Formal Reasoning 2016 Solutions Test Block 6: Additional Test (11/01/17)

1. Give a formula f_{1} of propositional logic such that:

$$
\left.\begin{array}{rl}
\neg a \wedge \neg c & \vDash f_{1} \\
\neg b & \wedge c
\end{array}\right) f_{1} .
$$

Explain your answer using a truth table.
The first two requirements indicate in which situations the formula f_{1} has to be true and the last two requirements indicate in which situations the formula f_{1} has to be false. More precisely, if the columns for $\neg a \wedge \neg c$ or $\neg b \wedge c$ have 1 , then the column for f_{1} has to be 1 also and if the columns for $\neg a \vee c$ or $\neg b \vee \neg c$ have 0 , then the column for f_{1} has to be 0 also. In other situations, we can safely choose f_{1} to be 0 , but the table below shows that there are no such situations.

a	b	c	$\neg a$	$\neg b$	$\neg c$	$\neg a \wedge \neg \neg$	$\neg b \wedge c$	$\neg a \vee c$	$\neg b \vee \neg c$	f_{1}
0	0	0	1	1	1	1	0	1	1	1
0	0	1	1	1	0	0	1	1	1	1
0	1	0	1	0	1	1	0	1	1	1
0	1	1	1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	0	0	1	0
1	0	1	0	1	0	0	1	1	1	1
1	1	0	0	0	1	0	0	0	1	0
1	1	1	0	0	0	0	0	1	0	0

Colors are used to mark the relevant and irrelevant entries.
Now we have to find a formula that gives exactly this column for f_{1}. By using the so called disjunctive normal form we get the formula

$$
f_{1}=(\neg a \wedge \neg b \wedge \neg c) \vee(\neg a \wedge \neg b \wedge c) \vee(\neg a \wedge b \wedge \neg c) \vee(a \wedge \neg b \wedge c)
$$

However, we can reduce this formula by drawing the Karnaugh diagram ${ }^{1}$ for this formula:

$\neg a$	$\neg c$	c	$\neg b$
	1	1	
	1	0	b
a	0	0	
	0	1	$\neg b$

From this diagram it follows that we can reduce it by combining the ones that have the same color to the equivalent formula $f_{1}^{\prime}=(\neg a \wedge \neg c) \vee(\neg b \wedge c)$.
2. Use the dictionary:

[^0]\[

$$
\begin{array}{l|l}
\hline V & \text { vertices of a graph } \\
E(x, y) & \text { there is an edge between } x \text { and } y
\end{array}
$$
\]

Give a formula f_{2} of predicate logic with equality that formalizes the English sentence:

The graph is non-empty and each vertex in the graph has degree two.

Let f_{2} be the formula:

$$
\begin{gathered}
\exists v \in V[v=v] \\
\forall v \in V[\exists x \in V[E(v, x) \wedge \exists y \in V[\neg(x=y) \wedge E(v, y) \wedge \forall z \in V[E(v, z) \rightarrow(z=x) \vee(z=y)]]]]
\end{gathered}
$$

The first part expresses that there exists at least one vertex in V which indicates that the graph is non-empty. The second part expresses that each vertex has exactly two neighbours which indicates that the degree of each vertex is two.
3. Explain why a finite tree cannot be a model in which the formula f_{2} from the previous exercise is true.

A model in which the formula f_{2} holds is nothing but a non-empty graph where each vertex has degree two. Such a graph cannot be a finite tree, which is a connected graph without cycles.

Assume that our graph $\langle V, E\rangle$ is a finite tree with n vertices.

