Formal Reasoning 2015 Solutions Additional Test
 (13/01/16)

1. The operator | named Sheffer stroke is defined in such a way that $f \mid g \equiv$ $\neg(f \wedge g)$. Give a formula f_{1} in the propositional logic that has the Sheffer stroke as its only connective (so in particular the use of \neg, \wedge, et cetera is prohibited) such that $f_{1} \equiv a \vee b$.
This Sheffer stroke is also known as NAND. In particular it is functionally complete, which means that each of the normal operators in the propositional logic can be expressed with formulas using only this Sheffer stroke.
For instance like this: ${ }^{1}$

$$
\begin{aligned}
\neg f & \equiv \neg(f \wedge f) \\
& \equiv f \mid f \\
f \wedge g & \equiv \neg \neg(f \wedge g) \\
& \equiv \neg(f \mid g) \\
& \equiv(f \mid g) \mid(f \mid g) \\
f \vee g & \equiv \neg \neg f \vee \neg \neg g \\
& \equiv \neg(\neg f \wedge \neg g) \\
& \equiv \neg f \mid \neg g \\
& \equiv(f \mid f) \mid(g \mid g) \\
f \rightarrow g & \equiv \neg f \vee g \\
& \equiv \neg f \vee \neg \neg g \\
& \equiv \neg(f \wedge \neg g) \\
& \equiv f \mid \neg g \\
& \equiv f \mid(g \mid g) \\
f \leftrightarrow g & \equiv(f \rightarrow g) \wedge(g \rightarrow f) \\
& \equiv(f \mid(g \mid g)) \wedge(g \mid(f \mid f)) \\
& \equiv((f \mid(g \mid g)) \mid(g \mid(f \mid f))) \mid((f \mid(g \mid g)) \mid(g \mid(f \mid f)))
\end{aligned}
$$

From this list it follows that we can take

$$
f_{1}=(a \mid a) \mid(b \mid b)
$$

2. Give a model in which the following formula of the predicate logic is true.

$$
\begin{aligned}
& \left(\forall x \in D \exists y \in D \forall y^{\prime} \in D\left[R\left(x, y^{\prime}\right) \leftrightarrow y^{\prime}=y\right]\right) \wedge \\
& \left(\forall x_{1}, x_{2}, y \in D\left[R\left(x_{1}, y\right) \wedge R\left(x_{2}, y\right) \rightarrow x_{1}=x_{2}\right]\right) \wedge \\
& (\exists z \in D \forall x \in D \neg R(x, z))
\end{aligned}
$$

The formula has three simultaneous requirements:

[^0]- For each $x \in D$ there is exactly one $y \in D$ such that $R(x, y)$.
- These y 's are unique.
- There exists a $z \in D$ for which no $x \in D$ exists such that $R(x, z)$.

Take as model M_{2}

Domain(s)	natural numbers
Relation(s)	equality $(=)$

and as interpretation I_{2}

D	\mathbb{N}
$R(x, y)$	$x+1=y$

This complies with the first requirement, because given x we can take $y=x+1$, which is also a natural number. It also complies with the second requirement, because if $x_{1}+1=y$ and $x_{2}+1=y$, it follows that $x_{1}+1=x_{2}+1$ and hence in particular $x_{1}=x_{2}$. And it also complies with the third requirement, because take $z=0 \in \mathbb{N}$. It is clear that there is no $x \in \mathbb{N}$ such that $x+1=0$.
3. Give a finite automaton with a minimal number of states that recognizes the language $\mathcal{L}\left(\left(a^{*} b\right)^{*}\right)$.
The language consists of the words λ and the words that end with a b. An automaton for this language is:

That the number of states is minimal, follows from the observation that there have to be both final and non-final states. So there must be at least two states. And this automaton has exactly two states.
4.

Above we have 2016 dots, because $(63 \cdot 64) / 2=2016$. Determine using recursion how many of these dots are red.
The triangle is recursively constructed from smaller triangles. Let r_{n} be the number of red dots in a triangle of degree n, where this degree indicates the number of levels of triangles that is used to construct the whole triangle. We start with a triangle of degree $1 .{ }^{2}$ This is a triangle with six red dots as can be seen in the lower left. So $r_{1}=6$. A triangle of degree $n+1$ is constructed by combining three triangles of degree n using exactly three red dots and fill the remaining space with black dots. So our recursive definition for the number of red dots becomes:

$$
r_{n+1}=3 \cdot r_{n}+3
$$

The presented triangle is of degree 5 . Using the recursive definition we can easily compute r_{5} :

$$
\begin{aligned}
& r_{1}=6 \\
& r_{2}=3 \cdot r_{1}+3=3 \cdot 6+3=21 \\
& r_{3}=3 \cdot r_{2}+3=3 \cdot 21+3=66 \\
& r_{4}=3 \cdot r_{3}+3=3 \cdot 66+3=201 \\
& r_{5}=3 \cdot r_{4}+3=3 \cdot 201+3=606
\end{aligned}
$$

5. Give an LTL formula f_{5} such that the only Kripke model of f_{5} with $V\left(x_{i}\right) \subseteq\{a, b\}$ is the model where

$$
V\left(x_{i}\right)= \begin{cases}\{a\} & \text { if } i \text { is even } \\ \{b\} & \text { if } i \text { is odd }\end{cases}
$$

So we have to find a formula which has as its only model the model such that $x_{0} \Vdash(a \wedge \neg b), x_{1} \Vdash(b \wedge \neg a), x_{2} \Vdash(a \wedge \neg b), x_{3} \Vdash(b \wedge \neg a), \ldots$ So in $x_{0} a$ must be true, but b must be false. And after this, the truth values of a and b need to alternate. This can be achieved using the formula

$$
f_{5}=a \wedge \mathcal{G}(a \leftrightarrow \neg b) \wedge \mathcal{G}(a \rightarrow \mathcal{X}(\neg a \wedge b)) \wedge \mathcal{G}(b \rightarrow \mathcal{X}(\neg b \wedge a))
$$

The first part of this formula ensures that $V\left(x_{0}\right)=\{a\}$. The second part of this formula ensures that in each world we have that either a is true or b is true, but never both at the same time. The third part of the formula ensures that if $V\left(x_{i}\right)=\{a\}$, then automatically $V\left(x_{i+1}\right)=\{b\}$. And the fourth part of the formula ensures that if $V\left(x_{i}\right)=\{b\}$, then automatically $V\left(x_{i+1}\right)=\{a\}$.

[^1]
[^0]: ${ }^{1}$ These are not the shortest ways to express these operators using only the Sheffer stroke.

[^1]: ${ }^{2}$ It is also possible to start with a triangle of degree 0 , which consists of exactly one red dot, but because this doesn't really resemble a triangle, we have chosen to start with degree 1.

