Formal Reasoning 2016
 Test Block 3: Languages \& Automata
 (19/10/16)

Before you read on, write your name, student number and study on the answer sheet!

The mark for this test is the number of points divided by ten. The first ten points are free. For each (sub)question you can score ten points. Good luck!

1. We define the language

$$
L_{1}:=\left\{w \in\{a, b\}^{*} \mid \text { no two } a \text { 's in } w \text { are next to each other }\right\}
$$

(a) Give a regular expression for this language.
(b) Give a finite automaton that recognizes this language.
(c) Give a context-free grammar for this language which uses only one nonterminal, namely S.
Note: Grammars that produce language L_{1} using more than one nonterminal will also score some points.
2. We define the grammar G_{2} by the rules:

$$
\begin{aligned}
& S \rightarrow a A \mid a B \\
& A \rightarrow a S \\
& B \rightarrow B B|b| \lambda
\end{aligned}
$$

(a) Write G_{2} as a triple $\langle\Sigma, V, R\rangle$.
(b) We want to show that $b \notin \mathcal{L}\left(G_{2}\right)$, and consider for this the property:

$$
P(w):=w \text { does not start with } b
$$

Show that this is not an invariant of G_{2}.
(c) Is G_{2} right-linear? Explain your answer.
(d) Is $\mathcal{L}\left(G_{2}\right)$ regular? Explain your answer.
(e) Give a minimal finite automaton M_{2} such that $L\left(M_{2}\right)=\mathcal{L}\left(G_{2}\right)$.

Note: You don't have to prove that your M_{2} has indeed a minimal number of states.
3. Does there exist a language L with alphabet $\Sigma=\{a, b\}$ such that

$$
L^{*} \cap \bar{L}^{*}=\Sigma^{*}
$$

holds? Explain your answer.

