Formal Reasoning 2016

Solutions Test Block 3: Languages \& Automata
(19/10/16)

1. We define the language
$L_{1}:=\left\{w \in\{a, b\}^{*} \mid\right.$ no two a 's in w are next to each other $\}$
(a) Give a regular expression for this language.

Take for instance $r=(b \cup(a b))^{*}(a \cup \lambda)$.
(b) Give a finite automaton that recognizes this language.

(c) Give a context-free grammar for this language which uses only one nonterminal, namely S.
Note: Grammars that produce language L_{1} using more than one nonterminal will also score some points.
This is a right-linear grammar that corresponds with the automaton above.

$$
\begin{aligned}
& S \rightarrow a B|b S| \lambda \\
& B \rightarrow b S \mid \lambda
\end{aligned}
$$

If we substitute the rules for B in the first line we get:

$$
S \rightarrow a b S|a| b S \mid \lambda
$$

Another solution is

$$
S \rightarrow S b S|a| \lambda
$$

2. We define the grammar G_{2} by the rules:

$$
\begin{aligned}
& S \rightarrow a A \mid a B \\
& A \rightarrow a S \\
& B \rightarrow B B|b| \lambda
\end{aligned}
$$

(a) Write G_{2} as a triple $\langle\Sigma, V, R\rangle$.
$\langle\{a, b\},\{S, A, B\},\{S \rightarrow a A, S \rightarrow a B, A \rightarrow a S, B \rightarrow B B, B \rightarrow b, B \rightarrow \lambda\}\rangle$
(b) We want to show that $b \notin \mathcal{L}\left(G_{2}\right)$, and consider for this the property:

$$
P(w):=w \text { does not start with } b
$$

Show that this is not an invariant of G_{2}.
Let $v=B$ and $v^{\prime}=b$. Then $P(v)$ holds, since v starts with a B. It is also clear that $v \rightarrow v^{\prime}$. But $P\left(v^{\prime}\right)$ doesn't hold, since v^{\prime} does start with a b. So $P(w)$ is not an invariant.
(c) Is G_{2} right-linear? Explain your answer.

No, it is not. In the rule $B \rightarrow B B$ there are two nonterminals in the right hand side. Obviously only one of them can be at the right end.
(d) Is $\mathcal{L}\left(G_{2}\right)$ regular? Explain your answer.

Yes, we have that $\mathcal{L}\left(G_{2}\right)=\mathcal{L}\left(a(a a)^{*} b^{*}\right)$. Note that this language contains all words that start with an odd number of a 's, followed by any number of b 's.
We can also derive that the language is regular from the fact that a right linear grammar G_{2}^{\prime} exists:

$$
\begin{aligned}
& S \rightarrow a A \mid a B \\
& A \rightarrow a S \\
& B \rightarrow b B \mid \lambda
\end{aligned}
$$

And we could have stated that the language is regular because we give a finite automaton in question 2 e .
(e) Give a minimal finite automaton M_{2} such that $L\left(M_{2}\right)=\mathcal{L}\left(G_{2}\right)$.

Note: You don't have to prove that your M_{2} has indeed a minimal number of states.

It cannot be done with less than four states:

- Obviously we need starting state q_{0}, which is not a final state because λ is not accepted.
- Since words cannot start with b we need the $\operatorname{sink} q_{3}$.
- Since a is accepted we need a final state q_{1} reachable from q_{0} with an a.
- Since $a a$ is not accepted, we need to go from q_{1} to a non-final state with an a.
- This state cannot be sink q_{3} because $a a a$ needs to be accepted.
- It can be q_{0} as illustrated in the automaton.
- It can be a new q_{4}, but then we have q_{0}, q_{1}, q_{3} and q_{4}, which means that we can't do it with three states.
- So the only way to do it with three states is by going back to q_{0}.
- Because $a b$ is accepted we need to go from q_{1} to a final state with a b.
- If this final state would be q_{1}, then the automaton would also accept $a b a a$, which is not allowed.
- So we need a new final state q_{2} to make sure that once we encountered b 's, we cannot go back accepting a 's anymore.
- But then we have already four states. So it cannot be done with less than four.

3. Does there exist a language L with alphabet $\Sigma=\{a, b\}$ such that

$$
L^{*} \cap \bar{L}^{*}=\Sigma^{*}
$$

holds? Explain your answer.
No, such a language L does not exist. If $L^{*} \cap \bar{L}^{*}=\Sigma^{*}$, then it must be that $\Sigma^{*} \subseteq L^{*}$ and $\Sigma^{*} \subseteq \bar{L}^{*}$. But $a \in \Sigma^{*}=\{a, b\}^{*}$. Hence $a \in L^{*}$ and $a \in \bar{L}^{*}$. But if $a \in L^{*}$ then there must be $k \in \mathbb{N}$ such that $a=w_{1} w_{2} \cdots w_{k}$, where $w_{i} \in L$ for all $i \in\{1, \ldots, k\}$. However, because the length of a equals 1 , it follows that there must be some $i \in\{1, \ldots, k\}$ such that $a=w_{i}$ and either $k=1$ (and hence $i=1$) or $w_{j}=\lambda$ for all $j \in\{1, \ldots, k\} \backslash\{i\}$. But this means that $a \in L$. Using the same kind of reasoning we derive that $a \in \bar{L}$. So $a \in L \cap \bar{L}$, but $L \cap \bar{L}=\emptyset$ by definition. So we have a contradiction and our assumption that such a language L exists cannot be true.

