verify the correctness of mathematical texts that
have been spelled out in full detail. The Automath languages were
designed by N.G. de Bruijn in the late sixties. The Automath project
was very active during the seventies, but it died when its funding
stopped. However, Automath keeps having a strong influence on the
current practice of mathematical proof checking.

The standard reference about Automath is (Nederpelt et al., 1994).
This is a compilation of almost all important Automath publications.
It contains as (A.3) a good introduction to Automath, (van Daalen,
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1973). The main important Automath paper that is missing from this
collection is the paper (de Bruijn, 1991) about telescopes.

The Automath language has several variants. The main dialects
of the language are AUT-68, AUT-QE, AUT-SYNT, AUT-Π, AUT-
SL and AUT-∆Λ. The first two have been implemented. The third
and fourth are improvements of the first two that never have been
implemented, although texts have been written in them. The last two
are variants that are not intended for writing texts, but for compiling
texts into.

1.2. Grundlagen

The largest existing Automath formalization is the translation of a
small mathematics book. The book is Grundlagen der Analysis by
Edmund Landau (Landau, 1965). It treats the definition of the field
of complex numbers. It consists of 161 pages of German text, which
is divided in 301 ‘Sätze’ (theorems). The translation was done by
Bert van Benthem Jutting. It is reported on in his PhD thesis (van
Benthem Jutting, 1979).

The Grundlagen consists of five chapters, which correspond to N+,
Q+, R+, R and C. There are two translations of chapter 4. The first
translation follows the German original and defines R as the union of
two disjoint copies of R+ (for the positive and negative numbers) and
of a singleton set (for the zero). The second translation, which is called
4a, defines R as equivalence classes of pairs of elements of R+, where
two pairs are considered equivalent if they have the same difference.
The structure of the Automath translation of the Grundlagen is:

1 2 3

@@
@@

@@
@@

4

4a 5

This means that the translation of chapter 5 should be checked as a
continuation of the second translation of chapter 4.

The file grundlagen.aut consists of the concatenation of 1, 2, 3, 4a
and 5. It contains 10702 lines of Automath and its size is 736K. A TEX
version of the German original is 189K. This means that the Automath
version of the book is a factor of 3.9 larger than the original. The
Automath file does not contain any whitespace so it makes more sense
to compare the sizes of these files when they are compressed with gzip.
In that case the factor becomes 155K/42K = 3.7. In (Wiedijk, 2000)
this factor is called the de Bruijn factor. (For the other formalizations
that are investigated in (Wiedijk, 2000) the de Bruijn factor also lies
around 4.)
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1.3. A new implementation

In the early nineties, I got a stack of 5 1
4 -inch ‘soft’ floppy disks con-

taining a copy of the Automath files of the Grundlagen through my
friend Hans Mulder, who at that time was sharing an office with Bert
van Benthem Jutting. These files had been copied from computer to
computer during the years, and somehow had gotten corrupted. At
several points in the files some bytes would be missing, apparently
without any discernible pattern.1 Together with the floppies I got a
copy of (van Benthem Jutting, 1976), which is a five volume technical
report containing a full print-out of the non-corrupted files.

The original Automath checkers already were no longer functional
at that time. They had been written in a programming language that
did not exist anymore, for a computer that did not exist anymore. A
simple yacc parser quickly pointed out most of the corruption, after
which I typed in the missing pieces from the print-out. However, to be
sure that I had repaired the files correctly, I needed a new Automath
checker.

1.4. Modern systems

(Wiedijk, 2002) is a comparison of fifteen systems for formalization of
mathematics in the spirit of the Automath project. These systems are
HOL, Mizar, PVS, Coq, Otter, Isabelle, Agda, ACL2, PhoX, IMPS,
Metamath, Theorema, Lego, Nuprl and Ωmega. Of these systems Coq,
Agda and Lego are closest to Automath. However they are sufficiently
different from Automath, that they are not usable for checking the
Automath version of the Grundlagen. See Sections 6.1 and 6.5 below
for a description of the difference between the type system of Automath
and that of the modern systems.

Several of these systems – HOL, PVS, Coq, Isabelle, PhoX, Lego
and Nuprl – are also descendants of the LCF system (Gordon et al.,
1979). They are interactive systems that operate on a ‘proof state’ by
applying ‘tactics’. This is very different from Automath, where one
writes λ-terms that are checked by a non-interactive checker.

The Agda system from Sweden, implemented by Catarina Coquand,
uses a combination of the Automath approach and the LCF approach.
Its tactics do not operate on a proof state, but build the λ-term in the
text. Both its type theory and its ‘user experience’ are the closest that
one can get to Automath in a serious modern system.

