Formal Reasoning 2015 Solutions Exam (27/01/16)

1. Consider the following formula in the propositional logic:

$$
\neg a \vee b \leftrightarrow a \rightarrow b
$$

(a) Write this formula according to the official grammar in the course (3 points) notes.
According to the official grammar this formula should be written as:

$$
((\neg a \vee b) \leftrightarrow(a \rightarrow b))
$$

(b) Give the truth table of this formula.

a	b	$\neg a$	$\neg a \vee b$	$a \rightarrow b$	$(\neg a \vee b) \leftrightarrow(a \rightarrow b)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	0	1	1	1

2. Consider the following fragment of the song Nederwiet by the Dutch band (6 points) Doe Maar: ${ }^{1}$

Because the leaves, they give you a headache. [...]
So these leaves, you throw them away, away, away!
And you only smoke the covers of the seeds
and... or. . . and/or the flowers.
Give a formula in the propositional logic that resembles the meaning of these lyrics as well as possible. Use the dictionary:

$$
\begin{array}{ll}
S L & \text { you smoke leaves } \\
S C & \text { you smoke covers of seeds } \\
S F & \text { you smoke flowers } \\
H & \text { you get a headache } \\
& \\
(S L \rightarrow H) \wedge \neg S L \wedge(S C \vee S F)
\end{array}
$$

3. Consider the following statement:

$$
f \equiv a \rightarrow b
$$

(a) What is the meaning of this statement?

The statement says that f is logically equivalent with the formula $a \rightarrow b$. Or in other words: f has the same truth table as $a \rightarrow b$.
(b) Give a formula f in the propositional logic that complies to this statement, but which does not contain the connective ' \rightarrow '. Explain your answer.
Take $f:=\neg a \vee b$. In exercise 1 b we have already shown that the formulas $\neg a \vee b$ and $a \rightarrow b$ have the same truth table.
4. Give a formalization of the fragment of the lyrics by Doe Maar from exercise 2 in the predicate logic, and use the dictionary:

$$
\begin{array}{ll}
B & \text { domain of the members of the band Doe Maar } \\
P & \text { domain of the parts of a cannabis plant } \\
j & \text { you }=\text { the person about whom this song is } \\
L(x) & x \text { is a leave } \\
C(x) & x \text { is a cover of a seed } \\
F(x) & x \text { is a flower } \\
S(x, y) & x \text { smokes } y \\
H(x) & x \text { gets a headache }
\end{array}
$$

(For example, the formula $F(j)$ has the meaning 'you are a flower'.)

$$
\begin{aligned}
& \forall b \in P[L(b) \wedge S(j, b) \rightarrow H(j)] \\
\wedge \quad & \forall x \in P[S(j, x) \rightarrow \neg L(x) \wedge(C(x) \vee F(x))]
\end{aligned}
$$

5. Give a formula in the predicate logic that expresses that the band Doe Maar has more than two members. Use the dictionary from the previous exercise.

$$
\exists e \in B \exists h \in B[\neg(e=h) \wedge \exists x \in B[\neg(e=x) \wedge \neg(h=x)]]
$$

The persons e and h are two different members of the band and in addition person x is also a member, who is not person e and also not person h.
6. Give an interpretation I_{6} in a model M_{6} for which the following formula holds:

$$
\forall x \in D \exists y \in D\left(R(x, y) \wedge \forall y^{\prime} \in D\left(R\left(x, y^{\prime}\right) \rightarrow y^{\prime}=y\right)\right)
$$

Explain your answer.

[^0]The formula says that for each element x in D there is exactly one element y in D such that $R(x, y)$ holds.
Take as model M_{6}

$$
\begin{array}{ll}
\hline \text { Domain(s) } & \text { Natural numbers } \\
\text { Relation(s) } & \text { equality }(=) \\
\hline
\end{array}
$$

and as interpretation I_{6}

$$
\begin{array}{|ll|}
\hline D & \mathbb{N} \\
R(x, y) & y=x+37 \\
\hline
\end{array}
$$

The given formula holds under this interpretation I_{6} in model M_{6}, because for each arbitrary natural number $x R(x, y)$ holds exactly if $y=x+37$. And for each natural number x it holds that $x+37$ is also a natural number.
7. Give a language L_{7} with alphabet $\{a, b\}$ for which $L_{7}^{*} \neq L_{7}$ but $L_{7} L_{7}=L_{7}$. Explain your answer.

