
Formal Reasoning

Herman Geuvers
Partly based on the reader of fall of 2002 by Henk Barendregt and Bas Spitters,

and with thanks to Wim Gielen for his reader “Discrete Wiskunde.”
Revised and expanded, fall of 2008, by Engelbert Hubbers and Freek Wiedijk.

Translated fall of 2016 by Kelley van Evert.

November 22, 2018

Contents

Table of contents 1

1 Propositional logic 3
1.1 Formal languages and natural languages . 3
1.2 Dictionary . 3
1.3 Connectives . 4
1.4 Meaning and truth tables . 6
1.5 Models and truth . 7
1.6 Logical equivalence . 8
1.7 Logical consequence . 9
1.8 Important concepts . 10

2 Predicate logic 11
2.1 Predicates, relations and constants . 11
2.2 The language of predicate logic . 13
2.3 Truth determination . 15
2.4 The language of predicate logic with equality 19
2.5 Important concepts . 22

3 Languages 23
3.1 Alphabet, word, language . 23
3.2 Regular languages . 25
3.3 Context-free grammars . 27
3.4 Right linear grammars . 31
3.5 Important concepts . 34

4 Automata 35
4.1 Automata . 35
4.2 Languages and automata . 37
4.3 Non-deterministic automata . 41
4.4 Important concepts . 45

5 Discrete mathematics 46
5.1 Graphs . 46
5.2 Isomorphic graphs . 49
5.3 Euler and Hamilton . 50
5.4 Colorings . 52
5.5 Towers of Hanoi . 54
5.6 Programming by recursion . 55
5.7 Binary trees . 56
5.8 Induction . 58
5.9 Pascal’s Triangle . 63

1

5.10 Counting partitions . 65
5.11 Important concepts . 70

6 Modal logic 71
6.1 Necessity and possibility . 71
6.2 Syntax . 73
6.3 Modalities . 74
6.4 Axioms . 74
6.5 Possible worlds and Kripke semantics . 76
6.6 Temporal logic . 79
6.7 Important concepts . 82

Bibliography 83

Index 84

2

Chapter 1

Propositional logic

In this chapter we discuss propositional logic, often also called propositional calculus.

1.1 Formal languages and natural languages

Natural languages, such as Dutch, English, German, etc., are not always as exact as one would
hope. Take a look at the following examples:

• Socrates is a human being. Human beings are mortal. So, Socrates is mortal.

• I am someone. Someone painted the Mona Lisa. So, I painted the Mona Lisa.

The first statement is correct, but the second is not. Even though they share the same form.
And what about the sentence,

This sentence is not true.

Is it true, or not?
To avoid these kinds of problems, we use formal languages. Formal languages are basically

laboratory-sized versions, or models, of natural languages. But we will see that these artificial
languages, even though they are relatively simple, can be used to express statements and
argumentations in a very exact and unambiguous manner. And this is very important for
many applications, such as describing the semantics of a program. Such specifications should
obviously not lead to misunderstandings.

To start, we will show how we make the transition from the English language to a formal
language. In reasoning, we often combine small statements to form bigger ones, as in for
instance: ‘If it rains and I’m outside, then I get wet.’ In this example, the small statements
are ‘it rains’, ‘I’m outside’, and ‘I get wet.’

1.2 Dictionary

We can also formalize this situation with a small dictionary.

R it rains

S the sun shines

RB there is a rainbow

W I get wet

D I stay dry

Out I’m outside

In I’m inside

So then, the sentence we introduced above becomes ‘if R and Out, then W.’ Similarly, we
could form statements as: ‘if RB, then S’, ‘S and RB’, or ‘if R and In, then D.’

3

1.3 Connectives

We can also translate the connectives, which we will do like this:

Formal language English

f ∧ g f and g

f ∨ g f or g, or both

f → g if f , then g

f ↔ g f if and only if g1

¬f not f

Now, the sentences we formed above become ‘RB→S’, ‘S∧RB’, and ‘(R∧In)→D.’

English Semi-formal Formal

If it rains and I’m outside, then I get wet. If R and Out, then W. (R ∧ Out) → W

If there is a rainbow, then the sun shines. If RB, then S. RB → S

I’m inside or outside, or both. In or Out, or both. In∨Out

Exercise 1.A
Form sentences in our formal language that correspond to the following English sentences:

(i) It is neither raining, nor is the sun shining.
(ii) The sun shines unless it rains.
(iii) Either the sun shines, or it rains. (But not both simultaneously.)
(iv) There is only a rainbow if the sun is shining and it is raining.
(v) If I’m outside, I get wet, but only if it rains.

So far, we have modeled our symbols (like ∨ and ∧) to be very much like the English
connectives. One of these English connectives is the word ‘or,’ which combines smaller state-
ments into larger, new statements. However, the meaning of the English word ‘or’ can be a
bit ambiguous. Take the following proposition: ‘1 + 1 = 2 or 2 + 3 = 5.’ Is it true, or not?
It turns out that people sometimes differ in opinion on this, and when you think about it a
bit, there are two distinct meanings that ‘or’ can have in the English language. Students of
Information Science and Artificial Intelligence obviously don’t like these ambiguities, so we
will simply choose the meaning of ∨ to be one of the two usual meanings of ‘or’: we will agree
that ‘A or B’ is also true in the case that both A and B are true themselves. Definition 1.5
will formalize this agreement.

Exercise 1.B
Can you also express f ↔ g using the other connectives? If so, show how.

Exercise 1.C
Translate the following formal sentences into English:

(i) R↔ S
(ii) RB→ (R ∧ S)
(iii) Out→ ¬ In
(iv) Out∨ In

Definition 1.1
The language of propositional logic is defined to be as follows. Let A be an infinite collection
of atomic propositions (also sometimes called propositional variables or letters):

A := {a, b, c, d, a1, a2, a3, . . .}
1Mathematicians will often simply write “iff” instead of the lengthier “if and only if.”

4

Let V be the set of connectives:

V := {¬,∧,∨,→,↔}

Let H be the set of parentheses:
H := {(,)}

Then, let the alphabet be the set Σ := A ∪ V ∪H, where ‘∪’ stands for the union of two sets.
Now, we can form the words of our language:

1. Any atomic proposition is a word.

2. If f and g are words, then so too are (f ∧ g), (f ∨ g), (f → g), (f ↔ g) , and¬f .

3. All words are made in this way. (No additional words exist.)

We call the words of this language propositions.

Convention 1.2
Usually, we omit the outermost parentheses of a formula, thus for example writing a∧b instead
of (a∧b). Of course we cannot always do the same with the inner parentheses, take for example
the logically inequivalent (R ∧ S)→ RB and R ∧ (S → RB). What we can do, is agree upon
a notation in which we are allowed to omit some of the parentheses. We do this by defining
a priority for each connective:

• ¬ binds stronger than ∧

• ∧ binds stronger than ∨

• ∨ binds stronger than →

• → binds stronger than ↔

This means that we must interpret the formula In∨RB → Out ↔ ¬S∧R as the formula
((In∨RB)→ Out)↔ (¬S∧R).

Only using these priorities is not enough though: it only describes where the implicit
parentheses are in the case of different connectives. When statements are built up by repeated
use of the same connective, it is not clear yet where these parentheses should be read.

For example, should we parse Out → R → W as expressing (Out → R) → W or as
expressing Out→ (R→W)? This is formalized by defining the associativity of the operators.

Convention 1.3
The connectives ∧, ∨, →, and ↔ are right associative. This means that, if v ∈ {∧,∨,→,↔},
then we must read

A v B v C

as expressing
A v (B v C)

Note, though, that this is a choice that is sometimes made differently, outside of this course.
So sometimes, in other readers and books on logic, an other choice might be made.

Remark 1.4
(This remark may only have meaning to you after reading Chapter 3, “Languages and au-
tomata”; so after reading that chapter, you might want to reread this remark.) The for-
mal definition of our language, with the help of a context-free grammar , is as follows: Let
Σ = A ∪ V ∪ H, that is to say Σ = {a, b, c, . . . ,¬,∧,∨,→,↔,¬, (,)}. Then the language is
defined by the grammar

S → a | b | c | . . . | ¬S | (S ∧ S) | (S ∨ S) | (S → S) | (S ↔ S)

Obviously, in stead of the dots all other symbols of the alphabet A should be listed.

5

1.4 Meaning and truth tables

The sentence ‘if a and b, then a’ is true, whatever you substitute for a and b. So, we’d like to
be able to say: the sentence ‘a ∧ b → a’ is true2. But we can’t, because we haven’t formally
defined what that means yet. As of yet, ‘a ∧ b → a’ is only one of the words of our formal
language. Which is why we will now turn to defining the meaning of a word (or statement) of
language, specifically speaking, when such a statement of logic would be true.

For the atomic propositions, we can think of any number of simple statements, such as
‘2=3,’ or ‘Jolly Jumper is a horse,’ or ‘it rains.’ In classical logic, which is our focus in this
course, we simply assume that these atomic propositions may be true, or false. We don’t
further concern ourselves with the specific truth or falsity of particular statements like ‘on
January the 1st of 2050 it will rain in Nijmegen.’

The truth of atomic propositions will be defined solely by their interpretation in a model .
For example, ‘2=3’ is not true in the model of natural numbers. And ‘Jolly Jumper is a horse’
is true in the model that is a comic of Lucky Luke. And the sentence ‘it rains’ was not true
in Nijmegen, on the 17th of September of 2002.

Now let’s take a look at the composite sentence ‘a∧ b.’ We would want this sentence to be
true in a model, exactly in the case that both a and b are true in that model. If we then just
enumerate the possible truth values of a and of b, we can define the truth of a ∧ b in terms of
these.

In Computing Science, we often simply write 1 for true, and 0 for false. Logical operations,
then, are the elementary operations on bits.

So, we get the following truth table:

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

And what of the ‘if. . . , then. . . ’ construction to combine statements into larger ones?
Here, too, natural language is somewhat ambiguous at times. For example, what if A is false,
but B is true. Is the sentence ‘if A, then B’ true? Examples are:

‘if 1 + 1 = 3, then 2 + 2 = 6’
‘if I jump off the Erasmus building, I’ll turn into a bird’
‘if I understand this stuff, my name is Alpje’

We will put an end to all this vagueness by simply agreeing upon the truth tables for the
connectives (and writing ‘A→ B’ instead of ‘if A, then B’), in this next definition.

Definition 1.5
The truth tables for the logical connectives are defined to be:

x ¬x
0 1

1 0

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

x y x ∨ y
0 0 0

0 1 1

1 0 1

1 1 1

2Note: a ∧ b → a should be read as (a ∧ b) → a

6

x y x→ y

0 0 1

0 1 1

1 0 0

1 1 1

x y x↔ y

0 0 1

0 1 0

1 0 0

1 1 1

Using our truth tables, we can determine the truth value of complex propositions from
the truth values of the individual atomic propositions. We do this by writing out larger truth
tables for these complex propositions.

Example 1.6
This is the truth table for the formula a ∨ b→ a:

a b a ∨ b a a ∨ b→ a

0 0 0 0 1

0 1 1 0 0

1 0 1 1 1

1 1 1 1 1

Exercise 1.D
Find the truth tables for:

(i) a ∨ ¬a
(ii) (a→ b)→ a
(iii) a→ (b→ a)

(iv) a ∧ b→ a
(v) a ∧ (b→ a)
(vi) ¬a→ ¬b

1.5 Models and truth

In the introduction, we spoke of models and truth in models. In the truth tables, we have
seen that the ‘truth’ of a proposition is fully determined by the values that we assign to the
atomic propositions. A model of propositional logic is therefore simply some assignment of
values ({0, 1}) to the atomic propositions.

Definition 1.7
A model of propositional logic is an assignment , or valuation, of the atomic propositions: a
function v : A→ {0, 1}.

To determine the truth value of a proposition f , we don’t really need to know the value of
all atomic propositions, but only of those of which f is comprised. Therefore, we will actually
just equate a model to a finite assignment of values.

Example 1.8
In the model v that has v(a) = 0 and v(b) = 1, the proposition a ∨ b→ a has the value 0.

Convention 1.9
If v is a model, we will also simply write v(f) for the value that f is determined to have under
that model. We say that f is true in a model v in the case that v(f) = 1.

So a∨ b→ a is not true, or false, in v when v(a) = 0 and v(b) = 1. However, a→ (b→ a)
is true is such a model.
Definition 1.10
If a proposition f is true in every conceivable model (which is to say that in its truth table,
there are only 1’s in its column), then we call that proposition logically true, logically valid or
just valid . The notation for this is: |= f . A logically true statement is also called a tautology .

If a proposition f is not logically true, that can be denoted by writing 6|= f .

Exercise 1.E
Which of the following propositions are logically true?

7

(i) a ∨ ¬a
(ii) a→ (a→ a)
(iii) a→ a
(iv) (a→ b)→ a

(v) a→ (b→ a)
(vi) a ∧ b→ a

(vii) a ∨ (b→ a)
(viii) a ∨ b→ a

Exercise 1.F
Let f and g be arbitrary propositions. Find out whether the following statements hold.
Explain your answers.