1 Specifically there were 14 + 15 + 33 + 35 + 32 + 59 + 36 + 35 + 27 + 53 + 64 +
33 + 35 + 21 + 42 = 534 bytes missing. Because of this, five lines had been joined.
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The Coq system from France (The Coq Development Team, 2002),
originally implemented by Gérard Huet and Thierry Coquand, and now
being developed by a team under direction of Christine Paulin, is the
most popular of the Automath descendants. Various pieces of mathe-
matics have been formalized in Coq. For instance there are: a devel-
opment of real analysis by Micaela Mayero, a development of category
theory by Amokrane Säıbi, a proof of the correctness of Buchberger’s
algorithm by Laurent Théry and Henrik Persson, a constructive proof
of the fundamental theorem of algebra by Herman Geuvers, Randy
Pollack, Freek Wiedijk and Jan Zwanenburg, and a significant part of
the proof of the four color theorem by George Gonthier and Benjamin
Werner.

2. The program

We will now describe the aut program. We will first present a fragment
of Automath to give an impression of the language that the program
checks. Then we will describe the implementation of the program and
list its features.

2.1. Example of a fragment of Automath

Here is the text of ‘Satz 137’ (both the statement and the proof) from
page 75 of the German version of the Grundlagen:

Satz 137: Aus

ξ > η, ζ > υ

folgt

ξ + ζ > η + υ.

Beweis: Nach Satz 134 ist

ξ + ζ > η + ζ

und
η + ζ = ζ + η > υ + η = η + υ,

also
ξ + ζ > η + υ.

The statement of ‘Satz 134’ that this proof refers to is ‘Aus ξ > η folgt
ξ + ζ > η + ζ.’ And here is the Automath translation of ‘Satz 137’,
which is called satz137:2

2 The Automath fragment that is shown here corresponds to lines 3330, 3379,
3405, 3553, 3844–3849 of the file grundlagen.aut.
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* ksi := --- ; cut

ksi * eta := --- ; cut

eta * zeta := --- ; cut

zeta * upsilon := --- ; cut

upsilon * m := --- ; more(ksi,eta)

m * n := --- ; more(zeta,upsilon)

+3137

n * t1 := satz134(ksi,eta,zeta,m)

; more(pl(ksi,zeta),

pl(eta,zeta))

n * t2 := ismore12(pl(zeta,eta),pl(eta,zeta),

pl(upsilon,eta),pl(eta,upsilon),

compl(zeta,eta),compl(upsilon,eta),

satz134(zeta,upsilon,eta,n))

; more(pl(eta,zeta),

pl(eta,upsilon))

-3137

n * satz137 := trmore(pl(ksi,zeta),pl(eta,zeta),

pl(eta,upsilon),t1".3137",t2".3137")

; more(pl(ksi,zeta),

pl(eta,upsilon))

From this example it will be clear that an Automath text or book

consists of lines. Each of these lines has four parts: a context part,
an identifier part, a middle part and a category part. There are three
kinds of lines: block opening lines (these are the lines that have --- as
the middle part), primitive notion lines (these are lines that have PN as
the middle part, which do not occur in this example) and abbreviation

lines.
Note that the identifier of a block opening line does not just denote

a variable, but also a whole context. A block opening line extends such
a context with a new variable. For instance when used in the context
part, the identifier zeta represents the context ksi, eta, zeta ` . . .

The text contains a small paragraph called 3137 (this identifier is a
combination of chapter 3 and ‘Satz’ 137). The line +3137 opens it and
the line -3137 closes it again. The index ".3137" is used to refer to
identifiers inside the paragraph.

This Automath fragment defines the three functions t1(ksi,eta,

zeta,upsilon,m,n), t2(ksi,eta,zeta,upsilon,m,n) and satz137

(ksi,eta,zeta,upsilon,m,n). These correspond to the three steps in
the proof of ‘Satz 137’. We will now briefly explain the meaning of the
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function t1. The meanings of t2 and satz137 are similar. The mean-
ings of the functions occurring in the middle parts of their definitions
can be guessed by looking at the German original of this text.

In Automath, mathematical objects have types, and their types have
type TYPE. Proofs also have types (corresponding to propositions), and
these propositional types have type PROP.

In this example the variable ksi represents a positive real number,
and its type cut (an abbreviation of ‘Dedekind cut’) represents the
type of positive real numbers. The type of the type cut itself is TYPE.
The function t1 represents a proof of the statement ξ+ ζ > η+ ζ. It is
a ‘proof object’ with type more(pl(ksi,zeta),pl(eta,zeta)). This
type represents a proposition and has itself type PROP.

The expression t1(ksi,eta,zeta,upsilon,m,n) is an abbreviation
of the expression satz134(ksi,eta,zeta,m). Both expressions have
the same type: more(pl(ksi,zeta),pl(eta,zeta)). This abbrevia-
tion means that whenever a well-typed expression t1(ξ,η,ζ,υ,m,n)
is encountered, it behaves exactly as if it had been the expression
satz134(ξ,η,ζ,m).

Not all arguments of t1 are ordinary mathematical objects: the last
two arguments are proof objects. In contrast with classical mathematics,
in Automath these can be used as arguments of functions. The argu-
ment m is a proof object of the propositional type more(ksi,eta) and
n is a proof object of type more(zeta,upsilon). Therefore t1 maps
proofs of ξ > η and ζ > υ to a proof of ξ+ ζ > η+ ζ (the second proof
argument is not used in the body of t1, and it is not needed for the
inference, but it is present in the parameter list). In logical terms this
means that t1 corresponds to the sequent:

ξ > η , ζ > υ ` ξ + ζ > η + ζ

Note that Automath is a rather primitive language. An Automath text
just consists of a sequence of abbreviations of λ-terms. There is no
proof automation at all. Still the Grundlagen translation manages to
faithfully follow the German original.

