Formal Reasoning 2015

Uitwerkingen Test 1: Propositional logic (09/09/15)

In the first three exercises we use the following interpretation of the atomic propositions:

R	it rains
S	the sun shines
$R B$	there is a rainbow

1. Give two propositions that respectively resemble the meaning of the following two sentences:
(a) There is a rainbow, because the sun shines and it rains.

$$
R B \wedge S \wedge R
$$

(b) There is only a rainbow if the sun shines and it rains.

$$
R B \rightarrow S \wedge R
$$

If you think that for these sentences multiple interpretations are 'defendable', then please provide those different options in your answer, and indicate which one of these options is your preferred solution. ($10+10$ points)
2. Give a correct English sentence that resembles the meaning of the following proposition as well as possible:
(15 points)

$$
(\neg R \rightarrow R) \rightarrow R
$$

If it follows from the fact that it doesn't rain that it rains, then it rains.
3. Is the proposition from exercise 2 logically true? Explain your answer.

Yes, it is logically true. Let's have a look at the corresponding truth table:

R	$\neg R$	$\neg R \rightarrow R$	$(\neg R \rightarrow R) \rightarrow R$
0	1	0	1
1	0	1	1

The column for this proposition has only ones in it, so this proposition is logically true.
4. Give the full truth table of the proposition:

$$
(a \rightarrow b) \leftrightarrow(\neg a \wedge \neg b) \vee(\neg a \wedge b) \vee(a \wedge b)
$$

To prevent the table from being to wide, we use some abbreviations in its header row:

$$
\begin{array}{cll}
f_{1} & := & (\neg a \wedge \neg b) \\
f_{2} & := & (\neg a \wedge b) \\
f_{3} & := & (a \wedge b)
\end{array}
$$

Now this is the truth table:

a	b	$a \rightarrow b$	$\neg a$	$\neg b$	f_{1}	f_{2}	f_{3}	$f_{2} \vee f_{3}$	$f_{1} \vee f_{2} \vee f_{3}$	$(a \rightarrow b) \leftrightarrow f_{1} \vee f_{2} \vee f_{3}$
0	0	1	1	1	1	0	0	0	1	1
0	1	1	1	0	0	1	0	1	1	1
1	0	0	0	1	0	0	0	0	0	1
1	1	1	0	0	0	0	1	1	1	1

5. Write the proposition
(10 points)

$$
(\neg(a \wedge(a) \wedge a))
$$

according to the official grammar in the course notes.

$$
\neg(a \wedge(a \wedge a))
$$

6. Give a model v in which the following proposition is true: (10 points)

$$
(a \wedge(b \rightarrow c)) \leftrightarrow \neg a
$$

The unique model in which this proposition is true is:

$$
\begin{gathered}
v(a)=1 \\
v(b)=1 \\
v(c)=0
\end{gathered}
$$

This model corresponds to the only row in the truth table

a	b	c	$b \rightarrow c$	$a \wedge(b \rightarrow c)$	$\neg a$	$(a \wedge(b \rightarrow c)) \leftrightarrow \neg a$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	1	1	0	1	0
1	0	0	1	1	0	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	1	1	0	0

that has a 1 in the final column.
7. Let f and g be arbitrary propositions. If it holds that $\nvdash f$, or $\vDash g$, or both, does it imply that $\vDash(\neg f \vee g)$ always holds? Explain your answer.
(10 points)
No, this is not true. Take for instance as a counter example $f=a$ and $g=b$. Now if we look at the corresponding truth table

a	b	$\neg a$	$\neg a \vee b$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

we see that $\not \forall f$ holds, because a does not have only ones in its column. Automatically it follows that ' $\nexists f$, or $\vDash g$, or both' also holds. However, $\vDash \neg f \vee g$ does not hold, because we see that the column for $\neg a \vee b$ does not exclusively contain ones. Hence this implication is not true.