(i) If |= f and |= g, then |= f ∧ g.
(ii) If not |= f , then |= ¬f .
(iii) If |= f or |= g, then |= f ∨ g.
(iv) If (if |= f , then |= g), then |= f → g.
(v) If |= ¬f, then not |= f .
(vi) If |= f ∨ g, then |= f or |= g.
(vii) If |= f → g, then (if |= f , then |= g).
(viii) If |= f ↔ g, then (|= f if and only if |= g).
(ix) If (|= f if and only if |= g), then |= f ↔ g.

1.6 Logical equivalence

Definition 1.11
Two propositions f and g are said to be logically equivalent in the case that f is true in a
model if and only if g is true in that same model.

To formulate this more precisely: f and g are logically equivalent if for every model v it
holds that v(f) = 1 if and only if v(g) = 1. This boils down to saying that f and g have the
same truth tables.

To denote that f and g are logically equivalent, we write f ≡ g.

Often, a proposition can be replaced by a simpler, equivalent proposition. For example,
a ∧ a is logically equivalent to a. So, a ∧ a ≡ a.

Exercise 1.G
For each of the following couples of propositions, show that they are logically equivalent to
each other.

(i) (a ∧ b) ∧ c and a ∧ (b ∧ c) (ii) (a ∨ b) ∨ c and a ∨ (b ∨ c)

In this case, apparently, the placement of parentheses doesn’t really matter. For this
reason, in some cases we simply omit such superfluous parentheses. In convention 1.3 we
agreed that all binary connectives would be right associative. But here, we see that this
choice, at least for ∧ and ∨, is arbitrary: had we agreed that ∧ and ∨ associate to the left,
then that would have had no consequence for the truth value of the composite propositions.3

In exercise 1.D we have seen that for the connective →, it actually does matter in which
direction it associates!

Remark 1.12
The propositions a ∧ b and b ∧ a are mathematically speaking logically equivalent. In English
though, the sentence ‘they married and had a baby’ often means something entirely different
compared to ‘they had a baby and married.’

Here are a number of logically equivalences that demonstrate the distributivity of the
operators ¬, ∧, and ∨ over parentheses. The first two are called the De Morgan laws.

3The reason that we chose for the right associativity of ∧ and ∨ is to be consistent with the proof system
Coq that will be used in the course “Logic and Applications”.

8

1. ¬(f ∧ g) ≡ ¬f ∨ ¬g.

2. ¬(f ∨ g) ≡ ¬f ∧ ¬g.

3. f ∧ (g ∨ h) ≡ f ∧ g ∨ f ∧ h.4

4. f ∨ g ∧ h ≡ (f ∨ g) ∧ (f ∨ h).

Exercise 1.H
Let f and g be propositions. Is the following statement true? f ≡ g if and only if |= f ↔ g.

1.7 Logical consequence

In English, the statement that ‘the sun is shining’ follows logically from the statement that ‘it
is raining and the sun is shining.’ Now, we want to define this same logical consequence for
our formal language: that a is a logical consequence of a ∧ b.

Definition 1.13
A proposition g is a logical consequence, also sometimes called a logical entailment , of the
proposition f , if g is true in every model for which f is true. Said differently: a proposition g
is a logical consequence of f if, in every place in the truth table of f in which there is a 1, the
truth table of g also has a 1. Notation: f |= g.

If g is not a logical consequence of f , that can be denoted by f 6|= g.

Exercise 1.I
Are the following statements true?

(i) a ∧ b |= a
(ii) a ∨ b |= a

(iii) a |= a ∨ b
(iv) a ∧ ¬a |= b

Theorem 1.14
Let f and g be propositions. Then the following holds:

|= f → g if and only if f |= g.

You should now be able to find a proof for this proposition. [Hint: Take a look at exercises
1.F and 1.I.]

Remark 1.15
Note that the symbols |= and ≡ were not included in the definition of the propositions of
our formal language. These symbols are not a part of the language, but are merely used
to speak mathematically about the language. Specifically, this means that constructions as
‘(f ≡ g) → (|= g)’ and ‘¬ |= f ’ are simply meaningless, and we should try to avoid writing
down such invalid constructions.

Remark 1.16
For more on logic, you can have a look at books like [3] and [2].

4Note: by the conventions we specified for parentheses, this should be read as (f ∧ g) ∨ (f ∧ h).

9

1.8 Important concepts

alphabet, 5
and

f ∧ g, 4
assignment, 7

finite assignment, 7
associativity, 5

right associative, 5
atomic proposition, 4

connective, 4

De Morgan, 8
dictionary, 3

false
0, 6

if and only if
f ↔ g, 4
iff, 4

if, then
f → g, 4

logical consequence, 9
f |= g, 9

logical entailment, 9
logically equivalent, 8

f ≡ g, 8
logically true, 7
|= f , 7
tautology, 7

logically valid, 7
valid, 7

model, 7

not
¬f , 4

or
f ∨ g, 4

parenthesis, 5
priority, 5
proposition, 5
propositional calculus, 3
propositional letter, 4
propositional logic, 3
propositional variable, 4

true

1, 6
true in a model, 7

truth, 7
truth table, 6

union
∪, 5

valuation, 7

10

Chapter 2

Predicate logic

“A woman is happy if she loves someone,
and a man is happy if he is loved by someone.”

Instead of discussing the truth of this sentence, we are going to find out how to write it in a
formal way. Hopefully, this will then help us analyze the truth of such sentences. To jump
right in, we will give a formal account of the sentence after defining the dictionary:

W set of (all) women
M set of (all) men
L(x, y) x loves y
H(x) x is happy

Now the formal translation becomes:

∀w ∈W
[(
∃x∈(M ∪W) L(w, x)

)
→ H(w)

]
∧

∀m ∈M
[(
∃x∈(M ∪W) L(x,m)

)
→ H(m)

] (2.1)

The ‘∀’ symbol stands for “for all”, and the ‘∃’ symbol stands for “there exists”. The ‘∈’
symbol denotes the membership of an element in a set, and ‘∪’, which we have encountered
before, stands for the union of two sets. If we translate the formal sentence back to English,
in a very literal way, we get:

For every woman it holds that, if there is a person that she loves, she is happy,
and for every man it holds that, if there is person that loves him, he is happy.

You should now check whether this is indeed the same as the sentence that we started with,
and whether you can see how this is indeed represented in the formal translation above. Note
our use of the square parentheses [] (also called brackets.) This is only for readability though,
so that you can easily see which parenthesis belongs to which.
Because it enables us to translate a sentence, we will also call our dictionary an interpretation.

2.1 Predicates, relations and constants

Previously, we saw how propositional logic allowed us to translate the English sentence

If Sharon is happy, Koos is not.

as
SH → ¬KH

by choosing the dictionary:

11

SH Sharon is happy
KH Koos is happy

But suppose we add more people to our statements, like Joris, and Maud. We will easily
end up with an inconveniently lengthy dictionary soon, because we have to add an atomic
proposition for every new person (JH, MH, . . .).

This is why we now take a better look at the form of the statement that

Sharon is happy

and find out that it is of the shape of a predicate H() applied to a subject s (Sharon). Let’s
write that as H(s). The immediate benefit is that we can now also write the very similar

H(k), H(j), and H(m)

for the subjects k, j, and m. Instead of subjects, we will often speak of constants.
Also for our list of subjects, we will use our dictionary to formally denote which subject

belongs to which name. Moreover, we will indicate to which domain each of our subjects
belongs.

s Sharon ∈ “women”
k Koos ∈ “men”
j Joris ∈ “men”
m Maud ∈ “women”

Maybe the real benefit of our new system is not yet entirely clear. (Now that we have one
predicate H added to four subjects s, k, j,m, making a total of five symbols, which is more
than the four we started out with: SH, KH, JH, MH. . .) But suppose now that our subjects
would gain a number of other qualities, such as:

T (x) x is tall
B(x) x is beautiful
N(x) x is nice
I(x) x is intelligent

Moreover, besides our predicates (qualities), we also have (binary) relations, like the one we
used above:

L(x, y) : x loves y.

Now we can take the following sentence

Sharon is an intelligent beautiful woman;
and there is a nice tall guy who loves this character.

and formalize it with the formula

I(s) ∧ B(s)

∧ ∃x ∈M
[
N(x) ∧ T (x) ∧ ∃y ∈W [L(x, y) ∧B(y) ∧ I(y)]

]
.

. . . or did we mean to say,

I(s) ∧ B(s)

∧ ∃x ∈M [N(x) ∧ T (x) ∧ L(x, s)]?

Notice that we take these two statements in the sentence above, and join them together to a
single formula with the ‘∧’ symbol. And that, although the formula doesn’t state that Sharon

12

is a woman, that it doesn’t need to, because we already defined that s ∈ “women” in the
dictionary. (So we don’t need to add something like for example “s ∈W” in the formula.)

The difference between the first and the second formal translation lies in what what referred
to as “this character.” (This might refer to “Sharon,” or it might refer to “intelligent and
beautiful woman.”) It is not logic that decides such questions, but logic does make it explicit
that this choice has to be made. Said differently: it makes explicit the ambiguities that often
occur in the English (or any other natural) language.

Exercise 2.A
Give two possible translations for the following sentence.

Sharon loves Maud; a nice man loves this intelligent character.

Now let’s translate the other way around, and decode a formula.

Exercise 2.B
Translate the following sentences to English.

(i) ∃x ∈M
[
T (x) ∧ ∃w ∈W [B(w) ∧ I(w) ∧ L(x,w)]

]
(ii) ∃x ∈M

[
T (x) ∧ ∃w ∈W [B(w) ∧ ¬I(w) ∧ L(x,w)] ∧ ∃w′ ∈W [I(w′) ∧ L(w′, x)]

]
2.2 The language of predicate logic

We will now define formally what the language of predicate logic looks like.

Definition 2.1
The language of predicate logic is built up from the following ingredients:

1. Variables, usually written x, y, z, x0, x1, . . ., or sometimes v, w, . . .

2. Individual constants, also called ‘names’, usually a, b, c, . . .,

3. Domains, such as M,W,E, . . .,

4. Relation symbols, each with a fixed “arity”, that we sometimes explicitly annotate them
with, as in P 1, R2, T 3, . . . So this means that P 1 takes a single argument, R2 takes two
arguments, etc.

5. The atoms, or atomic formulas, are P 1(t), R2(t1, t2), T
3(t1, t2, t3) etc., in which t, t1,

t2, t3, etc. are either variables or individual constants.

6. The formulas are built up as follows:

• Every atomic formula is a formula.

• If f and g are formulas, then so are (f ∧ g), (f ∨ g), (f → g), (f ↔ g), and ¬f .

• If f is a formula, and x is a variable, and D is a domain, then (∀x ∈ D f) and
(∃x ∈ D f) are also formulas, made with the quantifiers ‘∀’ and ‘∃’.
• All formulas are made in this way. (No others exist.)

Convention 2.2
Just as in propositional logic, we usually omit the outermost parentheses. And to be able to
omit excessive parentheses within formulas, we expand upon our previous convention 1.2 for
propositional logic, adding the following:

• ∀ and ∃ bind stronger than all other connectives.

13

Somewhat opposing what we said earlier, in the case of ∀ and ∃, we add brackets for readability.
So instead of (∀x ∈ D f), as in the definition, we write ∀x ∈ D [f]. And if we have a consecutive
series of the same quantifiers over the same domain, we may group these quantifications:
∀x ∈ D [∀y ∈ D [f]] may be abbreviated to ∀x, y ∈ D [f]. Note that you are not allowed to
combine existential and universal quantifications in such an abbreviation.

If you take a look back at our first formula (2.1) this chapter, you can see that it actually quite
inconsistently uses parentheses and brackets. If we write it out as per the official definition,
it would read:

((∀w ∈W ((∃x∈(M ∪W) L(w, x))→ H(w))) ∧ (∀m ∈M ((∃x∈(M ∪W) L(x,m))→ H(m))))

You can see why we prefer to somewhat liberally use parentheses and brackets for read-
ability. Let us take a look at the meaning of all the parentheses in this official version of the
formula:

∀w ∈W

∃x∈ (M ∪W)︸ ︷︷ ︸

1

L (w, x)︸ ︷︷ ︸
2

︸ ︷︷ ︸

3

→ H (w)︸︷︷︸
2

︸ ︷︷ ︸

4

︸ ︷︷ ︸

5

∧

∀m ∈M

∃x∈ (M ∪W)︸ ︷︷ ︸

1

L (x,m)︸ ︷︷ ︸
2

︸ ︷︷ ︸

3

→ H (m)︸︷︷︸
2

︸ ︷︷ ︸

4

︸ ︷︷ ︸

5

︸ ︷︷ ︸

6

1. These parentheses are used for the readability of the domain, which is the union of the
sets M and W in this case. (The parentheses are not required by definition 2.1.)

2. These parentheses are needed because L(w, x), H(w), L(x,m), and H(m) are atomic
formulas, so the parentheses are required.

