Formal Reasoning 2017 Solutions Test Block 2: Languages & Automata (25/10/17)

1. We define a context-free grammar G_1 :

$$S \to bA$$
$$A \to aA \mid bS \mid$$

λ

We call the language produced by this grammar L_1 :

$$L_1 := \mathcal{L}(G_1)$$

(a) Give a deterministic finite automaton M_1 with $L(M_1) = L_1$.

(b) Give a regular expression r_1 with $\mathcal{L}(r_1) = L_1$.

$$b(a \cup bb)^*$$
 or $(ba^*b)^*ba^*$ or $b(a^*(bb)^*)^*$ or $b(a^*(bb)^*a^*)^*$

- (c) Is the context-free grammar G_1 right-linear? Explain your answer. Yes, it is. All non-terminals on the right side of the arrows are always completely at the right.
- (d) We want to show that $bab \notin \mathcal{L}(G_1)$. For this someone proposes the following property as an invariant:

 $P(w):= \begin{array}{ll} w \text{ starts with a symbol from the set } \{b,S\} \ and \\ w \ \text{contains an odd number of symbols from } \{b,S\} \end{array}$

Does this work? Explain your answer.

Yes, it works. It is obvious that P(bab) does not hold, hence if P is an invariant, this implies that $bab \notin \mathcal{L}(G_1)$.

So now we have to prove that P is indeed an invariant. First we introduce a short notation:

 $|w|_{bS}$:= the amount of symbols from $\{b, S\}$ in word w

- P(S) holds because S starts with an S and $|S|_{bS} = 1$ which is odd.
- Let v be a word such that P(v) holds. Hence v starts with a b or an S and $|v|_{bS}$ is odd. Assume that $v \to v'$. We consider the following cases, where $u \in \{b, S\}$ and where x and y are arbitrary words over the terminals and non-terminals:

- $-v = uxSy \rightarrow v' = uxbAy$. Obviously v' starts with a b or an S, because the first symbol didn't change. And $|v'|_{bS} = |v|_{bS}$ since we have one S less, but one b more. Hence $|v'|_{bS}$ is odd, so P(v') holds.
- $v = uxAy \rightarrow v' = uxaAy$. Obviously v' starts with a b or an S. And $|v'|_{bS} = |v|_{bS}$ since the amount of b's and S's didn't change. Hence $|v'|_{bS}$ is odd, so P(v') holds.
- $v = uxAy \rightarrow v' = uxbSy$. Obviously v' starts with a b or an S. And $|v'|_{bS} = |v|_{bS} + 2$ since we get one b and one S more. Hence $|v'|_{bS}$ is odd, so P(v') holds.
- $v = uxAy \rightarrow v' = uxy$. Obviously v' starts with a b or an S. And $|v'|_{bS} = |v|_{bS}$ since the amount of b's and S's didn't change. Hence $|v'|_{bS}$ is odd, so P(v') holds.
- $v = Sx \rightarrow v' = bAx$. Obviously v' starts with a b or an S. And $|v'|_{bS} = |v|_{bS}$ since we have one S less, but one b more. Hence $|v'|_{bS}$ is odd, so P(v') holds.

So in all cases we have seen that P(v') holds. Hence P is indeed an invariant.

(e) Does the following equality hold?

$$L_1 = \{ w \in \{a, b\}^* \mid P(w) \text{ holds} \}$$

Explain your answer.

No, it does not hold. The word bbab is a counterexample. It is easy to see that P(bbab) holds, but $bbab \notin L_1$. In the grammar it is easy to see that every second b, must be immediately followed by another b. This is caused by the production $A \to bS \to bbA$.

2. We define a non-deterministic finite automaton M_2 :

$$q_0 \rightarrow q_1 \rightarrow q_2$$

We call the language recognized by this automaton L_2 :

 $L_2 := L(M_2)$

(a) Write M_2 as a quintuple $\langle \Sigma, Q, q_0, F, \delta \rangle$. Define δ by giving equations of the form $\delta(q_i, x) = \dots$ for all possible inputs q_i and x.

```
M_2 = \langle \{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_2\}, \delta \rangle, where \delta is given as follows:
```

$\delta(q_0, a)$	=	$\{q_0\}$	$\delta(q_0, b)$	=	Ø	$\delta(q_0,\lambda)$	=	$\{q_1\}$
$\delta(q_1, a)$	=	Ø	$\delta(q_1, b)$	=	$\{q_1\}$	$\delta(q_1,\lambda)$	=	$\{q_2\}$
$\delta(q_2, a)$	=	$\{q_2\}$	$\delta(q_2, b)$	=	Ø	$\delta(q_2,\lambda)$	=	Ø

(b) Give a regular expression r_2 with $\mathcal{L}(r_2) = L_2$.

$$r_2 := a^* b^* a^*$$

(c) Give a deterministic finite automaton M'_2 with $L(M'_2) = L_2$.

3. If for a language L is given that $\lambda \in L$ and LL = L, does it always hold that $L^* = L$?

If so, explain why. If not, give an example of a language L_3 for which this does not hold, and explain why it is a counterexample.

Yes, it always holds.

Since $L \subseteq L^*$ for any language L, we only have to prove that $L^* \subseteq L$.

- Let $w \in L^*$.
- Then there exists $k \in \mathbf{N}$ such that $w = w_1 w_2 \cdots w_{k-1} w_k$ where $w_i \in L$ for all i.
 - If k = 0 then $w = \lambda$ and it was given that $\lambda \in L$, so in this case $w \in L$.
 - If k = 1 then $w = w_1$, where $w_1 \in L$, so also in this case $w \in L$.
 - If $k \ge 2$ we know that $w_{k-1}w_k \in L$, because LL = L.
 - But this means that we can write $w = w_1 w_2 \cdots w'_{k-1}$ where $w_i \in L$ and $w'_{k-1} \in L$.
 - So we have shown that if we can split w in k parts that are all in L, then we can also split w in k-1 parts that are all in L.
 - Now if k 1 = 1 we can repeat the argument we mentioned above for this case. (Note that if $k \ge 2$ it cannot happen that k - 1 = 0.)
 - And if $k-1 \ge 2$ we can repeat this trick and get that $w'_{k-2} = w_{k-2}w'_{k-1} = w_{k-2}w_{k-1}w_k \in L$, so we can split w also in k-2 parts that are all in L.
 - Because k is finite, we know that after applying this trick k-1 times we have that $w = w'_1 \in L$, so also in this case $w \in L$.
- So in all cases we get that $w \in L$.

Hence $L^* \in L$, and together with $L \subseteq L^*$ we get that $L^* = L$.