Take $L_{7}=\emptyset$. Concatenation of \emptyset with an arbitrary language gives \emptyset as result. So $L_{7} L_{7}=\emptyset \emptyset=\emptyset=L_{7}$. But $\lambda \in L_{7}^{*}$ and $\lambda \notin L_{7}$, so indeed $L_{7}^{*} \neq L_{7}$.
8. Give a finite automaton that recognizes the language

$$
L_{8}:=\mathcal{L}\left((a \cup b)^{*} a a(a \cup b)^{*}\right)
$$

Language L_{8} consists of all words containing the string $a a$. So only after reading two consecutive a 's, we may end up in a final state.

9. Consider the following context-free grammar G_{9} :

$$
S \rightarrow S a \mid \lambda
$$

(a) Is this grammar right-linear? Explain your answer.

A grammar is right-linear if all nonterminals on the right side of the arrow are on the rightmost position. This is not the case for $S \rightarrow S a$, so this grammar is not right-linear.
(b) Is the language $\mathcal{L}\left(G_{9}\right)$ regular? Explain your answer.
$\mathcal{L}\left(G_{9}\right)$ is the language where each word consists of zero or more a 's. So $\mathcal{L}\left(G_{9}\right)=\mathcal{L}\left(a^{*}\right)$ and hence the language is regular.

$$
P(w):=w \text { does not contain } b
$$

is an invariant of G_{9} that can be used to prove that

$$
a b b a \notin \mathcal{L}\left(G_{9}\right)
$$

Is this a correct claim? Explain your answer.
Yes, this is a correct claim.

- S does not contain b, so $P(S)$ holds.
- Now assume that v and w are words such that $P(v)$ holds and $v \rightarrow w$. We will show that it then follows that $P(w)$ also holds. If $v \rightarrow w$ then there must be an S in v that is being rewritten. So we know that $v=v_{1} S v_{2}$ where $v_{1}, v_{2} \in\{a, S\}^{*}$. And if $P(v)$ holds, we know that v does not contain any b. But this automatically implies that $P\left(v_{1}\right)$ and $P\left(v_{2}\right)$ also hold. Now we have two possibilities for $v \rightarrow w$:
$-v_{1} S v_{2} \rightarrow v_{1} S a v_{2}$. Because $P\left(v_{1}\right)$ and $P\left(v_{2}\right)$ hold and the string $S a$ also does not contain any b it follows that $P\left(v_{1} S a v_{2}\right)$ holds and hence $P(w)$ also.
$-v_{1} S v_{2} \rightarrow v_{1} v_{2}$. Because $P\left(v_{1}\right)$ and $P\left(v_{2}\right)$ hold, it follows that $P\left(v_{1} v_{2}\right)$ holds and hence $P(w)$ also.
So P is indeed an invariant of the grammar G_{9}.
- In addition $P(a b b a)$ clearly does not hold, so $a b b a$ cannot have been produced with the grammar G_{9}. And hence $a b b a \notin \mathcal{L}\left(G_{9}\right)$.

10. (a) Give a connected planar bipartite graph G_{10} with eight vertices, such that each vertex has degree three. Explain your answer. (Make sure that you do not forget any properties!)
Take for instance G_{10} :

This graph complies to all requirements:

- It has eight vertices, namely $\{0,1,2,3,4,5,6,7\}$.
- It is connected, because you can get from each point i to each point j via the path $i \rightarrow i+1 \rightarrow i+2 \rightarrow \cdots \rightarrow j-1 \rightarrow j$ if we compute modulo 8.
- The graph is planar because there are no crossing edges.
- The graph is bipartite because there exists a vertex coloring that uses only two colors: red for all even numbered vertices and blue for all odd numbered vertices.
- Each vertex has degree three. Here we present a table of the vertices each vertex is connected to by an edge. And apparently every vertex is connected to three vertices.