3. These parentheses are needed because the ∃ quantifier needs them.

4. These parentheses are needed because the → requires them.

5. These parentheses are needed because the ∀ quantifier needs them.

6. These parentheses are needed because the conjunction with ∧ requires them.

If we use square brackets as noted above, consistently writing ∀x ∈ D [f] instead of (∀x ∈ D f),
and furthermore omit all unnecessary parentheses according to our convention, we end up with
the formula:

∀w ∈W
[
∃x∈(M ∪W) [L(w, x)]→ H(w)

]
∧ ∀m ∈M

[
∃x∈(M ∪W) [L(x,m)]→ H(m)

]
.

Remark 2.3
Grammar of predicate logic.

Just as with propositional logic we can define the language of predicate logic as a formal
language, with a grammar. This is done as follows. (You should reread this after having met
grammars in Chapter 3 about languages.)

14

Individual := Variable | Name
Variable := x, y, z, x1, y1, z1, . . .
Name := a, b, c, d, e, . . .
Domain := D,E, . . .
Atom := P 1(Individual) | R2(Individual,Individual)

| T 3(Individual,Individual,Individual) | . . .
Formula := Atom

| ¬ Formula
| (Formula→ Formula) | (Formula ∧ Formula)
| (Formula ∨ Formula) | (Formula ↔ Formula)
| (∀ Variable ∈ Domain Formula)
| (∃ Variable ∈ Domain Formula)

Exercise 2.C
Formalize the following sentence.

Sharon is beautiful; there is a guy who feels good about himself whom she loves.

Here, we will treat feeling good about oneself as being in love with oneself.

Exercise 2.D
Formalize the following sentences:

(i) For every two persons we have: the first one loves the second one only if the first one
feels good about him- or herself.

(ii) For every two persons we have: the first one loves the second one if this second person
feels good about him- or herself.

(iii) For every two persons we have: the first one loves the second one exactly in the case
that the second one feels good about him- or herself.

(iv) There is somebody who loves everyone.

2.3 Truth determination

Take a look at the following two formulas

F1 = ∀x∈D∃y∈D [K(x, y)]

F2 = ∃x∈D∀y∈D [K(x, y)]

(Note how we cut back on parentheses.) When is a formula true? Truth is relative and
depends upon an interpretation and a model.

Definition 2.4
A model is that piece of the ‘real’ world in which formulas gain meaning by means of an
interpretation.

Because we haven’t yet explained what an interpretation is, this definition isn’t really con-
clusive. But before we introduce the concept of an interpretation, let us first explain with a
few examples what we mean with ‘a piece of the real world.’ Central here is the choice of the
domains that we choose, or how we restrict ourselves to a certain part of them, and which
predicates and relations are known within those domains.

15

1. Model M1

Domain(s) all students in the lecture hall
Predicate(s) is female

is more than 20 years old
Relation(s) has a student number lower than

is not older than
is sitting next to

2. Model M2

Domain(s) people
animals

Predicate(s) is female
is human
is canine

Relation(s) owns
is older than

In the case of the students in the lecture hall, we can determine which are female and not.
And if Sharon and Maud would happen to be present, it could be determined whether they
are sitting next to each other. In the other case, there are biologists who can determine for
any animal whether it is a dog or not, and furthermore it is usually easy to establish whether
someone is the owner of a certain animal. In which way this is done, should actually still be
formally agreed upon, if we wish to have an exact model.

The important aspect is that, if we wish to use a certain part of the world as a domain
for predicate logic, we should have a conclusive and consistent way of determining the truth
of statements about predicates over subjects and relations between subjects of the domain.

Now we can define the notion of an interpretation.

Definition 2.5
An interpretation is given by a dictionary, which states:

1. Which sets are referred to by the domain symbols,

2. Which subjects are referred to by the names (and to which domain sets these belong),

3. Which predicates and relations are referred to by the predicate and relation symbols.

In particular, then, the interpretation establishes a clear connection between the symbols
in formulas and the model that we are looking at. In the literature, the interpretation is
therefore often done via an interpretation function. See for example [3].

Definition 2.6
A formula f is called true in a model under a given interpretation if the translation given by
the interpretation is actually true in the model.

Example 2.7
In the running example of Sharon, Koos, Joris, and Maud, the interpretation has been given
in the dictionary we introduced: we know exactly what is meant with the formulas L(s, k)
and ∃x ∈ M L(x, s). The model is the factual situation involving these people, in which we
can indeed determine whether L(s, k) happens to be true (whether Sharon loves Koos), and
whether ∃x ∈M L(x, s) happens to be true (whether there is some guy who loves Sharon).

Whether the formulas F1 and F2 are true within M1, can thus only be determined if we also
define an interpretation which gives meaning to the symbols. Here are three different possible
interpretations:

16

1. Interpretation I1

D all students in the lecture hall
K(x, y) x has a student number that is lower than that of y

2. Interpretation I2

D all students in the lecture hall
K(x, y) x is not older than y

3. Interpretation I3

D all students in the lecture hall
K(x, y) x is sitting next to y

We can assess the truth of the formulas F1 resp. F2, in these models and under the given
interpretations, by checking whether the propositions hold that these formulas express, within
the models, and under the interpretations.

Exercise 2.E
(i) Verify that F2 does not hold in M1 under the interpretation I1. But does F1 hold?
(ii) Verify that F1 holds in M1 under the interpretation I2. Does F2 hold as well?
(iii) Check whether F1 in M1 is true under the interpretation of I3, by looking around in

class. And check whether F2 is true or not, as well.

Because model M1 only mentions a single domain, it would seem as if every interpretation
would have to speak of the same domain. But this is not the case, as we can see in the
following interpretations for model M2:

1. Interpretation I4

D people
K(x, y) x isn’t older than y

2. Interpretation I5

D people as well as animals
K(x, y) x owns y

Note that in the case of I5, that if x is an animal and y is a person, the statement K(x, y)
is automatically false, because animals don’t own people.

3. Interpretation I6

D animals
K(x, y) y is older than x

Let’s now take a look at the formulas G1 and G2, and two models in which we will interpret
them. (Note their difference to F1 and F2.)

G1 = ∀x∈D∃y∈D [K(x, y)]

G2 = ∀x∈D∃y∈D [K(y, x)]

Example 2.8
We define the models M3

Domain(s) Natural numbers, N = {0, 1, 2, 3, . . .}
Relation(s) smaller than (<)

and M4

Domain(s) Rational numbers (fractions), Q, (for example −1
2 , 3(= 3

1), 0,. . .)
Relation(s) smaller than (<)

17

And two self-evident accompanying interpretations: Interpretation I7:

D N
K(x, y) x < y

and interpretation I8:

D Q
K(x, y) x < y

In model M3 under interpretation I7 the formula G1 is true. Indeed, for every number x ∈ N
we can easily find a number y ∈ N, for example y = x + 1, such that x < y. In model M4

under interpretation I8 the formula G1 is true as well. Again, we can take y = x+1 and x < y
holds. Whenever we have such a method in which we can state precisely how to obtain a y
for any x, we speak of having an algorithm or recipe.

Convention 2.9
If a formula f is true in a model M under the interpretation I, we denote this by

(M, I) |= f

Writing it this way, we have seen that:

(M3, I7) |= G1

(M4, I8) |= G1

If we hadn’t given the models M3 and M4 a name, we could also have simply written this as
follows:

((N, <), I7) |= G1

((Q, <), I8) |= G1

Because the (important part of the) model is often already expressed in the given inter-
pretation, we will often omit an exact definition of the model.

Exercise 2.F
Verify that G2 is indeed true in model M4 under the interpretation I8, but not in model
M3 under the interpretation I7. Stated differently: verify that ((Q, <), I8) |= G2, and ((N, <
), I7) 6|= G2.

Exercise 2.G
Define the interpretation I9 as:

D N
K(x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?

Exercise 2.H
Define the interpretation I10 as:

D Q
K(x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?

Exercise 2.I
We take as model the countries of Europe, and the following interpretation I11:

18

E the set of countries of Europe
n The Netherlands
g Germany
i Ireland
B(x, y) x borders y
T (x, y, z) x, y, and z share a tripoint (where the borders of all three countries meet)

(i) Formalize the sentence “The Netherlands and Germany share a tripoint.”
(ii) Which of the following formulas are true in this model and under this interpretation?

(1) G3 := ∀x ∈ E∃y ∈ E[B(x, y)]
(2) G4 := ∀x, y ∈ E[(∃z ∈ E T (x, y, z))→ B(x, y)]
(3) G5 := ∀x ∈ E[B(i, x)→ ∃y ∈ E[T (i, x, y)]].

Exercise 2.J
Find a model M5 and an interpretation I12 such that this formula holds:

(M5, I12) |= ∀x ∈ D∃y ∈ E[R(x, y) ∧ ¬R(y, x) ∧ ¬R(y, y)]

In convention 2.9 we have seen that we write (M, I) |= f in the case that the formula f
of predicate logic (with or without equality, which will be discussed in Section 2.4) is true in
a model M under the translation given by an interpretation (or, dictionary) I. Now, we will
expand a bit upon this definition.

Definition 2.10
A formula f of predicate logic f is said to be logically true, or logically valid, which we then
denote |= f , when for any model and any interpretation, the translation holds in that model.

We often omit the logically part, simply writing that f is true or f is valid instead of writing
that f is logically true or logically valid .

Example 2.11
Consider the following statements:

(i) |= ∀x∈D [P (x)→ P (x)].
(ii) |= (∃x∈D∀y∈D [P (x, y)])→ (∀y∈D∃x∈D [P (x, y)]).
(iii) 6|= (∀y∈D∃x∈D [P (x, y)])→ (∃x∈D∀y∈D [P (x, y)]).

The formula within statement (iii) is not true, which can be seen by taking the interpretation
D := N and P (x, y) := x>y. Under this interpretation, ∀y∈D∃x∈D [P (x, y)] is true, because
for every y ∈ N we can indeed find a larger x ∈ N, but ∃x∈D∀y∈D [P (x, y)] is not true,
because there is no biggest number x ∈ N. So the implication is false.

Definition 2.12
Suppose f and g are two formulas of predicate logic. We say that g follows from f , denoted
as f |= g, when |= f → g. Which means that in every situation in which f is true, g is true
as well.

Statement (ii) above tells us that ∀y∈D∃x∈D [P (x, y)] follows from ∃x∈D∀y∈D [P (x, y)].

2.4 The language of predicate logic with equality

One might want to formalize the sentence:

Sharon is intelligent; there is a man who pays attention to nobody else.

19

To be able to formalize this, we require an equality relation. Then, we can write:

I(s) ∧ ∃x∈M [A(x, s) ∧ ∀w∈W [A(x,w)→ w = s]] (2.2)

For this to be regarded a correct formula of predicate logic, we have to add the equality
sign to the formal definition of the language of predicate logic.

Definition 2.13
The language of predicate logic with equality is defined by adding to the standard predicate
logic the binary relation “=”. The interpretation of this relation is always taken to be “is
equal to”.

We then also have to add the following rule to the definition 2.1 which states which formulas
exist:

• If x and y are variables, and a and b are constants, then (x = y), (x = a), (a = x), and
(a = b) are formulas as well.

Remark 2.14
The language of predicate logic with equality is very well suited to make statements about
the number of objects having certain properties, such as there being exactly one such object,
or at least two, or at most three, different, etc.

Exercise 2.K
Consider the interpretation I13:

H domain of all human beings
F (x) x is female
P (x, y) x is parent of y
M(x, y) x is married to y

Formalize the following sentences into formulas of predicate logic with equality:

(i) Everyone has exactly one mother.

(ii) Everybody has exactly two grandmothers.

(iii) Every married man has exactly one spouse.

Exercise 2.L
Use the interpretation I13 of exercise 2.K to formalize the following properties.

(i) C(x, y): x and y have had a child together.
(ii) B(x, y): x is a brother of y (take care: refer also to the next item).
(iii) S(x, y): x is a step-sister to y.

Translate the following formulas back to English.
(iv) ∃x∈H∀y∈H P (x, y). And is this true?

20

(v)
∀z1 ∈ H∀z2 ∈ H [∃x∈H∃y1∈H∃y2∈H [

P (x, y1)
∧

P (y1, z1)
∧

P (x, y2)
∧

P (y2, z2)
]

→
¬(∃w∈H [P (z1, w) ∧ P (z2, w)])

]

And is this true?

Exercise 2.M
Given the interpretation I14:

D N
A(x, y, z) x+ y = z
M(x, y, z) x · y = z

Formalize the following:
(i) x < y.
(ii) x | y (x divides y).
(iii) x is a prime number.

21

2.5 Important concepts

arity, 13
at least

at least two, 20
at most

at most three, 20
atom, 13
atomic formula, 13

constant, 12, 13

different, 20
domain, 12

element of
∈, 11

equals
=, 20

exactly
exactly one, 20

exists
∃, 11

follows from
f |= g, 19

for all
∀, 11

formula, 13
fractions

Q, 17

interpretation, 16
interpretation function, 16

model, 15

natural numbers
N, 17

predicate, 12
predicate logic, 13

predicate logic with equality, 20

quality, 12

rational numbers
Q, 17

relation, 12
relation symbol, 13

subject, 12

true

logically true, 19
|= f , 19

true in a model under a given interpre-
tation, 16

truth
true in a model under an interpretation

(M, I) |= f , 18

union
∪, 11

valid
logically valid, 19

variable, 13

22

Chapter 3

Languages

Generating and describing languages is an important application of computers. In principle,
a computer can only deal well with languages that are given an exact “formal” definition, for
example, programming languages. Though one can of course learn a computer to recognize a
natural language, as well, provided you give precise enough rules for it. But for now, we will
deal with formally defined languages. We take a language to be a set of words. And a word is
simply a sequence of symbols taken from a specified alphabet .