- If $n=0$ then V is empty, which is not allowed. So this cannot be the case.
- If $n=1$ then $V=\left\{v_{1}\right\}$ and $E=\emptyset$. Hence the degree of v_{1} is zero, but acccording to f_{2} it should be two. So this cannot be the case.
- If $n=2$ then $V=\left\{v_{1}, v_{2}\right\}$ and $E=\left\{\left(v_{1}, v_{2}\right)\right\}$. Hence the degree of v_{1} is one, but acccording to f_{2} it should be two. So this cannot be the case.
- Now assume that $n \geq 3$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Because v_{1} has degree two, we know that it has at least two neighbours. We may assume that v_{2} is one of these neighbours.
- But v_{2} also has degree two, so besides v_{1} it should have another neighbour v_{3}.
- But v_{3} also has degree two, so besides v_{2} it should have another neighbour. This neighbour cannot be v_{1}, because that would lead to a cycle $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{1}$. So it must be a 'fresh' neighbour v_{4}.
- But v_{4} als has degree two, so besides v_{3} it should have another neighbour. This neighbour cannot be v_{1} because that would lead to a cycle $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow v_{1}$. In addition, it cannot be v_{2} because that would imply that the degree of v_{2} is at least three and not two. So it must be a 'fresh' neighbour v_{5}.
- If we continue this construction of our finite tree, we see that for every vertex v_{i} for $i \geq 3$ which has v_{i-1} as its neighbour, it must also have either v_{1} as its neighbour or a 'fresh' neighbour v_{n+1}. However,
the first option leads to a cycle which is not allowed in a tree and the second option leads to an infinite number of vertices which cannot happen within a finite tree.

So the assumption that there is a finite tree $\langle V, E\rangle$ that satisfies formula f_{2} always leads to contradictions. So this assumption cannot hold.
4. In this exercise we consider modal logic with Kripke semantics. We want to know whether two properties hold for all Kripke models \mathcal{M} and all formulas f.
(a) Does $\mathcal{M} \vDash f$ imply $\mathcal{M} \vDash \square f$? Explain your answer.

Yes, it does. Let $\mathcal{M}=\langle W, R, V\rangle$. If we assume $\mathcal{M} \vDash f$, it follows by definition that for each world $x \in W$ we have that $x \Vdash f$ holds. If we want to show that $\mathcal{M} \vDash \square f$ holds, we have to show that for each world $x \in W$ we have that $x \Vdash \square f$. Now let $x \in W$. Then there are two possibilities:

- Either $R(x)=\emptyset$ and then $x \Vdash \square f$ holds vacuously,
- or $R(x) \neq \emptyset$, but then for any $y \in R(x)$ we have that $y \in W$ and hence $y \Vdash f$, so $x \Vdash \square f$ also holds.
So for each $x \in W$ it follows that $x \Vdash \square f$, and hence $\mathcal{M} \vDash f$.
(b) Does $\mathcal{M} \vDash f \rightarrow \square f$ hold? Explain your answer.

No, it does not. Take for instance $f=a$ and $\mathcal{M}=\mathcal{M}_{4}$ where

$$
\mathcal{M}_{4}:
$$

Then $x_{1} \Vdash a$ because $a \in V\left(x_{1}\right)$. But because $x_{2} \in R\left(x_{1}\right)$ and $a \notin V\left(x_{2}\right)$, we have that $x_{1} \Vdash \square a$. So $x_{1} \Vdash a \rightarrow \square a$. But then $\mathcal{M}_{4} \not \vDash a \rightarrow \square a$. So $\mathcal{M} \vDash f \rightarrow \square f$ does not hold for all models \mathcal{M} and all formulas f.
5. We define the language L_{5} as

$$
L_{5}:=\left\{w \in\{a, b\}^{*} \mid w \text { contains the substring } a b a\right\}
$$

Give a regular expression r_{5} such that

$$
\mathcal{L}\left(r_{5}\right)=\overline{L_{5}}
$$

Explain your answer.
We need to give a regular expression that defines the complement of L_{5}. In other words, we need to define a language that describes all words over $\{a, b\}^{*}$ that do not contain the substring $a b a$.
In particular this means that the amount of consecutive b 's is always unlimited. The same holds for the amount of consecutive a 's. We only have to worry about the transitions from a to b, because we need to prevent that such a transition can be followed by another a. In order to arrange this we simply require that such a transition is immediately followed by another b. So each a is either followed by another a or by at least two b 's. This can be achieved by the regular expression:

$$
r_{5}=b^{*}\left(a\left(\lambda \cup b b b^{*}\right)^{*}\right)^{*} b^{*}
$$

[^0]: ${ }^{1}$ The theory behind Karnaugh diagrams is not part of this course, but in general these diagrams can be used to find minimal but equivalent formulas.