vertex	connected to
0	$1,3,7$
1	$0,2,6$
2	$1,3,5$
3	$0,2,4$
4	$3,5,7$
5	$2,4,6$
6	$1,5,7$
7	$0,4,6$

Note that this is actually the hypercube graph Q_{3}.
(b) Give a not connected planar graph G_{10}^{\prime} with eight vertices, where (2 points) every vertex has degree three. Explain your answer. (Make sure that you do not forget any properties!)
Take for instance G_{10}^{\prime} :

This graph complies to all requirements:

- It has eight vertices, namely $\{0,1,2,3,4,5,6,7\}$.
- It is not connected, because there is no path from vertex 2 to vertex 6 .
- The graph is planar because there are no crossing edges.
- Each vertex has degree three. Here we present a table of the vertices each vertex is connected to by an edge. And apparently every vertex is connected to three vertices.

vertex	connected to
0	$1,6,7$
1	$0,6,7$
2	$3,4,5$
3	$2,4,5$
4	$2,3,5$
5	$2,3,4$
6	$0,1,7$
7	$0,1,6$

(c) Indicate for each graph whether it has a Hamilton cycle or not.

Graph G_{10} has a Hamilton cycle. The cycle $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow$ $5 \rightarrow 6 \rightarrow 7 \rightarrow 0$ visits each vertex exactly once (except, of course, the begin and end point).
Graph G_{10}^{\prime} doesn't have a Hamilton cycle. Because there is no path from vertex 2 to vertex 6 , there is certainly no cycle that visits each vertex exactly once, because such a cycle would visit both the vertex 2 and vertex 6 and hence there would have been a path from vertex 2 to vertex 6 in that case.
11. Consider the following recursive definition of the sequence of numbers a_{n} :

$$
\begin{array}{rlr}
a_{0} & =3 & \\
a_{n+1} & =3 a_{n}-3 & \text { voor } n \geq 0
\end{array}
$$

(a) Compute a_{5} using this recursive definition.

$$
\begin{aligned}
& a_{0}=3 \\
& a_{1}=3 a_{0}-3=3 \cdot 3-3=6 \\
& a_{2}=3 a_{1}-3=3 \cdot 6-3=15 \\
& a_{3}=3 a_{2}-3=3 \cdot 15-3=42 \\
& a_{4}=3 a_{3}-3=3 \cdot 42-3=123 \\
& a_{5}=3 a_{4}-3=3 \cdot 123-3=366
\end{aligned}
$$

(b) Prove that
(3 points)

$$
a_{n}=\frac{3}{2}\left(3^{n}+1\right)
$$

for all $n \geq 0$.

$$
a_{n}=\frac{3}{2}\left(3^{n}+1\right) \text { for all } n \geq 0 .
$$

Proof by induction on n.
We first define our predicate P as:

$$
\begin{equation*}
P(n):=a_{n}=\frac{3}{2}\left(3^{n}+1\right) \tag{2}
\end{equation*}
$$

Base Case. We show that $P(0)$ holds, i.e. we show that $a_{0}=\frac{3}{2}\left(3^{0}+1\right)$
This indeed holds, because

$$
a_{0}=3=\frac{3}{2} \cdot 2=\frac{3}{2}(1+1)=\frac{3}{2}\left(3^{0}+1\right)
$$