With these informal definitions we can already ask ourselves a number of interesting ques-
tions about languages and their words, like:

Question 3.1
• Does L contain the word w?

• Are the languages L and L′ the same?

Many problems in computer science that seem on first sight unrelated to languages, can be
reformulated, or, translated, into corresponding questions about (formal) languages.

3.1 Alphabet, word, language

Definition 3.2
1. An alphabet is a finite set Σ of symbols.1

2. A word over Σ is a finite number of symbols, strung together to a sequence.

3. λ is the word that is made up of 0 symbols, that is, no symbols at all, which is called
the empty word.

4. Σ∗ is the set of all words over Σ.

5. A language L over Σ is a subset of Σ∗.

Example 3.3
(i) Σ = {a, b} is an alphabet.
(ii) abba is in Σ∗ (notation: abba ∈ Σ∗).
(iii) abracadabra /∈ Σ∗.
(iv) abracadabra ∈ Σ∗0, with Σ0 = {a, b, c, d, r}.
(v) The empty word λ is in Σ∗, whatever Σ may be.

1Although the alphabet may of course contain symbols such as ‘,’ and ‘*’, we will often call all symbols
‘letters’ for simplicity.

23

We can describe languages in several ways. A couple of important ways, which we will
treat in this course, are regular expressions (see Section 3.2), grammars (see Section 3.3), and
finite automata (see Section 4.1). But remember that of course, languages are also simply the
sets of words they contain.

Definition 3.4
We will introduce some useful notation.

1. We write an for a . . . a where we have n times a in a sequence. More precisely put:
a0 = λ, and an+1 = ana.

2. The length of a word w is denoted |w|.

3. If w is a word, then wR is the reversed version of the same word, so for example we have
that (abaabb)R = bbaaba.

Example 3.5
(i) L1 := {w ∈ {a, b}∗ | w contains an even number of a’s}.
(ii) L2 := {anbn | n ∈ N}.
(iii) L3 := {wcv ∈ {a, b, c}∗ | w does not contain any b, v does not contain any a, and |w| =

|v|}.
(iv) L4 := {w ∈ {a, b, c}∗ | w = wR}.

Try, for every two of the above languages, to think of a word that is in the one, but not in the
other.

If we have two languages L and L′, we can define new languages with the usual set oper-
ations. (Though the complement might be new to you.)

Definition 3.6
Let L and L′ be languages over the alphabet Σ.

1. Language L is a subset of language L′ if each word in L is also a word in L′, notation
L ⊆ L′.

2. Language L is a strict subset of language L′ if L ⊆ L′ and in addition there is at least
one word in L′ which is not in L, notation L ⊂ L′.

3. Language L is the complement of L: the language comprised of all words w that are not
in L. (So: the w ∈ Σ∗ such that w /∈ L.)

4. Language L ∩ L′ is the intersection of L and L′: the language comprised of all words w
that are both in L as well as in L′.

5. Language L ∪ L′ is the union of L and L′: the language comprised of all words w that
are either in L or in L′ (or in both).

Exercise 3.A
In example 3.5 we have seen some examples of language descriptions. Now try describing these
languages yourself using formal set notation:

(i) Describe L1 ∩ L2.
(ii) Describe L2 ∩ L4.
(iii) Describe L3 ∩ L4.

Besides these general operations on sets there are some operations that only work for languages,
which we will now define:

Definition 3.7
Let L and L′ be two languages of the alphabet Σ.

24

1. LL′ is the concatenation of L and L′: the language that contains all words of the shape
wv, where w ∈ L and v ∈ L′.

2. LR is the language that contains all reversed words of L, that is, all wR for w ∈ L.

3. L∗ is the language comprised of all finite concatenations of words taken from L; so that
it contains all words of the shape w1w2 . . . wk, where k ≥ 0 and w1, w2, . . . , wk ∈ L.

The language L∗ is called the Kleene closure of L. The language L∗ contains all concate-
nations of zero or more words of L, so it is always the case that λ ∈ L∗. Furthermore, we
always have L ⊂ L∗ for any language L. Try to find out yourself what the language L∗ is for
L = ∅ and for L = {λ}.

Exercise 3.B
Use the definitions of example 3.5.

(i) Prove that L1 = L∗1
(ii) Does L2L2 = L2 hold? Give a proof, or else a counterexample.
(iii) Does L1 = L1

∗
hold? Give a proof, or else a counterexample.

(iv) For which languages of example 3.5 do we have L = LR? (You need only answer, a proof
is not necessary.)

3.2 Regular languages

A very popular way of describing languages is by the means of regular expressions. A language
that can be described by such an expression, is called a regular language. In computer science,
regular languages are seen as (relatively) simple languages: if L is such a language, it is not
hard to build a little program that checks whether a given word w is contained in L. Such
a program is then called a parser , and answering the question whether “w ∈ L” is called
parsing. Parsers for regular languages are easy to make, and there are many programs that
will even generate such parsers for you (when given as an input, a regular expression defining
that language). The parsers generated by these “parser generators” are especially efficient :
they decide very quickly whether w is or is not in L. This course will not further deal with
the concept of parsing, but we will delve further into the notions of a regular language and a
regular expression.

Definition 3.8
Let Σ be an alphabet. The regular expressions over Σ are defined as follows:

1. ∅ is a regular expression,

2. λ is a regular expression,

3. x is a regular expression, given any x ∈ Σ,

4. if r1 and r2 are regular expressions, then so too are (r1 ∪ r2) and (r1 r2),

5. if r is a regular expression, then r∗ is a regular expression too.

Example 3.9
Some examples of regular expressions are: aba, ab∗(a∪λ), (a∪ b)∗, (a∪∅)b∗, and (ab∗ ∪ b∗a)∗.

Now let’s formalize the relation between regular expressions and (regular) languages.

Definition 3.10
For every regular expression r, we define the language of r, denoted L(r), as follows:

1. L(∅) := ∅,

25

2. L(λ) := {λ},

3. L(x) := {x} for every x ∈ Σ,

4. L(r1 ∪ r2) := L(r1) ∪ L(r2),

5. L(r1 r2) := L(r1)L(r2),

6. L(r∗) := L(r)∗.

To exemplify this definition, take a look at the languages of the regular expressions from
example 3.9 above:

• L(aba) = {aba},

• L(ab∗(a ∪ λ)) = {a}{b}∗{a, λ}, so that is the language of words that start with an a,
then an arbitrary amount of b’s, and ending either with an a, or just ending at that,

• L((a ∪ b)∗) = {a, b}∗, or, all possible words over the alphabet {a, b},

• L((a ∪ ∅)b∗) = {a}{b}∗, which is the same language as the one of the regular expression
of ab∗,

• L((ab∗ ∪ b∗a)∗) = ({a}{b}∗ ∪{b}∗{a})∗. This language is somewhat less easily described
in natural language.

Sometimes regular expressions are also written using the + operator: the expression a+

then stands for “1 or more times a.” Technically speaking, this operator isn’t needed, because
instead of a+, one can also simply write aa∗. (Check this.)

Exercise 3.C
(i) Demonstrate that the operator ?, for which a? stands for either 0 or 1 times a, doesn’t

have to be added to the regular expressions, as it can be defined using the existing
operators.

(ii) What is L(∅ab∗)?
(iii) We define the language L5 := {w ∈ {a, b}∗ | w contains at least one a}. Give a regular

expression that describes this language.
(iv) Give a regular expression that describes the language L1 from example 3.5.
(v) Show that L(ab(ab)∗) = L(a(ba)∗b).

We see that the regular expression ∅ isn’t very useful. For any expression r, we can simply
replace r ∪ ∅ with r, so that the only reason to use ∅ is when we want to describe the empty
language L(∅). Apart from this use, you won’t see the expression ∅ any more.2

Definition 3.11
Let Σ be an alphabet. We call a language L over Σ regular if some regular expression exists
that describes it. More precisely put: a language L over Σ is regular if and only if there is a
regular expression r for which L = L(r).

The language L1 from example 3.5 is regular, as we have seen in exercise 3.C. However,
the languages L2, L3, and L4 from example 3.5 are not. We won’t be able to prove this with
the material of this course, though.

Exercise 3.D
Show that the following languages are regular.

(i) L6 := {w ∈ {a, b}∗ | every a in w is directly followed by a b},
2Because L(∅) = ∅, we can succinctly use the same symbol to denote both the expression, as its language.

26

(ii) L7 := the language of all well-formed integer expressions. These expressions are made
up of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, but they never start with a 0, except for the
word 0 itself, and are possibly preceded by a + or − sign.

(iii) L8 := the language of all well-formed arithmetical expressions without parentheses.
These contain all natural numbers, possibly interspersed with the operators +, −, and
×, as in for example 7 + 3× 29− 78. [Hint: First define a regular expression for natural
numbers; such a number (almost) never begins with a 0.]

If a language L is regular, then the language LR is also regular, because if L is described
by some regular expression e (so L = L(e)), then LR is described by the regular expression eR,
because LR = L(eR). (Though, strictly speaking, we are not allowed to write eR at all, as we
have only defined the operation . . .R on words and languages, and not on regular expression.
Try to figure out what a definition of reversed regular expressions would look like.)

Regular languages have more nice properties: if L and L′ are regular, then so too are L∪L′
and L ∩ L′, and also L. This is easily seen in the case of L ∪ L′, but the other two are more
complicated. Try to figure out why they are regular too.

Convention 3.12
Sometimes, people identify a regular language with one of its describing regular expressions,
and speak, say, of “the language b∗(aab)∗,” although what is actually meant is the language
L(b∗(aab)∗). In this course, we try not to do this, but we try to make explicit the difference
between the regular expression and the corresponding language.

Exercise 3.E
Which of the following regular expressions describe the same language? For any two expres-
sions, either show that they describe the same language, or else give a word that exemplifies
that this is not the case.

(i) b∗(aab)∗.
(ii) b∗(baa)∗b.
(iii) bb∗(aab)∗.

3.3 Context-free grammars

Let us now turn to another often used way of defining languages. Instead of attempting to
describe a language directly, we give a method of giving a set of rules that describe how
the words of the language are generated (or, produced). Such a set of rules is then called a
“grammar.”

Example 3.13
Σ = {a, b}. The language L9 ⊆ Σ∗ is defined by the productions starting with S using these
production rules:

S → aAb

A → aAb

A → λ

The method of generating words is then as follows. We start with S, called the start symbol.
Both S and A are nonterminals. We follow an arrow of S, of which there is only one in this
example (though there could have been more in general). If we still have nonterminals in our
new word, we follow one of its arrows, and so on, until there are no nonterminals left, and we
have successfully produced a word. Some example productions are:

S → aAb → aaAbb → aabb;
S → aAb → aaAbb → aaaAbbb → aaabbb.

27

This way to represent a language is called a grammar. The grammar above may also be
written, more succinctly, as:

S → aAb

A → aAb | λ

By which we mean that, from A, two production rules are possible, namely A → aAb and
A→ λ.

This grammar generates the language L9, where L9 =
{
ab, aabb, aaabbb, a4b4, . . . , anbn, . . .

}
.

Or, written more clearly:
L9 = {anbn | n ∈ N and n > 0}

Definition 3.14
A context-free grammar G is a triple 〈Σ, V,R〉 consisting of:

1. An alphabet Σ

2. A set of nonterminals V , containing at least the special symbol S: the start symbol.

3. A set of production rules R of the form

X → w

where X is a nonterminal and w a word made up of letters from the alphabet as well as
nonterminals. (Put succinctly: w ∈ (Σ ∪ V)∗.)

Convention 3.15
We will denote nonterminals by capital letters (S, A, B, etc), reserving lowercase for the
alphabet letters (a, b, c, etc), which are also called terminals.

Example 3.16
(i) The language L9 from example 3.13 is produced by a context-free grammar.
(ii) The language L10 is generated by the context-free grammar 〈Σ, V,R〉 having Σ = {a},

V = {S}, and R = {S → aaS, S → a}. This grammar generates all words containing an
odd number of a’s.

(iii) The language L11 is generated by the context-free grammar 〈Σ, V,R〉 with Σ = {a, b},
V = {S,A,B}, and R = {S → AB,A → Aa,A → λ,B → Bb,B → λ}. The language
L11 consists of all words that start with a sequence of zero or more a’s and is followed
by a sequence of zero or more b’s.

Definition 3.17
Languages generated by context-free grammars are called context-free languages. We denote
the language generated by G as L(G).

Remark 3.18
Context-free languages are systematically studied in the course ‘Languages and Automata’ in
the computing science curriculum.