2.2. Implementation

The aut checker is a straight-forward re-implementation of the pro-
gram that is described in (Zandleven, 1973). Algorithmically it does
not contain any new ideas.

aut is written in highly portable ANSI C. It is a one pass batch
program that reads an Automath book from the standard input stream
and prints error messages on the standard error stream. For the lexer
and parser of aut, the standard tools flex and yacc have been used.
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The source code of the aut is 3048 lines long, including the input
files for flex and yacc. Writing the program took about one month
of work. It was written about five years ago in the spare time of the
author, and took most of a Christmas vacation.

2.3. Features

The aut program has the following features:

− aut knows both the AUT-68 and AUT-QE languages. See Section
3 below for the details of the languages that aut can check.

− To type check, aut has to check the convertibility of certain types
(the type of a term versus the type that the context of that term
expects). To establish this convertibility, aut applies β-, δ- and
η-reductions. It follows a similar reduction strategy to the one in
the Zandleven checker. aut can trace reductions with the -t flag.
It can turn off the η-reductions with the -e flag.

− The aut program can print various summaries. The flags that are
related to this are:

flag information printed

-d duration of the check in seconds

-l counts of the various kinds of lines in the book

-m amount of memory used

-r reduction counts for the various kinds of reduction

-v version of the program

The -Z flag is an abbreviation of the combination -dlmrv. With
this flag, for the file grundlagen.aut the summary that will be
printed is:3

8583 beta reductions, 20004 delta reductions, 2 eta reductions

32 + 6878 = 6910 definitions, 4297 + 6910 = 11207 lines

96 blocks = 3069 kilobytes

0 seconds = 0 minutes 0 seconds

aut 4.2, (c) 1997 by satan software

− If an Automath text is not correct, the correctness check will gener-
ally take a very long time. This means that Automath correctness,
although theoretically decidable, is in practice only semi-decidable.

3 The ‘0 seconds’ means that the check stayed within the same second.
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A correct line generally can be checked with only a few reductions4

but to establish the incorrectness of an incorrect line, aut will often
need many reductions, and for all practical purposes the check will
behave as if the program hangs. (The reason why Automath has
this problem and more modern systems do not, is that in Automath
definitions are ‘transparent’ by default. Therefore Automath will
keep expanding definitions for a long time when a line is not well
typed.)

aut can limit the number of reductions per type check with the
-n flag. If the number of reductions for a type check exceeds this
limit, the program will give a message that the line probably is
incorrect and then will continue with the rest of the file.

− The aut program offers the possibility to have a definition be
‘opaque’: in that case it will not be used in δ-reductions (trans-
parent and opaque function definitions are also present in the Coq
system). Opaque abbreviation lines are indicated by a ~ symbol in
front of the middle part of the line. With the -f flags these opaque
definitions are considered to be transparent again.

− The aut program will print the Automath book in a standard
form on the output if it is given the -y flag. This is not a pretty-
printer, as the printed Automath will not contain any white space.
With the -k flag the user can control whether implicit arguments
should be omitted or printed (see Section 5.1 below for a discussion
of implicit arguments).

The original Automath from the seventies could extract an excerpt
for a line in an Automath book. aut will do this if it is given the
-x flag. See Section 5 below for an example of such an excerpt.
aut can also generate an excerpt for all primitive notion lines (the
‘axioms’) in the Automath book.

− aut will ‘compile’ an Automath book to one big λ-term if it is given
the -g flag. See Section 6 below for a description of this feature.

3. The languages

The aut program both knows the AUT-68 and AUT-QE dialects of
the Automath language, but it also can check languages that are ‘in
between’ AUT-68 and AUT-QE.

4 The most complicated line in grundlagen.aut is line 9832, which needs 74
reductions.
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There are various flags that control various features of the language
that is checked as described in Section 3.3 below. With all flags in
the ‘AUT-68 position’ aut will check AUT-68, with all flags in the
‘AUT-QE position’ aut will check AUT-QE, but with some flags in
one position and some in the other, aut will check a language that is
in between these two languages.

3.1. Language flags

There are four flags that affect the type theory of the language that
aut checks.

-a Allow abstractions of degree one.

This flag has to be chosen for AUT-QE.

Without this flag, there are no λ-abstractions allowed of which the
body has degree one, i.e., of which the body is TYPE or PROP. In
grundlagen.aut such an abstraction occurs for instance in lines
221–222, which is the definition of the universal quantifier:

* sigma := --- ; TYPE

sigma * p := --- ; [x,sigma]PROP

p * all := p ; PROP

The term [x,sigma]PROP in the second line is not allowed without
the -a flag. (The Automath notation [x,sigma] both is used for
λ- and Π-abstraction. See Section 6.1 below for a discussion of the
identification of λ and Π in Automath.)

