Formal Reasoning 2014
 Test Block 3: Languages \& Automata
 (22/10/14)

Before you read on, write your name, student number and study on the answer sheet!

The mark for this test is the number of points divided by ten. The first ten points are free. Good luck!

1. Give a regular expression for the language

$$
L_{1}:=\left\{w \in\{a, b\}^{*} \mid w \text { contains } a b \text { and } w \text { contains } b a\right\}
$$

2. We define the language $L_{2}:=\mathcal{L}\left((a a \cup a b)^{*}\right)$.
(a) Give a state transition diagram for a (deterministic) finite automaton that accepts the language L_{2}.
(15 points)
(b) Write the same automaton also as a quintuple $\left\langle\Sigma, Q, q_{0}, F, \delta\right\rangle$.
3. Give a context-free grammar for the language
(15 points)

$$
L_{3}:=\left\{u v c v^{R} u^{R} \mid u \in\{a, c\}^{*}, v \in\{b, c\}^{*}\right\}
$$

(Note that for instance $a c c b b c b b c c a \in L_{3}$, where $u=a c$ and $v=c b b$.)
4. Let G_{4} be this context-free grammar:

$$
\begin{aligned}
& S \rightarrow a B|a a a| b S \\
& B \rightarrow a b S|b B| \lambda
\end{aligned}
$$

(a) Is G_{4} right-linear? Explain your answer.
(b) Somebody claims that

$$
P(w):=w \text { does not contain aaaa }
$$

is an invariant that shows that aaaa $\notin \mathcal{L}\left(G_{4}\right)$. Is this claim correct? Explain your answer. (Note: if it is not a proper invariant, you don't have to provide a proper one.)
(10 points)
5. Let L be a regular language.
(a) Does it hold that if $L \subseteq L^{\prime}$, then L^{\prime} also has to be a regular language? Explain your answer.
(b) Does it hold that if $L^{\prime} \subseteq L$, then L^{\prime} also has to be a regular language? Explain your answer.
6. Does the equality below holds for any language L ?

$$
L^{*}=\{\lambda\} \cup L L^{*}
$$

Explain your answer.