Example 3.19
The language of well-formed arithmetical expressions, including parentheses, is context-free.
(And not regular!) A possible grammar for this language is:

S → LS OS R | G
L → (

R →)

O → + | × | −
G → DC

D → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C → 0C | 1C | 2C | 3C | 4C | 5C | 6C | 7C | 8C | 9C | λ

28

Can you find productions for the expressions (33 + (20 ∗ 5)) and ((33 + 20) ∗ 5)?

Exercise 3.F
The best way to show that a language is context-free is by giving a context-free grammar.

(i) Show that the language of balanced parentheses expressions is context-free. By this,
we mean the expressions over {(,)} where every opening parenthesis is closed with a
parenthesis as well, so for example (()(())) and (())() are balanced, but (()())) is not.

(ii) Show that the language L1 from example 3.5 is context-free.
(iii) Show that the language L2 from example 3.5 is context-free. (Check example 3.13.)
(iv) Show that the language L3 from example 3.5 is context-free.
(v) Show that the language L4 from example 3.5 is context-free.

Exercise 3.G
Consider the grammar G1:

S → AS | Sb | λ
A → aA | λ

(i) Write G1 as a triple 〈Σ, V,R〉.
(ii) Give a production demonstrating that aabb ∈ L(G1).
(iii) Can you give a production demonstrating that bbaa ∈ L(G1) within three minutes?

Exercise 3.H
Consider the following grammar for the language L12.

S → aSb | A | λ
A → aAbb | abb

The nonterminals are S and A, and Σ = {a, b}.
(i) Give productions of abb and aabb.
(ii) Which words does L12 contain?

With some exercise, it is not so hard to see which words are contained in L12. However,
it is not as easy to actually prove that it contains no other words. Usually, this is possible,
depending on the complexity of the grammar, but for our current purposes, this is too hard.
A simpler question is the following:

Question 3.20
Show that aab is not contained in L12.

How does one go about showing this? To show that a word is produced by a grammar,
one only has to find a generating production, in which one then usually succeeds. But how to
show that a grammar is not able of producing a word?

In computing science, the notion of an invariant was introduced to deal with this kind of
proof.

Definition 3.21
An invariant of G is a property P that holds for all words that are generated by G.

To prove that P indeed holds for all w ∈ L(G) one needs to demonstrate that:
(i) P holds for S; and
(ii) that P is invariant under the production rules, meaning that, if P holds for some word

v and v′ can be produced from v, then P also holds for v′.

Remark 3.22
Note that in the second item, one must prove the invariance for all words v of Σ∗, not only
the words that are contained in the grammar’s language!

29

If, then, a word w does not satisfy P , one can conclude that w cannot be generated by the
grammar. To summarize, to prove that some word w is not in a grammar’s language, using
invariants, you do the following:

• Determine some “good” property P (called the invariant).

• Show that P holds for S.

• Show that P is invariant under the production rules.

• Show that w does not satisfy P .

Now let’s get back to our problem.

Example 3.23
We want to show that aab /∈ L12. What would be a good invariant? We take

P (w) := the number of b’s in w ≥ the number of a’s in w

This is indeed an invariant, because:

• P (S) holds.

• If P (v) holds and v −→ v′, then P (v′) holds as well. (Check this for every production
rule: either both an a and a b are added, or an a and two b’s, or neither an a nor a b; in
all three cases, the number of b’s stays greater or equal to the number of a’s.)

Note that, although definition 3.21 talks of all words that are ‘produced’, it is only
necessary to check all single step productions. (Try to convince yourself to find out why
this is the case.)

So now we have proved that P (w) holds for all w ∈ L12. But because P (aab) is obviously not
true, we can then conclude that aab /∈ L12.

Exercise 3.I
We take another look at the grammar G1 from exercise 3.G. It was then already noted that
bbaa 6∈ L(G1). But can we prove that using an invariant? Let us give it a try with the
predicate

P (w) := w does not contain ba as sub-word

At first this may seem like an invariant, but it isn’t. Note that P (bA) holds, because bA does
not contain ba as sub-word. And note that applying the rule A→ aA we get the production
bA→ baA and it is clear that P (baA) does not hold. So P is not an invariant. But maybe we
can try to fix this by putting more requirements in our predicate P . . .

(i) Is
P (w) := w does neither contain ba, nor bA, nor Sa as sub-word

an invariant for G1 that proves that bbaa 6∈ L(G1)?
(ii) Is

P (w) := w does neither contain ba, nor bA, nor Sa, nor bS as sub-word

an invariant for G1 that proves that bbaa 6∈ L(G1)?

Exercise 3.J
Use invariants to prove that:

(i) bba 6∈ L12.
(ii) aabbb is not produced by the grammar of L3 that you constructed in exercise 3.F.

(iii) aabbb is not produced by the grammar for L4 that you constructed in exercise 3.F.

Remark 3.24
Context-free grammars are called context-free, because the items on the left hand side of
production rules are only allowed to be single nonterminals. So for example, the rule Sa →
Sab is not allowed. And therefore, one never needs to take into account the context of the
nonterminal (the symbols that may surround it in an intermediate step of production).

30

3.4 Right linear grammars

A well-known restricted form of context-free grammars are the right linear grammars.

Definition 3.25
A right linear grammar is a context-free grammar in which the production rules are always of
the form

X → wY

X → w

where X and Y are nonterminals and w ∈ Σ∗.

That is, in a right linear grammar, nonterminals are only allowed at the end of a rewrite, on
the right hand side of a production rule.

Example 3.26
(i) In example 3.16, only the grammar L10 is right linear.
(ii) Sometimes, for a context-free grammar that is not right linear, one can find an equivalent

right linear grammar. For example, the following grammar (over Σ = {a, b}) is right
linear and generates L11 from example 3.16:

S → aS | B
B → bB | λ

There is a mathematical theorem that states that the class of languages that can be
produced by right linear grammars is exactly the class of regular languages.

Theorem 3.27
A language L is regular if and only if there is a right linear grammar that describes it.

Corollary 3.28
A regular language is always context-free.

We will not prove this theorem. To prove it, you have to show how to create a right
linear grammar for every regular expression such that their languages are the same, and the
other way around, creating a regular expression for each right linear grammar, such that their
languages are the same. We will illustrate this by giving an example.

Example 3.29
Consider the regular expression

ab∗(ab ∪ λ)(a ∪ bb)∗

A right linear grammar producing the same language as that of the expression, is:

S → aA

A → bA | B
B → abC | C
C → aC | bbC | λ

Sometimes, right linear grammars are depicted with so-called syntax diagrams. We will
just show an example of what such a diagram can look like. Figure 3.1 displays the syntax
diagram corresponding to the grammar from example 3.29.

A direct result of theorem 3.27 is that these two languages, over the alphabet {a, b}, are
regular (see example 3.16): L10 = {an | n is odd} and L11 = {wv | w contains only a’s,
v contains only b’s}. Try to construct regular expressions for these languages.

31

a A

b
B

A

a b C

a

b b
C

B

S

Figure 3.1: Syntax diagram for example 3.29

Exercise 3.K
(i) Consider the following grammar over the alphabet {a, b, c}:

S → A | B
A → abS | λ
B → bcS | λ

Check whether you can produce these words with the grammar: abab, bcabbc, abba. If
you can, provide a production. If not, provide an invariant which you could use to prove
that the word can not be produced.

(ii) Describe the regular language L13 that this grammar generates, with a regular expres-
sion.

(iii) Construct a right linear grammar for the language L14 consisting of all words of the
shape ab . . . aba (that is, words with alternating a’s and b’s, starting and ending with an
a; make sure to also include the word a).

Exercise 3.L
Give right linear grammars for the languages of exercise 3.D:

(i) L6 := {w ∈ {a, b}∗ | every a in w is directly followed by a b},
(ii) L7 := the language of well-formed integer expressions. These consist of the symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, but never start with a 0, except for the word 0 itself, and may be
preceded by a + or a − sign.

(iii) L8 := the language of well-formed arithmetical expressions without parentheses. These
consist of natural numbers, interspersed with the operators +, −, and ×, as in for
example 7 + 3× 29− 78.

Exercise 3.M
Here we give a grammar for a small part of the English language.

32

S = 〈sentence〉 → 〈subjectpart〉〈verbpart〉.
〈sentence〉 → 〈subjectpart〉〈verbpart〉〈objectpart〉.

〈subjectpart〉 → 〈name〉 | 〈article〉〈noun〉
〈name〉 → John | Jill
〈noun〉 → bicycle | mango
〈article〉 → a | the

〈verbpart〉 → 〈verb〉 | 〈adverb〉〈verb〉
〈verb〉 → eats | rides

〈adverb〉 → slowly | frequently
〈adjectives〉 → 〈adjective〉〈adjectives〉 | λ
〈adjective〉 → big | juicy | yellow
〈objectpart〉 → 〈adjectives〉〈name〉
〈objectpart〉 → 〈article〉〈adjectives〉〈noun〉

(i) Is this grammar right linear?
(ii) Show how you produce the following sentence: Jill frequently eats a big juicy yellow

mango.
(iii) Make some more sentences.

33

3.5 Important concepts

alphabet, 23, 28
Σ, 23

grammar
context, 30
context-free, 28
nonterminal, 28
right linear, 31
start symbol, 28
triple, 28
〈Σ, V,R〉, 28

invariant, 29

language, 23
complement, 24
L, 24

concatenation
LL′, 25

context-free language, 28
L(G), 28

describe, 27
empty language, 26
L(∅), 26
∅, 26

generate, 27
intersection, 24
L ∩ L′, 24

Kleene closure, 25
L∗, 25

produce, 27
regular language, 25, 26
L(r), 25

reverse
LR, 25

strict subset, 24
L ⊂ L′, 24

subset, 24
L ⊆ L′, 24

union, 24
L ∪ L′, 24

nonterminal, 31

parser, 25
production, 27
production rule, 28, 31

regular expression
∅, 25

λ, 25
concatenation
r∗, 25
r1 r2, 25

union
r1 ∪ r2, 25

regular expressions, 25

set
empty set
∅, 25

symbol, 23
concatenation
an, 24

syntax diagram, 31

terminals, 28

word
concatenation
wv, 25

empty word, 23
λ, 23

length, 24
|w|, 24

reverse, 24
wR, 24

34

Chapter 4

Automata

Recall the main question we discussed in Chapter 3:

Question 4.1
• Does L contain the word w?

• Are the languages L and L′ the same?

From the topic of languages, it is just a small step to the topic of automata. Automata are
yet again formal mathematical objects, and the key question that we often ask about them, is
which language they accept (or, define). This question relates the two, and is the reason why
we treat automata directly after languages.

4.1 Automata

At the start of this chapter, we stated that languages can also be formalized using automata.
To explain this connection, we first define what an automaton is.

In computer science, there is the study of machines. For example by looking at computers
themselves, but also at a higher, conceptual level, computer scientists study idealized, abstract
machines. An advantage of studying such an idealized and abstract machine model is that
it is easier to study the important properties they have. A prolific class of these abstract
machines are the finite automata. These finite automata have many more applications than
just modeling simple calculations (as machines usually do). Finite automata, and simple
extensions, can model processes as well, for example. Let us first take a look at what a finite
automaton is, and how one ‘calculates’ with it. Here is an example:

M0 : // q0
a //

b
��

q1

a

��

bkk

q3a 33

b

II
q2a

oo bkk

(4.1)

An automaton is a so-called directed graph, in which the lines are arrows and have labels.
(See Section 5.1 for a formal account of graphs.) The nodes of the graph are referred to as the
states of the automaton, here: q0, q1, q2, and q3. The states are commonly drawn as circles
with their name written inside. There are two distinguished types of states that have a special
role:

1. The initial state, distinguished by an incoming arrow that doesn’t depart from any other
state. Every automaton has exactly one initial state, often named q0 as in the example
above.

35

2. The final states, distinguished by drawing their circle with a double border. The example
above has exactly one, namely q2. (It is allowed to have the initial state simultaneously
be a final state.)

We can regard an automaton as a (very) simple computer that can compute things for
us. This computation happens in the following way: you give it a word (in the example, this
would be a word over the alphabet {a, b}), then the automaton computes according to the
word, following the appropriate arrow for each subsequent letter of the given word, and then
after a number of steps halts, either in a final state, or in a non-final state. In the first case,
we say the automaton accepts the word, in the second, it rejects the word.

Example 4.2
The automaton M0 accepts the word aa: it starts in state q0, and then reads the first letter
a. This brings it to the state q1, and it then reads the second letter, another a. This then
brings it to state q2. There is no input any more, and the automaton has halted. Because it
halted in a final state, aa is accepted by the automaton. We depict this computation with the
notation:

q0
a→ q1

a→ q2

So, the notation shows how each subsequent letter is consumed, but does not depict whether
the word has been accepted or not, which means you have to add this conclusion in writing.
In this case, the computation ends in the final state q2, and thus aa is accepted. Check that
the words abbba and ababb are accepted as well, though ababab and bab are not.

Before continuing, we give a formal definition of the notion of a finite automaton.

Definition 4.3
A finite automaton is a quintuple M := 〈Σ, Q, q0, F, δ〉:

1. A finite set Σ, the input alphabet, or set of atomic actions,

2. A finite set Q of states,

3. A distinguished state q0 ∈ Q called the initial state,

4. A set of distinguished states F ⊆ Q, the final states,

5. A transition function δ, that maps every tuple of a state q and an action a to a new
state q′. (These are the labeled arrows in (4.1).)