Induction Step. Let k be any natural number such that $k \geq 1$.
Assume that we already know that $P(k)$ holds, i.e. we assume that
$a_{k}=\frac{3}{2}\left(3^{k}+1\right)$
(Induction Hypothesis IH)
We now show that $P(k+1)$ also holds, i.e. we show that
This indeed holds, because

$$
\begin{aligned}
a_{k+1} & =3 a_{k}-3 \\
& \stackrel{\mathrm{IH}}{=} 3 \cdot \frac{3}{2}\left(3^{k}+1\right)-3 \\
& =\frac{3}{2}\left(3^{k+1}+3\right)-3 \\
& =\frac{3}{2} \cdot 3^{k+1}+\frac{3}{2} \cdot 3-3 \\
& =\frac{3}{2} \cdot 3^{k+1}+\frac{3}{2} \cdot 3-\frac{2}{2} \cdot 3 \\
& =\frac{3}{2} \cdot 3^{k+1}+\frac{9}{2}-\frac{6}{2} \\
& =\frac{3}{2} \cdot 3^{k+1}+\frac{3}{2} \\
& =\frac{3}{2}\left(3^{k+1}+1\right)
\end{aligned}
$$

Hence it follows by induction that $P(n)$ holds for all $n \geq 0$.
12. (a) Indicate in Pascal's triangle where you can find the binomial coeffi- (3 points) cients $\binom{6}{k}$.

1
$1 \quad 1$

				1		2		1				
			1		3		3		1			
	1	1		4		6		4		1		
1	10	$\boxed{6}$		$\boxed{15}$		$\boxed{20}$		$\boxed{15}$		6		$\boxed{1}$

(b) Compute

$$
\binom{6}{0}+\binom{6}{1} 3+\binom{6}{2} 3^{2}+\binom{6}{3} 3^{3}+\binom{6}{4} 3^{4}+\binom{6}{5} 3^{5}+\binom{6}{6} 3^{6}
$$

According to Newton's Binomium we have:

$$
\begin{aligned}
& \binom{6}{0}+\binom{6}{1} 3+\binom{6}{2} 3^{2}+\binom{6}{3} 3^{3}+\binom{6}{4} 3^{4}+\binom{6}{5} 3^{5}+\binom{6}{6} 3^{6} \\
& \quad=(1+3)^{6} \\
& \quad=4^{6} \\
& =4096
\end{aligned}
$$

13. Give a formula in the epistemic logic that formalizes the following sentence
(6 points) as well as possible:

Either I know that Klaas is the mole, or I know that Klaas is not the mole, but I don't know which one of these two it is.

Use as dictionary:

$$
K \quad \text { Klaas is the mole }
$$

$$
((\square K \vee \square \neg K) \wedge \neg(\square K \wedge \square \neg K)) \wedge(\neg \square \square K \wedge \neg \square \square \neg K)
$$

Explanation:

- $\square K \vee \square \neg K$ means 'I know that Klaas is the mole or I know that Klaas is not the mole, or both'.
- $\neg(\square K \wedge \square \neg K)$ is needed for the 'either... or...' and excludes the 'both'.
- $\neg \square \square K \wedge \neg \square \square \neg K$ indicates that I don't know whether the first ($\square K$) holds, but also that I don't know whether the second $(\square \neg K)$ holds.

14. Give a Kripke model \mathcal{M}_{14} in which the formula of the modal logic
(6 points) $\square(a \vee b) \rightarrow \square a \vee \square b$
is not true. Explain your answer.
Take for instance:
\mathcal{M}_{14} :

Explanation:

\Vdash	a	b	$a \vee b$	$\square(a \vee b)$	$\square a$	$\square b$	$\square a \vee \square b$	$\square(a \vee b) \rightarrow \square a \vee \square b$
x_{1}	1	0	1	1	0	0	0	0
x_{2}	0	1	1	1	1	1	1	1

From the table it follows that $x_{1} \Vdash \square \square(a \vee b) \rightarrow \square a \vee \square b$. But from this it follows that $\mathcal{M}_{14} \not \forall \square(a \vee b) \rightarrow \square a \vee \square b$.
15. Give an LTL formula that describes the situation in which always if a is (6 points) true and b is one moment later true, c will be true another moment later.

$$
\mathcal{G}(a \wedge \mathcal{X} b \rightarrow \mathcal{X} \mathcal{X} c)
$$

[^0]: ${ }^{1}$ This text is part of this exam because of the language construction 'and/or' that is being used and not because of the other lyrics of the song. The lecturers of this course strongly reject any kind of drug use.

