
Formal Reasoning 2017
Solutions Test Blocks 1, 2 and 3: Additional Test

(10/01/18)

1. We have the following dictionary to talk about a Kripke model M:

domains: W the worlds of M
A the atomic propositions

constants: x0 the world x0
a the atomic proposition a

predicates: R(x, y) y is a successor of x
V (x, y) the atomic proposition y is true in world x

Translate to formulas of predicate logic using this dictionary:

(a) x0 
 �a→ ♦a (15 points)

This statement means:

If proposition a is true in all successors of world x0, then
there must be a successor of x0 where proposition a holds.

If we translate this into a formula of predicate logic with the given
dictionary we get:

(∀y ∈W (R(x0, y)→ V (y, a)))→ (∃z ∈W (R(x0, z) ∧ V (z, a)))

(b) M is serial (15 points)

This statement means:

Each world inM has at least one successor.

This can be expressed by the formula:

(∀w ∈W (∃v ∈W R(w, v)))

2. Let a graph G = 〈V,E〉 and a node v0 ∈ V be given. (20 points)

From this we recursively define sets Vn ⊆ V for all n ≥ 0 by:

V0 = {v0}
Vn+1 = Vn ∪ {v | v is a neighbor of a node in Vn} for all n ≥ 0

Prove with induction that for all n > 0, if there is a path of length n from
v0 to a node v, then v ∈ Vn.

Proposition: 0

If there is a path of length n from v0 to a node v, then v ∈ Vn for all
n ≥ 1.

Proof by induction on n. 1

We first define our predicate P as:
P (n) := if there is a path of length n from v0 to a node v, then v ∈ Vn 2

1



Base Case. We show that P (1) holds, i.e. we show that 3

if there is a path of length 1 from v0 to a node v, then v ∈ V1
This indeed holds, because 4
a path of length 1 between the nodes v0 and v implies that there is
an edge (v0, v) ∈ E and hence v ∈ V1 because v is a neighbor of v0
which is in V0.

Induction Step. Let k be any natural number such that k ≥ 1. 5

Assume that we already know that P (k) holds, i.e. we assume that 6
if there is a path of length k from v0 to a node v, then v ∈ Vk
(Induction Hypothesis IH)

We now show that P (k + 1) also holds, i.e. we show that 7
if there is a path of length k + 1 from v0 to a node v, then v ∈ Vk+1

This indeed holds, because if there is a path of length k + 1 from v0 8
to v, then there must be a node vk such that there exists a path of
length k from v0 to vk and an edge (vk, v). The Induction Hypothesis
now tells us that vk ∈ Vk. And because of the edge (vk, v) we know
that vk and v are neighbors, so v ∈ Vk+1.

Hence it follows by induction that P (n) holds for all n ≥ 1. 9

3. Prove that (20 points){
n

n− 2

}
=

(
n

3

)
+

1

2

(
n

2

)(
n− 2

2

)
for n ≥ 4 using a combinatorial argument.

By definition
{

n
n−2

}
is the number of ways to distribute n distinguishable

objects into n − 2 indistinguishable boxes, where none of the boxes may
be empty. So basically there are two possibilities:

• There is one box with three objects and all other n−3 boxes contain
exactly one object. There are

(
n
3

)
ways to choose the three objects

that will be in the same box and because the boxes are indistinguish-
able there is only one way that we can distribute the remaining n−3
objects over the remaining n−3 boxes. So there are

(
n
3

)
distributions

of this type.

• There are two boxes with each two objects and all other n− 4 boxes
contain exactly one object. There are

(
n
2

)
ways to choose the first

two objects that will be together in a box. Then there are
(
n−2
2

)
ways to choose the second two objects that will be together in a box.
And there is only one way that we can distribute the remaining n−4
objects over the remaining n−4 boxes. However, we have counted all
options twice, because the first and the second box can be swapped.
So there are 1

2

(
n
2

)(
n−2
2

)
distributions of this type.

Hence the total number of different distributions is
(
n
3

)
+ 1

2

(
n
2

)(
n−2
2

)
, which

was what we had to prove.

Note that all binomial coefficients used in this proof are well defined be-
cause n ≥ 4.
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4. Show that if w ∈ L(M), where M is a deterministic finite automaton with (20 points)

n states and |w| ≥ n, then one can write w as the concatenation

w = uvu′

where v 6= λ and such that uvku′ ∈ L(M) for all k ≥ 0.

Hint: Consider the states that M subsequently goes through when pro-
cessing w.

Assume that |w| = m for some m ∈ N. Processing w goes symbol by
symbol and each symbol corresponds with a transition from a state to
a (possibly other) state. So processing a word of length m requires m
transitions, which means that there are exactly m + 1 states involved,
since we always start in the initial state before processing any symbols.
Because |w| = m ≥ n we get that m+ 1 > n. Obviously, if an automaton
only has n states and there are more than n states needed for processing
a word, this means that there must be at least one state q that will be
visited twice. (Formally this is based upon the well known pigeonhole
principle: if you have N + 1 pigeons and N holes, then at least one hole
should contain two pigeons.) Hence the production of w looks like:

q0 → q1 → · · · → q → · · · → q → · · · → qf

where q0 is the initial state and qf a final state. This means that we can
write w = uvu′ where u is the part of w that is being processed from q0
to q, v the part that is being processed from q to q and u′ the part that
is being processed from q to qf . Because there is at least one processing
step in q → · · · → q, we know that v 6= λ.

The claim that uvku′ ∈ L(M) for all k ∈ N now easily follows from
the observation that k represents the number of times we do the loop
q → · · · → q.
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