A finite automaton is also called a DFA, as an abbreviation for “Deterministic Finite Automa-
ton.”

Example 4.4
This means that the automaton M0 depicted in (4.1) is actually the quintuple 〈Σ, Q, q0, F, δ〉,
where Σ = {a, b}, Q = {q0, q1, q2, q3}, F = {q2}, and the transition function δ is defined by:

δ(q0, a) = q1 δ(q0, b) = q3
δ(q1, a) = q2 δ(q1, b) = q1
δ(q2, a) = q3 δ(q2, b) = q2
δ(q3, a) = q3 δ(q3, b) = q3

Specifically, note how the deterministic behavior is captured by the fact that for every state
and letter, exactly one transition is defined.

Instead of writing such a mathematical definition out in full, we usually simply draw a
diagram as in the example on page 35.

36

Exercise 4.A
Consider the deterministic finite automaton M1.

M1 : // q0
a //

b

&&

q1

a

��

b

xx
q3

a

OO

b
;;
q2a

oo bkk

Here, Q = {q0, q1, q2, q3}, F = {q3}, and Σ = {a, b}.
(i) Check whether these words are accepted or not: abaab, aaaba, bab, λ, and aabbab.
(ii) Are these statements true? Give a proof or counterexample.

(1) If w is accepted, then so is wabba.
(2) If w is accepted, then wab is not accepted.
(3) If w is not accepted, then waa will not be accepted either.
(4) If w is not accepted, then neither is wbb.

4.2 Languages and automata

We can think of Σ as the set of “atomic actions” that lead us from one state to another, but
also as the set of symbols of an alphabet, as we have done already above. If we think of Σ as
representing the alphabet, the automaton can be seen as a language recognizer . In this way,
for each automaton, there is a corresponding language, namely the language recognized by
the automaton.

Definition 4.5
For an automaton M := 〈Σ, Q, q0, F, δ〉, we define the language of M , to be L(M):

L(M) := {w ∈ Σ∗ | w is accepted by M}.

So: w ∈ L(M) if and only if the automaton M halts in a final state after consuming all of w.

Let us take a look at our initial automaton M0, from page 35. It accepts the following
words:

• aa is accepted,

• awa is accepted, with w an arbitrarily long sequence of b’s,

• awav is accepted, with w and v both arbitrarily long sequences of b’s.

If we go “past” state q2, we can never get back to a final state, and so the above description
lists all words that the automaton accepts. Summarized:

L(M0) = {abnabm | n,m ≥ 0}

Because we learned regular languages and expressions previously, we see that this language
indeed is described by a regular expression, namely:

L(M0) = L(ab∗ab∗).

Trying to find a similar corresponding regular expression for M1, turns out to be a bit harder:

• ab is accepted,

• ba is accepted,

37

• aaa is accepted,

• aabka is accepted, with k ≥ 0,

• bbka is accepted, with k ≥ 0,

• aabka(ba)l is accepted, with k ≥ 0, l ≥ 0,

• bbka(ba)l is accepted, with k ≥ 0, l ≥ 0,

. . . and this is not all, because if we go “past” state q2, we can in fact loop back to q2 again.
How can we then systematically analyze the language of an automaton? A method for doing so
is constructing a corresponding grammar , that generates the same language as the automaton
recognizes. This is done in this way:

1. For every state qi, introduce a nonterminal Xi, and distinguish the starting nonterminal
S for the initial state q0.

2. For every transition qi
a→ qj in the automaton, add the production rule Xi → aXj .

3. For every final state qi ∈ F , add the production rule Xi → λ.

Constructing the grammar G2 (with Σ = {a, b}) for the automaton M1, we then get:

S → bB | aA
A → aB | bC
B → bB | aC
C → bB | aS | λ

Note that this grammar is right linear, and so the language L(M1) is indeed regular .
This new description of the language L(M1), using a grammar, is interesting, if only

because it is a new description that we haven’t seen before. But what happens if we try to
‘optimize’ this grammar by substituting symbols? First, inline the rule A→ aB | bC into the
rule S → bB | aA to get S → bB | aaB | abC. Then, do the same for the C rule. This gives
us a new grammar yet again, G3, still generating the same language, and still right linear as
well:

S → bB | aaB | abbB | abaS | ab
B → bB | abB | aaS | a

Exercise 4.B
Conclude from the grammar G3 that

(i) (aba)kab ∈ L(G3) for all k ≥ 0,
(ii) aabka ∈ L(G3) for all k ≥ 0,
(iii) if w ∈ L(G3), then also abaw ∈ L(G3),
(iv) if w ∈ L(G3), then also aaaaw ∈ L(G3),

It is general knowledge that any finite automaton can be translated into a right linear
grammar, as we have seen and done for M1.

Theorem 4.6
For every finite automaton M , a right linear grammar G can be constructed such that L(G) =
L(M).
(The language that G generates is the same as the language that M accepts.) A direct result
is that the language L(M) of a finite automaton M is always regular.

38

Exercise 4.C
Construct a right linear grammar for the deterministic finite automaton M0, similarly as
one was constructed for M1 above. After that, optimize the grammar by removing useless
production rules and/or substituting nonterminals for their production rules.

We can also translate the other way around: constructing a finite automaton for a given
right linear grammar. Take a look at the right linear grammar G4:

S → aaS | bbB | λ
B → bbB | λ

First, we introduce a state for every nonterminal, and make transitions labeled with letter
sequences instead of just letters. Each nonterminal that leads to λ becomes a final state, and
S becomes the initial state.

// q0
bb //

aa

II
q1 bbkk

Then, we expand the letter sequences into single letter transitions by adding intermediate
states, and get:

// q0
b //

a

q3
b // q1

b

q2

a

JJ

q4

b

JJ

And now we are almost done. The remaining problems lies in the fact that, in a full
automaton, every state and letter must have an outgoing transition leading to a new state,
which is not the case as of yet. To solve this, we add a so-called “sink” that catches all
additional useless transitions, and that any computation cannot escape from into a final state
any more. This gives us our final automaton, where q5 is the newly added sink:

M2 : // q0
b //

a

q3
b //

a

��

q1

b

a
��

q2

a

JJ

b // q5

a,b

II
q4

b

JJ

a
oo

Remark 4.7
Here, we conveniently drew a single arrow, from q5 to itself, with two labels, that actually
stands for two arrows with the respective labels, because else the drawing would become a bit
of a mess. Instead of adding all these arrows, we could have agreed upon omitting them, as
well as the “sink.” We don’t do so, however, because a word such as bba should clearly be not
accepted by M2, which is definitely the case in the final automaton, but without the added
arrows and sink as in the earlier version, it would halt in the final state q1 (with remaining
input), which is a bit unclear . . .

This procedure of constructing automata for right linear grammars works well in general,
except in the case of production rules of the shape S → B, where the right hand side doesn’t

39

contain any letters in front of the nonterminal. Then, the word in front of the nonterminal is
λ, as in the case of grammar G5:

S → aaS | B
B → bbB | λ

Performing the first step of constructing a corresponding automaton, we get:

// q0
λ //

aa

II
q1 bbkk

And we end up with a transition labeled λ, the empty word, which evidently leads to a
problem in the next step. The general solution is to first create an equivalent right linear
grammar without any productions of this shape. This is always possible, but we won’t show
how to do this in general. For the grammar G5, this initial step would lead to G4, so that the
automaton M2 indeed accepts the language generated by G5. (And G4 and G5 generate the
same language: check this yourself!)

Theorem 4.8
For every right linear grammar G, a finite automaton M can be constructed such that L(M) =
L(G).

Exercise 4.D
Construct a deterministic finite automaton that recognizes the language of the following gram-
mar:

S → abS | aA | bB
A → aA | λ
B → bB | λ

Exercise 4.E
Consider the deterministic finite automaton M3:

M3 : // q0
a

++

b

��
q1

a

��

b

kk

q2
b

bb

akk

Construct a right linear grammar that generates L(M3).

Exercise 4.F
Consider the deterministic finite automaton M4:

M4 : // q0
a

++

b

��
q1

b

kk akk

(i) Construct a right linear grammar that generates L(M4).
(ii) Provide a (simple) description of L(M4).
(iii) If all states are made into final states, which language does M4 recognize?
(iv) If we switch the final states with non-final states (every final state becomes a non-final

state and the other way around), which language would M4 recognize?

40

Exercise 4.G
Define L15 := {(ab)k(aba)l | k, l ≥ 0} over the alphabet Σ = {a, b}. Construct a deterministic1

finite automaton that recognizes this language.

Exercise 4.H
Define L16 := {(ab)kx(ab)l | x ∈ {a, b}, k, l ≥ 0} over the alphabet Σ = {a, b}. Construct a
deterministic finite automaton that recognizes this language.

Exercise 4.I
Consider the deterministic finite automaton M5 that accepts (as input) numbers in ‘normal’
decimal form. Such a number may optionally be preceded by a + or − sign, but not with a
0, except of course for the number 0 itself and numbers like 0, 42. In the diagram, the arrow
with 0 . . . 9 represents ten individual arrows with 0, 1, . . . , 9 as labels, respectively, etc.

M5 : // q0
0 //

1...9

��

+−

q1

,

��

q2

1...9
~~

0

>>

q3

,

**
0...9

II

q4 0...9kk

(i) Is the automaton M5 well-formed? Are all ‘correct’ numbers accepted and all ‘incorrect’
ones rejected?

(ii) Revise M5 until it is well-formed (according to your idea of what decimal notation is).
(iii) Give a right linear grammar that generates the same language as M5.

4.3 Non-deterministic automata

In the definition of an automaton we had a special restriction:

For each state q and each symbol a from the alphabet, there is exactly one arrow
from q with label a.

We can weaken this restriction in the following way:

• From each state q there are finitely many arrows with label a for each a ∈ Σ (i.e., 0, 1
or more).

• From each state q there are finitely many arrows with label λ (i.e., 0, 1 or more).

We call an automaton in which we allow this a non-deterministic finite automaton or NFA.

Example 4.9
Consider the following automaton

M6 : // q0
a //

a,b

II
q1

a // q2
a // q3 a,bkk

1Added later on, but since the theory about NFAs only starts after exercise 4.I this was quite obvious.

41

(i) If we take the word baaa as input, there are four possible computations depending on
which arrow we choose for the a’s:

q0
b→ q0

a→ q0
a→ q0

a→ q0

q0
b→ q0

a→ q0
a→ q0

a→ q1

q0
b→ q0

a→ q0
a→ q1

a→ q2

q0
b→ q0

a→ q1
a→ q2

a→ q3

So we can end in q0, q1, q2 or in q3. The last is a final state, the others are not. This
phenomenon we call non-determinism: the automaton executes non-deterministically
(in a way that can not be determined beforehand) one of the possible computations.

(ii) If we take the word bbb as input, only one computation is possible, which ends in q0.

q0
b→ q0

b→ q0
b→ q0

(iii) With input baa three computations are possible, that all end in a non-final state.

q0
b→ q0

a→ q0
a→ q0

q0
b→ q0

a→ q0
a→ q1

q0
b→ q0

a→ q1
a→ q2

(iv) With input aba three computations are possible.

q0
a→ q0

b→ q0
a→ q0

q0
a→ q0

b→ q0
a→ q1

q0
a→ q1

The first one ends in q0, the second one ends in q1 and the third one ‘ends’ in q1 without
having processed the full word yet (only the letter a has been read). This situation we
call deadlock : the computation cannot continue, despite the fact that not all input has
been read.

When does a non-deterministic finite automaton accept a word w?

Definition 4.10
The non-deterministic automaton M accepts the word w when with input w there exists a
computation that ends in a final state with the whole word having been read.

A computation that “consumes” the whole input and ends in a final state, we also call
a successful or accepting computation. So: if a computation stops in a deadlock it is not a
successful computation.

Let us also make precise what is a non-deterministic finite automaton, and what is the
language that such an automaton accepts.

Definition 4.11
A non-deterministic finite automaton consists of the following five components

1. A finite set Σ, the input alphabet, or set of atomic actions,

2. A finite set Q of states,

3. A distinguished state q0 ∈ Q called the initial state,

4. A set of distinguished states F ⊆ Q, the final states,

42

5. A transition function δ, that for each state q and d ∈ Σ∪{λ} gives a set of states δ(q, d).

(If q′ ∈ δ(q, d), then there is an arrow q
d→ q′, so these are the labeled arrows in the

diagram of the automaton).

Non-deterministic finite automata are often written as a quintuple M := 〈Σ, Q, q0, F, δ〉. The
language of M , L(M), is defined as follows:

L(M) := {w ∈ Σ∗ | w is accepted by M}.

So: w ∈ L(M) if and only if there is a computation of the automaton M with input w that
stops in a final state after having read all symbols in w.

Exercise 4.J
(i) Investigate in the non-deterministic finite automaton M6 that we defined before which

computations exist with input abaaa, ababa, ab and baaab.
(ii) Which of these words are accepted?
(iii) Describe the language that M6 accepts.
(iv) Adapt M6 in such a way that it accepts {w | w ends with aaa}.