-b Omit abstractions when calculating categories of degree one.

This flag has to be chosen for AUT-68.

Consider the following fragment of the AUT-68 text (D.1) from
page 689 of (Nederpelt et al., 1994):

{1.1} * bool := PN ; TYPE

{1.2} * x := --- ; bool

{1.3} x * TRUE := PN ; TYPE

{1.4} * CONTR := [v,bool]TRUE(v) ; TYPE

The expression TRUE(v) has category TYPE. Without the -b flag
the expression [v,bool]TRUE(v) gets the category [v,bool]TYPE.
With the -b flag the abstraction [v,bool] is omitted and it gets
the correct category TYPE.
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-p Allow the PROP type.

This flag has to be chosen for AUT-QE.

Automath has two basic ‘types of types’ called TYPE and PROP.
The reason for distinguishing between the two is that without this
distinction the ‘propositions as types’ interpretation causes the
double negation law to behave like a Hilbert choice operator.

Without the -p flag only TYPE is allowed. With this flag, also PROP
may be used.

-q Allow type inclusion.

This flag has to be chosen for AUT-QE.

The AUT-QE language has type inclusion. An expression that
has category [x1,A1]. . .[xn,An]TYPE, also is correct for category
[x1,A1]. . .[xk,Ak]TYPE when k < n. With the -q flag aut checks
the text with type inclusion.

3.2. Some other flags

There are some other flags that affect the language that aut checks.
However, these flags are not type related.

-c Put context parameters in front of other definitions.

Consider the following Automath fragment:

* A := PN ; TYPE {1}

* x := --- ; A {2}

x * y := --- ; A {3}

+p {4}

* x := PN ; A {5}

y * f := x ; A {6}

-p {7}

The x on the sixth line, is it the x from the second line or is it the
x from the fifth line? The aut program uses the same name space
for the identifiers in all three kinds of lines. Therefore the x in the
definition of f is taken to be the x from the fifth line, because that
is the last definition of x that is in scope. However to be able to
check the Grundlagen translation correctly, the parameters of the
definition have to be given priority over the order of the definitions
in the file. Therefore with the -c flag, aut considers the x from the
second line to be the meaning of the x in the definition of f.
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-o Disallow explicit paragraph references in parameters.

With this flag, a parameter of a function definition is not allowed
to be explicitly qualified with an index that refers to a paragraph.

-s Disallow paragraph re-openers without a star.

With this flag, aut will insist on the * in the +*p line that re-opens
a paragraph p that has been closed before.

3.3. AUT-68, AUT-QE, AUT-∆Λ

The three Automath languages that are relevant for aut are AUT-68,
AUT-QE and AUT-∆Λ.

aut will accept a language that is in the intersection of AUT-68 and
AUT-QE if it is invoked with no flags at all.

aut will check the input as AUT-68 with the -b flag.
aut will check the input as AUT-QE with the -Q flag. This is

an abbreviation of the combination of flags -acopqs. However the
Grundlagen translation already will be accepted with only the -acpq

flags.
aut cannot check AUT-∆Λ. However, it can compile its input to an

AUT-∆Λ term, as described in Section 6 below. This term will only
make sense as AUT-∆Λ for the language that aut checks with the -a

flag.

3.4. Syntactical variants

In the Automath literature one finds various syntactical conventions.
aut tries to be forgiving in this respect, and accepts different notations
for the same notions. For instance, it accepts as alternatives:

* ↔ @

:= ↔ =

--- ↔ EB

PN ↔ PRIM

; ↔ :

; ↔ E (to be typed as ‘ ^HE’)

[x,A] ↔ [x:A]

TYPE ↔ ’type’

. ↔ -

Furthermore aut allows one to switch the order of the middle and
category parts. Instead of writing:
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x * f := t : A

one is allowed to write:

x * f : A := t

This is the natural way to write this line considering its AUT-∆Λ
translation, because in that translation a binder [f:A] occurs.

Finally, aut considers the context part of a line to be a first class
citizen that stands on itself. At each point in the text there will be a
‘natural’ context. A line:

x * f := t : A

will consist of two ‘halves’:

x * f := t : A

that can occur separately on their own. The first half ‘sets’ the context
to x. The second half defines the function f in the context that is current
at that point (note that this line does not have a * at the start). If there
are several successive abbreviation lines without a context part, they
share the same context. After a block opening line the context will be
set to the variable that is introduced in that line.

A block opening line (now without context part):

x := --- : A

also may be written:

[x:A]

The idea of first class context parts and the alternative syntax for
block opening lines both have been taken from the Grundlagen files.
See Section 5.1 below for an example of an Automath text in this style.

When the context part does not need to be written for all lines,
it becomes ambiguous what the contexts are when one changes para-
graphs. Consider the following Automath fragment (as not all lines in
this fragment have a context part, not all of these lines have a *):

* A := PN ; TYPE

x := --- ; A

+p

y := --- ; A

-p

f := PN ; TYPE

* z := --- ; A

+*p

g := PN ; A

-p
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There are different choices possible for the ‘natural’ contexts of f and
g. aut takes the context after the first -p to be the context before
the +p (instead of the context from ‘inside’ the paragraph p), and the
context after the +*p to be the context just before this +*p (instead
of ‘remembering’ the old context from inside the paragraph p). This
means that it takes the context of f to be x and the context of g

to be z. This is consistent with the way that contexts behave in the
Grundlagen files.

