Formal Reasoning 2016 Solutions Test Block 6: Additional Test (11/01/17)

1. Give a formula f_1 of propositional logic such that:

$$\neg a \land \neg c \vDash f_1$$
$$\neg b \land c \vDash f_1$$
$$f_1 \vDash \neg a \lor c$$
$$f_1 \vDash \neg b \lor \neg c$$

Explain your answer using a truth table.

The first two requirements indicate in which situations the formula f_1 has to be true and the last two requirements indicate in which situations the formula f_1 has to be false. More precisely, if the columns for $\neg a \land \neg c$ or $\neg b \land c$ have 1, then the column for f_1 has to be 1 also and if the columns for $\neg a \lor c$ or $\neg b \lor \neg c$ have 0, then the column for f_1 has to be 0 also. In other situations, we can safely choose f_1 to be 0, but the table below shows that there are no such situations.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg a \wedge \neg c$	$\neg b \wedge c$	$\neg a \lor c$	$\neg b \vee \neg c$	f_1
0	0	0	1	1	1	1	0	1	1	1
0	0	1	1	1	0	0	1	1	1	1
0	1	0	1	0	1	1	0	1	1	1
0	1	1	1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	0	0	1	0
1	0	1	0	1	0	0	1	1	1	1
1	1	0	0	0	1	0	0	0	1	0
1	1	1	0	0	0	0	0	1	0	0

Colors are used to mark the relevant and irrelevant entries.

Now we have to find a formula that gives exactly this column for f_1 . By using the so called *disjunctive normal form* we get the formula

$$f_1 = (\neg a \land \neg b \land \neg c) \lor (\neg a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (a \land \neg b \land c)$$

However, we can reduce this formula by drawing the Karnaugh diagram¹ for this formula:

	$\neg c$	с	
$\neg a$	1	1	$\neg b$
ⁱ u	1	0	h
a	0	0	0
u	0	1	$\neg b$

From this diagram it follows that we can reduce it by combining the ones that have the same color to the equivalent formula $f'_1 = (\neg a \land \neg c) \lor (\neg b \land c)$.

2. Use the dictionary:

 $^{^{1}}$ The theory behind Karnaugh diagrams is not part of this course, but in general these diagrams can be used to find minimal but equivalent formulas.

V	vertices of a graph
E(x,y)	there is an edge between x and y

Give a formula f_2 of predicate logic with equality that formalizes the English sentence:

The graph is non-empty and each vertex in the graph has degree two.

Let f_2 be the formula:

$$\exists v \in V \left[v = v \right]$$

 $\forall v \in V \left[\exists x \in V \left[E(v, x) \land \exists y \in V \left[\neg (x = y) \land E(v, y) \land \forall z \in V \left[E(v, z) \to (z = x) \lor (z = y) \right] \right] \right]$

The first part expresses that there exists at least one vertex in V which indicates that the graph is non-empty. The second part expresses that each vertex has exactly two neighbours which indicates that the degree of each vertex is two.

3. Explain why a finite tree cannot be a model in which the formula f_2 from the previous exercise is true.

A model in which the formula f_2 holds is nothing but a non-empty graph where each vertex has degree two. Such a graph cannot be a finite tree, which is a connected graph without cycles.

Assume that our graph $\langle V, E \rangle$ is a finite tree with n vertices.

- If n = 0 then V is empty, which is not allowed. So this cannot be the case.
- If n = 1 then $V = \{v_1\}$ and $E = \emptyset$. Hence the degree of v_1 is zero, but according to f_2 it should be two. So this cannot be the case.
- If n = 2 then $V = \{v_1, v_2\}$ and $E = \{(v_1, v_2)\}$. Hence the degree of v_1 is one, but according to f_2 it should be two. So this cannot be the case.
- Now assume that $n \geq 3$ and $V = \{v_1, v_2, \ldots, v_n\}$. Because v_1 has degree two, we know that it has at least two neighbours. We may assume that v_2 is one of these neighbours.
- But v_2 also has degree two, so besides v_1 it should have another neighbour v_3 .
- But v_3 also has degree two, so besides v_2 it should have another neighbour. This neighbour cannot be v_1 , because that would lead to a cycle $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1$. So it must be a 'fresh' neighbour v_4 .
- But v₄ als has degree two, so besides v₃ it should have another neighbour. This neighbour cannot be v₁ because that would lead to a cycle v₁ → v₂ → v₃ → v₄ → v₁. In addition, it cannot be v₂ because that would imply that the degree of v₂ is at least three and not two. So it must be a 'fresh' neighbour v₅.
- If we continue this construction of our finite tree, we see that for every vertex v_i for $i \ge 3$ which has v_{i-1} as its neighbour, it must also have either v_1 as its neighbour or a 'fresh' neighbour v_{n+1} . However,

the first option leads to a cycle which is not allowed in a tree and the second option leads to an infinite number of vertices which cannot happen within a finite tree.

So the assumption that there is a finite tree $\langle V, E \rangle$ that satisfies formula f_2 always leads to contradictions. So this assumption cannot hold.

- 4. In this exercise we consider modal logic with Kripke semantics. We want to know whether two properties hold for all Kripke models \mathcal{M} and all formulas f.
 - (a) Does $\mathcal{M} \vDash f$ imply $\mathcal{M} \vDash \Box f$? Explain your answer.

Yes, it does. Let $\mathcal{M} = \langle W, R, V \rangle$. If we assume $\mathcal{M} \vDash f$, it follows by definition that for each world $x \in W$ we have that $x \Vdash f$ holds. If we want to show that $\mathcal{M} \vDash \Box f$ holds, we have to show that for each world $x \in W$ we have that $x \Vdash \Box f$. Now let $x \in W$. Then there are two possibilities:

- Either $R(x) = \emptyset$ and then $x \Vdash \Box f$ holds vacuously,
- or $R(x) \neq \emptyset$, but then for any $y \in R(x)$ we have that $y \in W$ and hence $y \Vdash f$, so $x \Vdash \Box f$ also holds.
- So for each $x \in W$ it follows that $x \Vdash \Box f$, and hence $\mathcal{M} \vDash f$.
- (b) Does $\mathcal{M} \vDash f \to \Box f$ hold? Explain your answer. No, it does not. Take for instance f = a and $\mathcal{M} = \mathcal{M}_4$ where

$$\mathcal{M}_4:$$
 $x_1 a \longrightarrow x_2$

Then $x_1 \Vdash a$ because $a \in V(x_1)$. But because $x_2 \in R(x_1)$ and $a \notin V(x_2)$, we have that $x_1 \nvDash \Box a$. So $x_1 \nvDash a \to \Box a$. But then $\mathcal{M}_4 \nvDash a \to \Box a$. So $\mathcal{M} \vDash f \to \Box f$ does not hold for all models \mathcal{M} and all formulas f.

5. We define the language L_5 as

 $L_5 := \{ w \in \{a, b\}^* \mid w \text{ contains the substring } aba \}$

Give a regular expression r_5 such that

$$\mathcal{L}(r_5) = L_5$$

Explain your answer.

We need to give a regular expression that defines the complement of L_5 . In other words, we need to define a language that describes all words over $\{a, b\}^*$ that do *not* contain the substring *aba*.

In particular this means that the amount of consecutive b's is always unlimited. The same holds for the amount of consecutive a's. We only have to worry about the transitions from a to b, because we need to prevent that such a transition can be followed by another a. In order to arrange this we simply require that such a transition is immediately followed by another b. So each a is either followed by another a or by at least two b's. This can be achieved by the regular expression:

 $r_5 = b^* (a(\lambda \cup bbb^*)^*)^* b^*$