Exercise 4.K
Consider the non-deterministic finite automaton M7.

M7 : // q0
λ //

λ
��

q1 a,bkk

q2

a,c

II

(i) Which computations are possible with input aba, cac, abc and λ?
(ii) Which of these words are accepted?
(iii) Describe the language that M7 accepts.

Can we do more using non-deterministic automata than with deterministic automata?
Yes, we can model non-deterministic computations. But can we also accept languages that we
could not accept before? In other words:

Does there exist a language L for which we do have a non-deterministic automaton
M that accepts L (L = L(M)), but for which there is no deterministic automaton
M ′ that accepts L (L = L(M ′))?

The answer is no:

Theorem 4.12
For each non-deterministic automaton M we can make a deterministic automaton M ′ such
that L(M) = L(M ′).

The construction is not terribly difficult, but we will not give it here. We illustrate it using
two examples and then we immediately see why non-deterministic automata are sometimes
useful (because they are much smaller). Consider therefore the two deterministic finite au-
tomata that correspond to M6 and M7: M8 and M9. Check for yourself that these automata
indeed accept identical languages.

M8 : // q0
a ++

b

II
q1

a //

b

kk q2
a //

b

__
q3 a,bkk

43

M9 : // q0
b //

c

��
a

TT
q1 a,bkk

c

��
q2

a,c

II
b // q3 a,b,ckk

Exercise 4.L
(i) Construct a non-deterministic finite automaton for the language

L = {w ∈ {a, b, c}∗ | w ends with aab or w ends with ccb}

(ii) Construct a non-deterministic finite automaton for the language

L′ = {w ∈ {a, b, c}∗ | w = vu and v contains aa and u contains bb}

Exercise 4.M
(i) Construct a deterministic finite automaton that accepts the language of M11.

M11 : // q0
λ //

λ
��

q1 akk

bxx
q2

a

II

c
88

(ii) Describe the language that M11 accepts.
(iii) Construct a deterministic finite automaton that accepts the language of M12.

M12 : // q0
a //

a,b

II
q1

a ++

λ

33 q2
a ++

λ

33 q3 a,bkk

(iv) Describe the language that M12 accepts.

Exercise 4.N
(i) Suppose M1 is a finite automaton that accepts L1 and that M2 is a finite automaton

that accepts L2. Construct a non-deterministic finite automaton that accepts L1 ∪ L2.
[Hint: Look at example M7 above.]

(ii) Prove that the class of regular languages is closed under ∪, i.e., if L1 and L2 are regular,
then L1 ∪ L2 is also regular.

(iii) Suppose M1 is a finite automaton that accepts L1 and M2 is a finite automaton that
accepts L2. Define a non-deterministic finite automaton that accepts L1L2. Remember
that L1L2 is the language that consists of first a word from L1 and then a word from
L2, so L1L2 = {vw | v ∈ L1, w ∈ L2}.

(iv) Prove that the class of regular languages is closed under concatenation, i.e., if L1 and
L2 are regular, then L1L2 is also regular.

44

4.4 Important concepts

alphabet
atomic actions, 36, 42

automata
accepts a word, 36
rejects a word, 36

automaton
DFA, 36
final state, 36
finite, 36
initial state, 35
language of
L(M), 37, 43

quintuple
〈Σ, Q, q0, F, δ〉, 36, 43

sink, 39
state, 36, 42
transition function, 36, 43

computation
accepting, 42
successful, 42

deadlock, 42

language recognizer, 37

non-determinism, 42
non-deterministic finite automaton, 42

accepts a word, 42
NFA, 41

45

Chapter 5

Discrete mathematics

This chapter deals with a number of small subjects that we have collected under the title of
discrete mathematics. Notable about all these subjects, and the reason we have grouped them
under this title, is that they all deal with natural numbers: the number of vertices in a graph,
the number of steps in a recursive computation, the number of ways to traverse a grid from
one point to another, etc. We never have to deal with problems of continuity, with an infinite
number of points between two objects.

For more information, take a look at the introductory texts [1] or [4].

5.1 Graphs

This first section will give a short introduction to graph theory. Graphs are often encountered
when studying things like languages, networks, data structures, electrical circuits, transport
problems, flow diagrams, and so on.

Intuitively, a graph consists of a set V of vertices and a set E of edges between vertices.

Example 5.1
Two examples are:

1

3

2

4

a

b

c

d
G1 G2

All uncertainties you might have with this informal description, such as the questions: ‘When
are two graphs the same?’, ‘Must the vertices lie on a flat surface?’, or ‘May the edges intersect
each other?’, are resolved with a formal definition:

Definition 5.2
A graph is a tuple 〈V,E〉, of which V is a set of names, and E a set of 2-element subsets of V .
The elements of V are called vertices (singular: vertex), or sometimes nodes, and the elements
of E are called edges. We denote the edges not as usual sets, {v, w}, but instead as (v, w). So
keep in mind that (v, w) and (w, v) denote the same edge.

Example 5.3
The graph G1 from example 5.1 is then 〈V,E〉, with V = {1, 2, 3, 4} and E = {(1, 4), (2, 3),
(2, 4)}. And G2 = 〈V,E〉, with V = {a, b, c, d} and E = {(a, c), (a, d), (c, d)}.

46

Remark 5.4
Notable in our definition 5.2, is that V is allowed to be the empty set. Also, the edges don’t
have a direction: they are lines instead of arrows. Technically then, we are dealing with
undirected graphs, where the automata of Chapter 4 were so-called directed graphs, with
arrow edges.

Another remark is that it is technically impossible for an edge to connect a vertex to itself,
because such an edge, connecting say v to itself, would be (v, v) = {v, v} = {v}, but that
is a 1-element subset of V , and thus excluded by definition. Also impossible are two edges
connecting the same two vertices. Of course, all these impossibilities could be resolved by
changing the definition, but as it happens, this definition is elegantly simple, and already
leads to enough mathematical expressivity and contemplation.

Definition 5.5
Let G = 〈V,E〉 be a graph, and v, w ∈ V .

• A neighbor of v is any vertex x for which (v, x) ∈ E.

• The degree (or: valency) of v is the number of neighbors v has.

• A path from v to w is a sequence of distinct edges (x0, x1), (x1, x2), . . . , (xn−1, xn), with
n > 0, x0 = v, and xn = w. We will also denote such a path as: x0 → x1 → x2 → · · · →
xn.

• With the statement ‘G is connected ’ we mean to say that every pair of vertices has a
path connecting the two.

• A component is an as large as possible connected sub-graph of G.

• A cycle, also sometimes called a circuit, is a path from a vertex to itself.

• With the statement ‘G is planar ’, we mean to say that G can be drawn upon the plane,
i.e. a flat surface, such that no edges intersect each other. (You are allowed to bend the
edges if that is necessary.)

• With the statement ‘G is a tree’ we mean that G is connected and doesn’t contain any
cycles. (Which means, you can indeed picture it as a tree.)

To give an example of how real-world problems can be stated in terms of graph theory: the
question whether a graph is planar is relevant to whether we can burn an electrical circuit
onto a single layer chip.

Exercise 5.A
Prove that in a tree, between any two points v and w, there is exactly one path that connects
the two.

Exercise 5.B
A bridge in a graph G is an edge e for which: if you remove e from G, then the number of
components of G increases. Prove that in a tree, every edge is a bridge.

Example 5.6
Let’s take a look at some ‘real-world’ graphs.

(i) The ‘country graph’ is 〈V,E〉, in which V is the set of all countries of the world, and
E is the relation ‘borders’ (on the ground). The neighbors of the Netherlands are
Germany and Belgium, and thus the degree of the Netherlands is 2. A path from the
Netherlands to Spain would be, for example: the Netherlands→ Germany→ France→
Spain. The country graph is not connected. {England,Scotland,Wales} is a component.
The Netherlands → Germany → Belgium → the Netherlands is a cycle. The country
graph is planar.

47

(ii) K4 = 〈{1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}〉 (the complete graph with
four points). Generally: Kn is the graph 〈{1, . . . , n} , {(v, w) | 1 ≤ v < w ≤ n}〉. The
graph K4 is planar. To understand this, note how instead of intuitively drawing it as
the left picture, we can also draw it as in the right picture:

1

3

2

4

1

3

2

4

(iii) The Petersen graph is 〈V,E〉 where{
V = {ab, ac, ad, ae, bc,bd,be, cd, ce, de}
E = {(v, w) | v and w have no letters in common}

ae

ab

de

ce

cd

ac be

ad bd

bc ae

It can be shown that the Petersen graph is not planar.
(iv) If a language is given by an inductive definition, we can make a corresponding graph.

Take for example the language produced as follows:

axiom λ

rule x → xa
y → yb

We can then create the corresponding graph by:

• first, writing down all words that are included in the language, merely by an axiom
(these are then the initial vertices in the graph),

• then, step-wise adding words (vertices) to the graph on the grounds of the lan-
guages’ production rules, whereby we connect any new word to the word it was
built up from (with its producing rule) with an edge.

For the above language, we then get this (unfinished, infinite) graph:

aaa aab aba abb baa bab bba bbb

aa ab ba bb

a b

λ

The graph is indeed a tree.

48

(v) For a word that is produced by a context-free grammar, you can create a parse tree,
that demonstrates how the word is produced from the grammar. Take the context-free
grammar from exercise 3.H:

S → aSb | A | λ
A → aAbb | abb

The word aaabbbbb is produced by this grammar, in the following way: S → aSb →
aAb→ aaAbbb→ aaabbbbb. Below is the parse tree corresponding to this production.

0S

1a 2S 3b

4A

5a 6A 7bb

8abb

In the parse tree, a leaf corresponds to a final sequence of letters, and a non-leaf vertex
corresponds to a nonterminal that produces the word parts depicted by the vertices
drawn below it. So, following the production rules S → aSb, we draw a vertex with
label S, and three subvertices: a leaf with label s, a non-leaf with label S, and a leaf
with label b. The next production step, A → aAbb, continues the graph generation,
until we have ended up with the above. Reading the leaves, beginning at the top left,
counter-clockwise around the graph, we get the produced word: aaabbbbb.

Remark 5.7
Information scientists almost always draw trees ‘upside down’: with the ‘trunk’ at the top
and the branches pointing down, whereas mathematicians often draw trees with the right side
up (see previous example). In a parse tree, often only the labels are drawn, and not the
numbering as included in the example above.

Exercise 5.C
Prove that for all n ≥ 1, it holds that Kn has exactly 1

2n(n− 1) edges.

5.2 Isomorphic graphs

Definition 5.8
A function f from a set A to a set B is called a bijection if every element in B has exactly
one original. Formally: for every b ∈ B, there exists some a ∈ A such that f(a) = b and for
every a′ ∈ A it holds that if f(a′) = b, then a = a′.

Definition 5.9
We say that two graphs 〈V,E〉 and 〈V ′, E′〉 are isomorphic if there is a bijection ϕ : V → V ′

such that for all v, w ∈ V , we have (v, w) ∈ E if and only if (ϕ(v), ϕ(w)) ∈ E′. Put differently:
two graphs are called isomorphic if, disregarding the labels of the vertices, they are the same.
A ‘property preserving’ bijection ϕ like the above is called an isomorphism.

49

Example 5.10
Consider the following two graphs.

G3

1 2

4 3

G4

3

6

9

5

The graphs G3 and G4 are isomorphic, because we have an isomorphism ϕ:

1 7→ 6

2 7→ 9

3 7→ 3

4 7→ 5

Isomorphic graphs are ‘the same’ if we are only interested in the graph-theoretic properties.
For example: If G and G′ are isomorphic and G is connected, then so is G′.

Exercise 5.D
Check which of the graphs below are isomorphic to each other:

3 4 7 8 c d

1 2 5 6 a b
G1 G2 G3

If two graphs are isomorphic, give an isomorphism between the two. If they are not, then
explain why such an isomorphism cannot exist.

5.3 Euler and Hamilton

Definition 5.11
An Eulerian path, in a graph 〈V,E〉, is a path in which every edge from E is included exactly
once. An Eulerian circuit , or Eulerian cycle, is an Eulerian path that is a cycle as well.

Example 5.12
Consider the graph:

1 2

4 3

5

The path 1 → 4 → 5 → 3 → 1 → 2 → 4 → 3 → 2 is an Eulerian path. Because vertex 1 has
degree 3, this graph has no Eulerian circuit. This can be seen by examining the times that
such a cycle would traverse vertex 1: if it does so only once, then one of its three edges cannot
have been traversed, and if the cycle would traverse vertex 1 twice (or more), then at least
one of its edges must have been used multiple times. So apparently, the graph doesn’t admit
an Eulerian cycle.