4. Efficiency

We will compare the speed of the aut checker with the checkers from
the seventies. We will then discuss some implementation issues that
affect the efficiency of the aut checker.

4.1. Reduction counts and timings

The grundlagen.aut file contains 32 primitive notion lines, 4297 block
opening lines and 6878 abbreviation lines. Here are some statistics on
the number of reductions and the checking times needed for this file, for
the two Automath checkers from the seventies and for the aut checker:

first checker second checker aut checker

α-reductions 8952 – –

β-reductions 5485 6362 8583

δ-reductions 16912 18939 20004

η-reductions 2 2 2

checking time 2112.8 s 4116.1 s 0.6 s

The second checker from the seventies and the aut checker both do not
use a named representation of bound variables in λ-terms, so they do
not need α-reductions. The difference in reduction counts are caused
by the difference in reduction strategies of those checkers.

Clearly the computers have become much faster since the seventies!
The speed of aut is compatible with the speed of the Metamath system
(Megill, 1997), which is able to check its whole library in seconds. This
system also is a one pass batch checker for a simple proof language and
it is also written in C.
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4.2. Term representation

The two common approaches to implement a type checker for typed
λ-calculus is using named variables or using de Bruijn indices. These
are the natural choices when using a functional programming language
like ML or Haskell. The aut checker takes the less common approach
(in type checking of typed λ-calculi) of using a term graph representa-

tion. This is the natural choice when using a procedural programming
language like C or Java. Here is the K combinator λxy.x in these three
different representations (in this paper we count de Bruijn indices from
zero, cf. item 2 in Section 6.2 below, so the middle representation has
a 1 instead of a 2):

λx

²²
λy

²²
x

λ

²²
λ

²²
1

λ

²²
λ

²²
·

aa

An advantage of this third representation is that one does not need to
be concerned with α-conversions, and also that one does not need to
renumber de Bruijn indices when substituting a term inside another
term.

An interesting property of the term graph representation is that one
will get terms in which variables point to λ-nodes that do not ‘see’
these variables. I.e., variables will not always be in the sub-term that is
‘under’ their λ-node. For instance, suppose we have a term λx.(λy.y)x,
and want to calculate the β-reduct of the sub-term (λy.y)x. Now if we
do not reduce the full term but just calculate the reduct of the sub-
term, then the term graph that will be in memory after the reduction
will be:

λ

²²
@

¡¡¢¢
¢¢
¢¢
¢¢

²²

β
// ·

oo

·

<<

λ

²²
·

ee

(The dotted arrow does not correspond to something in memory: it just
shows where the β-reduction has happened.) The node for the result
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of the reduction, x, will still point to the original λx-node, but it will
not be in the sub-term that is under this λ.

aut treats its term graphs in a purely functional way: it will only
generate new nodes, but it will never modify parts of the graph that
already exist.

4.3. Memory management

The aut checker is a non-interactive one pass program. This means that
its memory management can be extremely simple. It does not need a
garbage collector. It also does not need to free memory block-by-block.

The aut program allocates memory on a stack. It will never free
memory blocks explicitly, so this stack will just grow. When it finishes
parsing a line and starts the type check of that line, it remembers
the current position of the stack pointer. Then when it finishes type
checking the line it resets the stack pointer to this remembered position,
effectively freeing all memory that was used during the type check, and
moves on to the next Automath line. This means that the memory
consumption of the program will grow in a ‘saw tooth’ pattern. It also
means that memory allocation and de-allocation will be fast.

5. Printing excerpts

The aut program can extract an excerpt of a line in an Automath book.
This is the minimal subset of the lines in the book that contains the
given line and in which all references from the lines in the subset point
to lines in the subset. We will present an example of such an excerpt.

5.1. Excerpt of Satz 1

Here is the text of ‘Satz 1’ (both the statement and the proof) from
page 27 of the German version of the Grundlagen:

Satz 1: Aus

x 6= y

folgt

x′ 6= y′.

Beweis: Sonst wäre
x′ = y′

also nach Axiom 4
x = y.
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This ‘Axiom 4’ that this proof refers to is the fourth Peano axiom. And
here is the excerpt of satz15 from the Automath translation:

+l

[a:PROP][b:PROP]

imp:=[x,a]b:PROP

[c:PROP][i:imp(a,b)][j:imp(b,c)]

trimp:=[x,a]<<x>i>j:imp(a,c)

@con:=PRIM:PROP

a@not:=imp(con):PROP

+imp

b@[n:not(b)][i:imp(a,b)]

th3:=trimp(con,i,n):not(a)

-imp

@[sigma:TYPE]

+e

[s:sigma][t:sigma]

is:=PRIM:PROP

+st

+eq

+landau

+n

@nat:=PRIM:TYPE

[x:nat][y:nat]

is:=is(nat,x,y):PROP

nis:=not(is(x,y)):PROP

@suc:=PRIM:[x,nat]nat

ax4:=PRIM:[x,nat][y,nat][u,is(<x>suc,<y>suc)]is(x,y)

[x:nat][y:nat][n:nis(x,y)]

+21

[i:is(<x>suc,<y>suc)]

t1:=<i><y><x>ax4:is(x,y)

-21

satz1:=th3"l-imp"(is(<x>suc,<y>suc),is(x,y),n,[u,is(<x>suc

,<y>suc)]t1"-21"(u)):nis(<x>suc,<y>suc)

-n

-landau

-eq

-st

-e

-l

This is a correct AUT-QE text on its own.

