Formal Reasoning 2017

Solutions Test Blocks 1, 2 and 3: Additional Test

 $(10 / 01 / 18)$1. We have the following dictionary to talk about a Kripke model \mathcal{M} :
```
domains: W the worlds of }\mathcal{M
    A the atomic propositions
constants: }\quad\mp@subsup{x}{0}{}\quad\mathrm{ the world }\mp@subsup{x}{0}{
    a the atomic proposition a
predicates: }\quadR(x,y)\quady\mathrm{ is a successor of }
    V(x,y) the atomic proposition }y\mathrm{ is true in world }
```

Translate to formulas of predicate logic using this dictionary:

(a) $x_{0} \Vdash \square a \rightarrow \diamond a$

This statement means:
If proposition a is true in all successors of world x_{0}, then there must be a successor of x_{0} where proposition a holds.
If we translate this into a formula of predicate logic with the given dictionary we get:

$$
\left(\forall y \in W\left(R\left(x_{0}, y\right) \rightarrow V(y, a)\right)\right) \rightarrow\left(\exists z \in W\left(R\left(x_{0}, z\right) \wedge V(z, a)\right)\right)
$$

(b) \mathcal{M} is serial
(15 points)
This statement means
Each world in \mathcal{M} has at least one successor.
This can be expressed by the formula:

$$
(\forall w \in W(\exists v \in W R(w, v)))
$$

2. Let a graph $G=\langle V, E\rangle$ and a node $v_{0} \in V$ be given.

From this we recursively define sets $V_{n} \subseteq V$ for all $n \geq 0$ by:

$$
\begin{aligned}
V_{0} & =\left\{v_{0}\right\} \\
V_{n+1} & =V_{n} \cup\left\{v \mid v \text { is a neighbor of a node in } V_{n}\right\} \quad \text { for all } n \geq 0
\end{aligned}
$$

Prove with induction that for all $n>0$, if there is a path of length n from v_{0} to a node v, then $v \in V_{n}$.

Proposition:

If there is a path of length n from v_{0} to a node v, then $v \in V_{n}$ for all $n \geq 1$.

Proof by induction on n.

We first define our predicate P as:
$P(n):=$ if there is a path of length n from v_{0} to a node v, then $v \in V_{n}$

Base Case. We show that $P(1)$ holds, i.e. we show that
if there is a path of length 1 from v_{0} to a node v, then $v \in V_{1}$ This indeed holds, because
a path of length 1 between the nodes v_{0} and v implies that there is an edge $\left(v_{0}, v\right) \in E$ and hence $v \in V_{1}$ because v is a neighbor of v_{0} which is in V_{0}.
Induction Step. Let k be any natural number such that $k \geq 1$.
Assume that we already know that $P(k)$ holds, i.e. we assume that if there is a path of length k from v_{0} to a node v, then $v \in V_{k}$ (Induction Hypothesis IH)
We now show that $P(k+1)$ also holds, i.e. we show that if there is a path of length $k+1$ from v_{0} to a node v, then $v \in V_{k+1}$
This indeed holds, because if there is a path of length $k+1$ from v_{0} to v, then there must be a node v_{k} such that there exists a path of length k from v_{0} to v_{k} and an edge (v_{k}, v). The Induction Hypothesis now tells us that $v_{k} \in V_{k}$. And because of the edge $\left(v_{k}, v\right)$ we know that v_{k} and v are neighbors, so $v \in V_{k+1}$.

Hence it follows by induction that $P(n)$ holds for all $n \geq 1$.
3. Prove that

$$
\left\{\begin{array}{c}
n \\
n-2
\end{array}\right\}=\binom{n}{3}+\frac{1}{2}\binom{n}{2}\binom{n-2}{2}
$$

for $n \geq 4$ using a combinatorial argument.
By definition $\left\{\begin{array}{c}n \\ n-2\end{array}\right\}$ is the number of ways to distribute n distinguishable objects into $n-2$ indistinguishable boxes, where none of the boxes may be empty. So basically there are two possibilities:

- There is one box with three objects and all other $n-3$ boxes contain exactly one object. There are $\binom{n}{3}$ ways to choose the three objects that will be in the same box and because the boxes are indistinguishable there is only one way that we can distribute the remaining $n-3$ objects over the remaining $n-3$ boxes. So there are $\binom{n}{3}$ distributions of this type.
- There are two boxes with each two objects and all other $n-4$ boxes contain exactly one object. There are $\binom{n}{2}$ ways to choose the first two objects that will be together in a box. Then there are $\binom{n-2}{2}$ ways to choose the second two objects that will be together in a box. And there is only one way that we can distribute the remaining $n-4$ objects over the remaining $n-4$ boxes. However, we have counted all options twice, because the first and the second box can be swapped. So there are $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ distributions of this type.
Hence the total number of different distributions is $\binom{n}{3}+\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$, which was what we had to prove.
Note that all binomial coefficients used in this proof are well defined because $n \geq 4$.

4. Show that if $w \in L(M)$, where M is a deterministic finite automaton with
n states and $|w| \geq n$, then one can write w as the concatenation

$$
w=u v u^{\prime}
$$

where $v \neq \lambda$ and such that $u v^{k} u^{\prime} \in L(M)$ for all $k \geq 0$.
Hint: Consider the states that M subsequently goes through when processing w.
Assume that $|w|=m$ for some $m \in \mathbb{N}$. Processing w goes symbol by symbol and each symbol corresponds with a transition from a state to a (possibly other) state. So processing a word of length m requires m transitions, which means that there are exactly $m+1$ states involved, since we always start in the initial state before processing any symbols. Because $|w|=m \geq n$ we get that $m+1>n$. Obviously, if an automaton only has n states and there are more than n states needed for processing a word, this means that there must be at least one state q that will be visited twice. (Formally this is based upon the well known pigeonhole principle: if you have $N+1$ pigeons and N holes, then at least one hole should contain two pigeons.) Hence the production of w looks like:

$$
q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q \rightarrow \cdots \rightarrow q \rightarrow \cdots \rightarrow q_{f}
$$

where q_{0} is the initial state and q_{f} a final state. This means that we can write $w=u v u^{\prime}$ where u is the part of w that is being processed from q_{0} to q, v the part that is being processed from q to q and u^{\prime} the part that is being processed from q to q_{f}. Because there is at least one processing step in $q \rightarrow \cdots \rightarrow q$, we know that $v \neq \lambda$.
The claim that $u v^{k} u^{\prime} \in L(M)$ for all $k \in \mathbb{N}$ now easily follows from the observation that k represents the number of times we do the loop $q \rightarrow \cdots \rightarrow q$.

