
Formal Reasoning 2017
Solutions Test Block 2: Languages & Automata

(25/10/17)

1. We define a context-free grammar G1:

S → bA

A→ aA | bS | λ

We call the language produced by this grammar L1:

L1 := L(G1)

(a) Give a deterministic finite automaton M1 with L(M1) = L1.

// q0

a

��

b **
q1

b

jj a
kk

q2

a,b

UU

(b) Give a regular expression r1 with L(r1) = L1.

b(a ∪ bb)∗ or (ba∗b)∗ba∗ or b(a∗(bb)∗)∗ or b(a∗(bb)∗a∗)∗

(c) Is the context-free grammar G1 right-linear? Explain your answer.

Yes, it is. All non-terminals on the right side of the arrows are always
completely at the right.

(d) We want to show that bab 6∈ L(G1). For this someone proposes the
following property as an invariant:

P (w) :=
w starts with a symbol from the set {b, S} and
w contains an odd number of symbols from {b, S}

Does this work? Explain your answer.

Yes, it works. It is obvious that P (bab) does not hold, hence if P is
an invariant, this implies that bab 6∈ L(G1).

So now we have to prove that P is indeed an invariant. First we
introduce a short notation:

|w|bS := the amount of symbols from {b, S} in word w

• P (S) holds because S starts with an S and |S|bS = 1 which is
odd.

• Let v be a word such that P (v) holds. Hence v starts with a b
or an S and |v|bS is odd. Assume that v → v′. We consider the
following cases, where u ∈ {b, S} and where x and y are arbitrary
words over the terminals and non-terminals:

1

– v = uxSy → v′ = uxbAy. Obviously v′ starts with a b or an
S, because the first symbol didn’t change. And |v′|bS = |v|bS
since we have one S less, but one b more. Hence |v′|bS is odd,
so P (v′) holds.

– v = uxAy → v′ = uxaAy. Obviously v′ starts with a b or an
S. And |v′|bS = |v|bS since the amount of b’s and S’s didn’t
change. Hence |v′|bS is odd, so P (v′) holds.

– v = uxAy → v′ = uxbSy. Obviously v′ starts with a b or an
S. And |v′|bS = |v|bS + 2 since we get one b and one S more.
Hence |v′|bS is odd, so P (v′) holds.

– v = uxAy → v′ = uxy. Obviously v′ starts with a b or an
S. And |v′|bS = |v|bS since the amount of b’s and S’s didn’t
change. Hence |v′|bS is odd, so P (v′) holds.

– v = Sx → v′ = bAx. Obviously v′ starts with a b or an S.
And |v′|bS = |v|bS since we have one S less, but one b more.
Hence |v′|bS is odd, so P (v′) holds.

So in all cases we have seen that P (v′) holds. Hence P is indeed
an invariant.

(e) Does the following equality hold?

L1 = {w ∈ {a, b}∗ | P (w) holds}

Explain your answer.

No, it does not hold. The word bbab is a counterexample. It is easy
to see that P (bbab) holds, but bbab 6∈ L1. In the grammar it is easy
to see that every second b, must be immediately followed by another
b. This is caused by the production A→ bS → bbA.

2. We define a non-deterministic finite automaton M2:

// q0

a

��
λ // q1

b

��
λ // q2

a

��

We call the language recognized by this automaton L2:

L2 := L(M2)

(a) Write M2 as a quintuple 〈Σ, Q, q0, F, δ〉. Define δ by giving equations
of the form δ(qi, x) = . . . for all possible inputs qi and x.

M2 = 〈{a, b}, {q0, q1, q2}, q0, {q2}, δ〉, where δ is given as follows:

δ(q0, a) = {q0} δ(q0, b) = ∅ δ(q0, λ) = {q1}
δ(q1, a) = ∅ δ(q1, b) = {q1} δ(q1, λ) = {q2}
δ(q2, a) = {q2} δ(q2, b) = ∅ δ(q2, λ) = ∅

(b) Give a regular expression r2 with L(r2) = L2.

r2 := a∗b∗a∗

2

(c) Give a deterministic finite automaton M ′2 with L(M ′2) = L2.

// q0

a

��
b // q1

b

��
a // q2

a

��
b // q3

a,b

��

3. If for a language L is given that λ ∈ L and LL = L, does it always hold
that L∗ = L?

If so, explain why. If not, give an example of a language L3 for which this
does not hold, and explain why it is a counterexample.

Yes, it always holds.

Since L ⊆ L∗ for any language L, we only have to prove that L∗ ⊆ L.

• Let w ∈ L∗.
• Then there exists k ∈ N such that w = w1w2 · · ·wk−1wk where
wi ∈ L for all i.

– If k = 0 then w = λ and it was given that λ ∈ L, so in this case
w ∈ L.

– If k = 1 then w = w1, where w1 ∈ L, so also in this case w ∈ L.

– If k ≥ 2 we know that wk−1wk ∈ L, because LL = L.

– But this means that we can write w = w1w2 · · ·w′k−1 where
wi ∈ L and w′k−1 ∈ L.

– So we have shown that if we can split w in k parts that are all
in L, then we can also split w in k − 1 parts that are all in L.

– Now if k − 1 = 1 we can repeat the argument we mentioned
above for this case. (Note that if k ≥ 2 it cannot happen that
k − 1 = 0.)

– And if k − 1 ≥ 2 we can repeat this trick and get that w′k−2 =
wk−2w

′
k−1 = wk−2wk−1wk ∈ L, so we can split w also in k − 2

parts that are all in L.

– Because k is finite, we know that after applying this trick k − 1
times we have that w = w′1 ∈ L, so also in this case w ∈ L.

• So in all cases we get that w ∈ L.

Hence L∗ ∈ L, and together with L ⊆ L∗ we get that L∗ = L.

3