5 The definition of satz1 is line 980 of the file grundlagen.aut.
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When printing an Automath text, by default aut omits as many
implicit arguments as possible. Implicit arguments are an Automath
feature: one is allowed to omit initial arguments to a function if they
happen to coincide with the corresponding parameters in the defini-
tion of the function. For instance consider the term imp(con) in the
definition of the not function. This really is the term imp(a,con) but
because imp is defined in the form imp(a,b), the first argument of
definition and usage are the same and so the a may be omitted. In this
specific example the usage of implicit arguments is only confusing, but
implicit arguments become essential in Automath when one works with
many function definitions that share a large part of their context.

This excerpt shows that Automath has two kinds of function ap-
plication. There is function application on the level of the λ-calculus
(for instance in the term <<x>i>j, which means ‘j(i(x))’), and there is
instantiation of defined functions (for instance in the term imp(a,b)).
The first kind is written with angular brackets, it has only one argu-
ment, and this argument precedes the function (cf. item 4 in Section
6.2). The second kind is written with round brackets, there can be more
than one argument, and these arguments follow the function symbol.
In AUT-∆Λ (as well as in most modern higher order proof assistants)
both kinds of function application have been merged.

6. Automath proof objects

The aut checker can compile an Automath book to an AUT-∆Λ proof
object. We will describe AUT-∆Λ and then present an example of such
an Automath proof object.

6.1. λ-typed versus Π-typed type theory

Automath is fundamentally different from the modern type theories,
which are called pure type systems (Barendregt, 1992). In Automath
the type of a λ-expression is itself again a λ-expression. In a pure type
system the type of a λ-expression is a product type or Π-expression.

The Automath type theories traditionally have been described in an
algorithmic way (by presenting a type checker), unlike the pure type
systems which are generally described by a deduction system of typing
rules. In (de Groote, 1993) the Automath type theories are presented
in a more modern style. The abstraction rule of a pure type system:

Γ, x:A ` B : C Γ ` Πx:A.C : s

Γ ` λx:A.B : Πx:A.C
s ∈ S (abstraction)
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then becomes:

Γ, x:A ` B : C

Γ ` λx:A.B : λx:A.C
(abstraction)

This clearly is simpler. The Automath application rule from (de Groote,
1993) can be written as:

Γ ` F : G Γ ` a : A

Γ ` Fa : Ga
G ≡ λx:A.B (application)

(This rule suggests to add Π-application to pure type systems, with a
reduction rule:

(Πx:A.B)a→ B[x := a]

Such a system is investigated in (Kamareddine and Nederpelt, 1996)
and (Kamareddine et al., 1999). In a sense this system is in between
Automath and the pure type systems.)

We will briefly discuss the lack of popularity in the type theoretic
community of the λ-typed type theories in Section 7.2 below.

6.2. AUT-∆Λ

If one streamlines Automath to its simplest form, one ends up with a
system that on page 32 of (Nederpelt et al., 1994) is called AUT-∆Λ.
This system is defined in (de Bruijn, 1987), where it is just called ∆Λ.
In (de Groote, 1993) the system is called Λ∆.

In the AUT-∆Λ system a text is just one big λ-term. For this reason
an earlier version of this system was called ‘Automath single line’ or
AUT-SL.

An AUT-∆Λ term is built from only four primitives:

1. The type of types. In (de Bruijn, 1987) this is written as τ . In the
proof objects printed by aut, it is printed as * if it corresponds to
TYPE and + if it corresponds to PROP.

2. Bound variables. These are represented by de Bruijn indices. Both
the paper which introduced the de Bruijn indices (de Bruijn, 1972)
and the AUT-∆Λ paper (de Bruijn, 1987) count them from 1,
but the aut checker counts them from 0. Also, the aut checker
represents the number 0 by the empty string. As an example, the
term λA∗aA.A is written [τ ] [1] 2 in (de Bruijn, 1987) and is printed
[*][]1 by aut.

3. λ-abstraction. The term λx:A.B is written [A]B in (de Bruijn,
1987). It is printed [A]B by aut.
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4. Function application. The term fa is written 〈a〉 f in (de Bruijn,
1987). It is printed <a>f by aut, unless it has been derived from
the := in an abbreviation line, in which case it is printed (a)f . This
means that to the Automath input line x := t ; A corresponds a
substring (t)[A] in the AUT-∆Λ term.

To illustrate the smallness of the number four: the basic datatype exp
of the aut checker has seven constructors, the basic datatypes typ

and term of the Isabelle/Pure logical framework together have nine
constructors, and the basic datatype constr of the Coq system has
sixteen constructors.

6.3. Example

The AUT-∆Λ translation of an aut text only makes sense if the text is
written in AUT-QE without type inclusion. This is the language that
aut checks with the -a flag.

Here is an example of a text that already is accepted by aut without
any flags. It is in the intersection of AUT-68 and AUT-QE:

+minimal

* Prop := PN ; TYPE

* p := --- ; Prop

p * q := --- ; Prop

q * imp := PN ; Prop

+intuitionistic

* con := PN ; Prop

p * not := imp(con) ; Prop

-intuitionistic

p * Proof := PN ; TYPE

q * _q := --- ; [_p,Proof(p)]Proof(q)

_q * imp_intro := PN ; Proof(imp)

q * _p := --- ; Proof(p)

_p * _imp := --- ; Proof(imp)

_imp * imp_elim := PN ; Proof(q)

+*intuitionistic

+classical

p * _nn := --- ; Proof(not(not))

_nn * notnot_elim := PN ; Proof

-classical
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p * _con := --- ; Proof(con)

_con * con_elim := notnot_elim"-classical"(imp_intro

(not,con,[_not,Proof(not)]_con))

; Proof

-intuitionistic

-minimal

And here is the proof object that aut prints for this text:

[*][[][1]2][1]([2]<1><>2)[[2]3][[3]*][[4][5][[<1>2]<1>3]<<

1><2>6>3][[5][6][<1>3][<<1><2>7>4]<2>5][[6][<<<>4>4>3]<1>4

]([7][<6>4]<<[<<1>6>5]1><7><<1>6>4><1>2)[[7][<6>4]<1>5]

Written in conventional λ-notation this is the term:

λP ∗ iλp
P qP .P cP .(λnλp

P .P RλpP .∗ Iλp
P qP q̂λp̂

Rp.Rq .R(ipq)

EλpP qP p̂Rp ı̂R(ipq).RqDλpP n̂R(n(np)).Rp.(λCλpP ĉRc.Rp.C)

(λpP ĉRc.Dp(I(np)c(λn̂R(np).ĉ))))(λpP .ipc)

Note that in this term the type P → P → P of the implication i is
λpP qP .P instead of ΠpP qP .P .

6.4. The proof object of the Grundlagen

The proof object that aut prints for an Automath text that uses type
inclusion, is not correct as an AUT-∆Λ term. Although there is no
system ‘AUT-∆Λ-QE’ in the literature, aut can still print the proof
object. Here is the proof object for grundlagen.aut:

([+][+][1]1)[[+][+]+]([+][+][1][<1><2>3]<1>)[[+][+][1][<1>

<2>3]2]([+][])[[+]<><>2]([+][+][+][<1><2>5][<1><2>6][4]<<>

2>1)[[+][+][+][<1><2>5][<1><2>6]<2><4>7][+]([+]<1><>5)[[+]

+]([+]<<>1>1)[[+]+]([+][][<1>3]<1>)[[+][]<1>2][[+][<>2]1](

1.8M of proof term taking 32722 lines omitted

><<3>92>1976>2000]<<1><2>1991><<<><1><2><3><4>6><<1><2>199

6><<3><4>1996>1986><<3><4>1990><1><<<1><2>1996>1994><<<3><

4>1996>1994><3><2965>6711)[[2960][2961][2962][2963][<<<24>

<<>92>1904><<1>92>1976><<<24><<2>92>1904><<3>92>1976>2000]

<1><3>2964]

This λ-term contains 2917 τ -types, 96528 λ-abstractions, 406023 func-
tion applications, and 499635 bound variables.

6.5. Checking AUT-QE using Coq?

The λ-terms of AUT-QE cannot be checked by a modern system like
Coq, Agda or Lego. Consider the following correct AUT-QE text:
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* nat := PN ; TYPE

* 0 := PN ; nat

* seq := [n:nat]nat ; [n:nat]TYPE

* nat0 := <0>seq ; TYPE

* id := [n:nat]n ; seq

In this example, the type seq represents N → N, the infinite sequences
of natural numbers. The type nat0 is the type of the initial element of
such a sequence (and it is convertible with nat). The function id is the
sequence corresponding to the identity function: 0, 1, 2, . . .

In Automath the λ- and Π-binders have been merged, but in a pure
type system they have to be distinguished. It is not possible to choose
between a λ- or Π-binder for the binder in [n:nat]nat in such a way
that the resulting text will be correct in a modern system. It has to be
a λ to make the typing [n:nat]nat : [n:nat]TYPE legal, and also to
make the expression <0>seq correct, but it has to be a Π to make the
typing [n:nat]n : seq legal.

In the AUT-QE language types are not unique because of the feature
of type inclusion. The type of seq, [n:nat]TYPE, is included in the
type TYPE. Therefore seq can both be used in a context that needs
type [n:nat]TYPE, as well as in a context that needs type TYPE. In a
singly sorted (or ‘functional’) proper type system types are unique (up
to convertibility), and there is nothing corresponding to type inclusion.

The problem with the example is not related to type inclusion. It is
also present in AUT-∆Λ, a system that does not have type inclusion.
The proof object of the example is:

[*][]([1]2)[[1]*](<1>)[*]([3])[1]

or in conventional λ-notation:

λN∗zN .(λSλn
N .∗.(λM∗.(λiS .i)(λnN .n))(Sz))(λnN .N)

This is a correct AUT-∆Λ term. But again, there is no way to change
some of the λs in this term to Πs in such a way that it becomes correct
in a pure type system. The type of S can not be a sort, so S should
not occur as a type, but it does, as the type of i.

In Examples 5.2.4 of (Barendregt, 1992) a singly sorted pure type
system called λAUT-QE is defined, taken from (van Benthem Jutting,
1990). It has the following specification:

S ∗,2,∆

A ∗ : 2

R (∗, ∗, ∗), (∗,2,2), (2, ∗,∆), (2,2,∆), (∗,∆,∆), (2,∆,∆)
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This system encodes the distinction between the two kinds of function
application of AUT-QE, but it does not solve the problem of the dis-
ambiguation of λs into λs and Πs, and it does not solve the problem of
how to deal with Automath’s type inclusion in a pure type system.

It might be possible to generate Coq, Agda or Lego versions of an
AUT-QE text (like the Grundlagen translation), but it is not a mere
matter of syntax. For this reason, the aut program does not have a
feature to print its λ-terms in the syntax of one of those systems.

If an approach is developed to generate modern style λ-terms from
an AUT-QE text, an implementation of such an approach can start
from the proof object that aut prints.

7. Conclusion

7.1. Possible future extensions

Here are some possible extensions of the aut checker. They are the fea-
tures that are currently missing. We have no specific plans to implement
these in the near future.

− Telescopes and segments.

Automath can be extended with telescopes, which are variables
for lists of λ-binders. This extension of the Automath language is
described in (de Bruijn, 1991). A generalization of telescopes is
called segments (Balsters, 1986).

The aut checker currently does not implement telescopes or seg-
ments. It is not immediately clear how to implement them in the
term graph representation that is used by aut.

− AUT-SYNT, AUT-Π.

There are dialects of the Automath language that have never been
implemented. In Appendix 9 of (van Benthem Jutting, 1979), re-
produced as (B.5) in (Nederpelt et al., 1994), the AUT-SYNT
language is described. In this language parts of terms are synthe-
sized automatically by the system. In Chapter VIII of (van Daalen,
1980), reproduced as (B.6) in (Nederpelt et al., 1994), the AUT-Π
language is described. This is an extension of AUT-SYNT that has
telescopes and Π- and Σ-types.

The aut system is currently not able to check these languages.
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7.2. Lessons for modern systems

We do not try to advocate an Automath revival. Automath is very
elegant, but it is too basic for the formalization of large scale mathe-
matics. However, our experience with aut pointed out some things that
might be noted by modern systems:

− Proof checkers can be fast.

aut can check the translation of a full book in under a second. The
modern systems cannot even come close to that. The reason for
this is that the modern systems not only check the proof, but also
do a lot of work for the user constructing the proof.

Obviously they should: the user’s time is much more valuable than
the computer’s time. However, it is desirable to be able to recheck
proofs with the speed of aut after they have been processed a first
time. Most modern systems construct all proofs from scratch every
time they recheck a text.

We advocate investigating the notion of proof caching. After a
system has constructed a proof it should be kept, and during a
next check it then already will be available and can be checked
fast.

− AUT-∆Λ is an interesting logical framework.

The Grundlagen translation uses classical logic, but N.G. de Bruijn
claims that Automath is a restaurant. Just as in a restaurant one
can order different kinds of food, one can use Automath to define
different logics. In modern terminology this means that he proposes
to use Automath as a logical framework (Pfenning, 1996).

Of the modern systems for formalizing mathematics, the Isabelle
system (Paulson, 1994; Nipkow et al., 2002) is the primary one
that is based on a logical framework. It consists of the logical
framework called Isabelle/Pure, and on top of this a higher order
logic is defined called Isabelle/HOL. Also first order logic with
ZFC set theory is available as Isabelle/ZF.

AUT-∆Λ is the ultimate logical framework. It has not had the
attention that it deserves. The two main reasons for this are:

• The type theory of AUT-∆Λ is λ-typed, while the current
type theories are Π-typed. Because of this, AUT-∆Λ has no
naive set theoretic model and therefore is considered to be
‘just syntax’ and to have ‘no meaning’.
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• The theory of LF as a logical framework is well developed,
but the corresponding theory of AUT-∆Λ is not. In (Harper
et al., 1991) it has been proved that the proofs that one can
do with first order logic encoded in LF correspond exactly
to the proofs of first order logic itself. A similar result for
AUT-∆Λ has never been proved.

We claim that it is worthwhile to investigate models of AUT-∆Λ
and to develop the theory for AUT-∆Λ corresponding to (Harper
et al., 1991).
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