50

If we write out this argument in general, we have proved the following simple proposition:

Theorem 5.13 (Euler)
In a connected graph with at least two vertices:

1. An Eulerian circuit exists if and only if every vertex has an even degree.

2. An Eulerian path exists if and only if there are at most two vertices of odd degree.

Eulerian circuits are of importance to for example newspaper deliverers, or to neighbor-
hood police officers that want to efficiently pass through their neighborhood, ideally visiting
each street exactly once and ending up where they started. A whole different problem is of
importance to the ‘traveling salesman’, who wants to visit each of his customers (or cities)
exactly once, returning home afterwards. He would be interested in a so-called ‘Hamiltonian
circuit’:

Definition 5.14
A Hamiltonian path, in a graph 〈V,E〉, is a path in which each vertex of V is traversed exactly
once. A Hamiltonian circuit , or Hamiltonian cycle, is a Hamiltonian path that is a cycle as
well (with the exception that the initial and final vertices are allowed to be the same).

Exercise 5.E
Given here is a city map G of a village, on which streets are indicated by edges. There are
pubs located on every vertex. The pubs are indicated by vertices, numbered 1 through 12:

1 2 3 4 5 6 7

8 9 10

11 12

Formulate the following questions in terms of Hamiltonian and Eulerian circuits and paths,
and answer them as well:

(i) Is it possible to make a walk in such a way that every street is traversed only once? If
so, give an example, and if not, explain why.

(ii) Is it possible to make a walk, passing every street exactly once, and starting and ending
in pub 3? If so, give an example, and if not, explain why.

(iii) Can a pub crawl be organized such that every pub is visited exactly once? If so, give an
example, and if not, explain why.

Exercise 5.F
Below, two floor plans of houses are given, in which the rooms and the garden have been given
names.

a b c

d e f

g

a b

c d

e

(i) For both floor plans, draw a corresponding graph, where the rooms, including the garden,
become vertices, and the doors connecting rooms become edges connecting vertices.

51

(ii) For both houses, check whether it is possible to make a stroll through the house in such a
way that every door is used exactly once, and you end up in the room where you started
out. Explain your answer, and if you argue that such a stroll is possible, give an explicit
example.

(iii) For both houses, check whether a stroll exists that passes through each room, as well
as the garden, exactly once, returning to the original room afterwards. Explain your
answer and give concrete examples if these strolls indeed exist.

Exercise 5.G
Which of the following graphs has a Hamiltonian circuit? Provide such a circuit or explain
why a Hamiltonian circuit cannot exist.

g

d

a

h

e

b

i

f

c

g

d

a

h

e

b

i

f

c

Exercise 5.H
Let Q3 = 〈V,E〉 be the three dimensional hypercube graph, where V are the eight corners of
a cube and E are the twelve edges connecting each vertex with three other vertices.

(i) Is Q3 planar?
(ii) Does Q3 have a Hamiltonian circuit?
(iii) Does Q3 have an Eulerian circuit?

Don’t forget to explain your answers!

Exercise 5.I
Show that the Petersen graph does contain a Hamiltonian path, but doesn’t contain a Hamil-
tonian cycle.

5.4 Colorings

Definition 5.15
A graph 〈V,E〉 is called bipartite if V can be written as V1 ∪ V2 where V1 and V2 are disjoint,
in such a way that every edge leaving from a vertex of V1, leads to a vertex of V2, and the
other way around. Put differently: you can color the vertices red and blue in such a way that
no edge connects two vertices of the same color.

Example 5.16
Two examples of bipartite graphs:

b1 r1

r2 b2

Example 5.17
The complete bipartite graph with m red and n blue vertices, where every red vertex is con-
nected to every blue vertex and the other way around, is denoted by Km,n.

K2,3 K3,3

52

Definition 5.18
A vertex coloring of a graph 〈V,E〉 is a function f : V → {1, . . . , n}, such that for every edge
(v, w), we have f(v) 6= f(w). So: each vertex is assigned one of n colors, and neighboring
vertices never share the same color.
The chromatic number of a graph is the least number n for which such a coloring is possible.

Example 5.19
Bipartite graphs are then graphs whose chromatic number is either 1 or 2.

Exercise 5.J
Find the chromatic number for the following two graphs. Explain your answer.

Exercise 5.K
Show that if a bipartite graph has a Hamiltonian path, the number of red vertices and blue
vertices differs at most one.

Exercise 5.L
At a certain university quite a lot of language courses are being offered: Arabic, Bulgarian,
Chinese, Dutch, Egyptian, French and German. When creating the schedule for these courses
the schedule maker has to take these requirements into account:

• All languages are being taught each day.

• Each lesson takes 105 minutes.

• The slots for the lessons are 08.45–10.30, 10.45–12.30, 13.45–15.30, 15.45–17.30 and
18.45–20.30.

• The building with five lecture rooms can only be rented as a whole, so the more courses
are being taught in parallel, the cheaper it will be for the university.

• Some students have registered for more than one course and hence these courses should
not be given in parallel. In the table below the places marked with ∗ indicate that
there is at least one student that has registered for both the language in this row as the
language in this column.

A B C D E F G

A * * * *
B * * * * *
C * * * *
D * * * *
E *
F * * *
G * * *

Give a schedule for the daily lessons that complies with the given requirements. Use graph
theory to prove that your schedule is optimal.

53

An interesting theorem by Appel and Haken, the proof of which was only found in 1975
and which is unfortunately too complicated to be included in this course, is the following:

Theorem 5.20 (Four color theorem.)
The chromatic number of any planar graph is at most 4. Put differently: every map (of
countries or cities, for example) can be colored using at most four colors, such that no adjacent
territories share the same color.

5.5 Towers of Hanoi

The puzzle of the ‘Towers of Hanoi’ consists of three rods, on which a number of discs of
different sizes are slid. The aim of the puzzle is to reconfigure the discs so that they all reside
on one of the other rods, by subsequently moving a single disc from the top of one rod to
another, but where it is not allowed to place a larger disc above a smaller disc.

In the picture above, we have five discs. Can you solve the puzzle?
After some puzzling, you might succeed. But often, the strategy by which you did, is

forgotten afterwards; moreover, we would like to solve the problem in general, for say 7 discs,
or 8 discs, as well.

The important concept here is generalizing the problem: can we solve the puzzle for any
number of discs? Note that the problem is very similar if we would only have four discs, and
that the four disc problem, in turn, is very similar to the three disc problem.

Suppose we have already figured out how to solve the problem for four discs. Then,
disregarding a fifth disc below all others on the initial rod, we can first transfer the four top
discs to the second rod. Now, the fifth, large, disc, is cleared free on the first rod, and thus
we move it to the third rod. Finally, we transfer the four discs unto it on the third rod, which
we were able to do by assumption, resulting in all five discs now residing in order on the third
rod, and we have solved the problem for five discs.

So, as you see, we can subsequently solve the problem for an extra disc, if we have already
solved it for some number of discs.

Remark 5.21
This means that if we can solve the problem for a single disc, we can solve it for any number
of discs, including the case of five discs, but also, say, ten or fifteen. And of course, the single
disc problem is trivial: you can just move the disc freely.

Definition 5.22
The method we just demonstrated of solving a mathematical problem, is the method of recur-
sion. Using recursion, one tackles a problem by dividing it into simpler problems, which are
basically the same, ensuring that the solution of the larger problem then follows from those
of the smaller problems. And of course, you should not forget to manually solve the smallest
problem as well.

Now consider this question: given our strategy to solving the puzzle of Hanoi as described
above, how many individual steps are needed? Call this number an, if we are dealing with the

54

version with n discs. Of course, a1 = 1, and a2 = 3 is easy to see as well. But what about a5?
It can be hard to see this at once. But again, recursion comes to the aid: in order to solve
Hanoi with five discs, we would first solve it for four discs, then move the largest one to the
third rod, and then use the four disc solution once more. In a formula, that would translate
to: a5 = a4 + 1 + a4 = 2a4 + 1. Of course, this recursive formula is not specific for a5, it holds
in general: an+1 = 2an + 1, for the numbers of discs n ≥ 1 of course. So, we can compute
a3 = 2 · a2 + 1 = 2 · 3 + 1 = 7, and a4 = 2a3 + 1 = 15, and a5 = 2a4 + 1 = 31, etc. . . This gives
us a neat sequence: 1, 3, 7, 15, 31, 63, 127, . . .

Exercise 5.M
The sequence an is recursively defined by:

a0 = 3

an+1 = a2n − 2an for n ≥ 0

Use this definition to compute the value of a5.

Exercise 5.N
The sequence bn is recursively defined by:

b0 = 4

bn+1 = b2n − 2bn for n ≥ 0

Use this definition to compute the value of b5.

Exercise 5.O
Consider the sequence cn for n ≥ 0, given by the values:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, . . .

Give a recursive definition for cn.

5.6 Programming by recursion

Recursion is not only useful for doing mathematics, it is also an invaluable programming
technique.

Suppose you have a little library in your programming language, that has an addition op-
eration, although it doesn’t yet support multiplication. How would you define multiplication?
Easy, with recursion:

n ∗ 1 := n

n ∗ (m+ 1) := n ∗m+ n

And once we have multiplication, we can also define exponentiation:

n1 := n

n(m+1) := nm ∗ n

Both cases display how recursion allows you to define the operation (or, solve the problem)
in terms of smaller cases, which are combined to form the new case.

Example 5.23
Although we talk of programming, the formulas above might not resemble actual computer
code enough to bring home the point. Therefore, we added the following two pieces of Maple
code in Figure 5.1 for illustration purposes—and of course most other languages would allow
a similar definition. Maple, by the way, is a so-called computer algebra system, allowing
for all kinds of other interesting calculations. If you are interested, you can use Maple on
lilo.science.ru.nl.

55

lilo.science.ru.nl

mult := proc (n ,m)
i f m=1

then n
else mult (n ,m−1)+n

end i f
end proc ;

pow:=proc (n ,m)
i f m=1

then n
else mult (pow(n ,m−1) ,n)

end i f
end proc ;

Figure 5.1: Recursive Maple procedures

Exercise 5.P
The Maple programs in Example 5.23 are not very robust. If we provide for m a value which
is not a natural number, Maple will go into an infinite loop. Modify the programs in such a
way that if both m and n are integers, Maple gives the correct result.

Remark 5.24
In exercises and exams, we will sometimes ask for you to give a program using recursion. If
we do so, so-called pseudocode will suffice: you need not actually know or adhere to a specific
programming language. All is OK as long as it is clear how the program would work.

5.7 Binary trees

We come by another kind of recursive programming when studying what are called binary
trees. An example of such a tree can be seen in figure 5.2.

Figure 5.2: A binary tree

Although this tree might seem daunting, it was drawn with only a simple recursive pro-
cedure. The main insight here, is that any larger binary tree is composed of a stem, out of
which two smaller binary trees grow: one going left, and one going right, both drawn slightly
smaller, and of course at an angle.

So, a recursive recipe (or recursive function, or recursive procedure, or recursive program)
is easily provided:

1. draw a stem

2. draw the left (sub)tree

3. draw the right (sub)tree

56

More precisely:

f(n, x, y, α, `) =

do nothing if n = 0
1. draw stem(position 〈x, y〉, angle α, length `)
2. f(n− 1, 〈x1, y1〉, α− 30, `/2) if n > 0
3. f(n− 1, 〈x2, y2〉, α+ 30, `/2)

As input to the program are given: the height of the tree n, the starting position from
which the tree should grow 〈x, y〉, the angle at which it should be drawn α, and the length its
stem should have `. The coordinates 〈x1, y1〉 then denote the endpoint of its stem, and can
be calculated from α and `.

The height of the tree, n, is the most important input to this recursive procedure, for
our purposes of explaining recursion. So in the list below we will omit the program’s other
variables.

The task of drawing a tree of height n is reduced to the task of drawing two trees of height
n− 1, and hence this program indeed uses recursion. This can be clearly seen when taking a
look at the steps that the computer will consecutively take to execute this program:

[1] draw tree: f(3)

[1.1] draw stem

[1.2] draw left tree: f(2)

[1.2.1] draw stem

[1.2.2] draw left tree: f(1)

[1.2.2.1] draw stem

[1.2.2.2] draw left tree: f(0)

[1.2.2.2.1] do nothing

[1.2.2.3] draw right tree: f(0)

[1.2.2.3.1] do nothing

[1.2.3] draw right tree: f(1)

[1.2.3.1] draw stem

[1.2.3.2] draw left tree: f(0)

[1.2.3.2.1] do nothing

[1.2.3.3] draw right tree: f(0)

[1.2.3.3.1] do nothing

[1.3] draw right tree: f(2)

[1.3.1] draw stem

[1.3.2] draw left tree: f(1)

[1.3.2.1] draw stem

[1.3.2.2] draw left tree: f(0)

[1.3.2.2.1] do nothing

[1.3.2.3] draw right tree: f(0)

[1.3.2.3.1] do nothing

[1.3.3] draw right tree: f(1)

[1.3.3.1] draw stem

[1.3.3.2] draw left tree: f(0)

[1.3.3.2.1] do nothing

[1.3.3.3] draw right tree: f(0)

[1.3.3.3.1] do nothing

Note how a recursive definition is often very simple, though the execution of a recursive
function can be quite complicated: quite a lot of book-keeping can be required to keep track
of which sub-problem is being solved at any given point in time. Typical work for computers!

57

5.8 Induction

Let’s return back to the sequence we encountered earlier, the sequence of the number of steps
needed to solve the puzzle of Hanoi with n discs. This sequence was given by the recursive
formula an+1 = 2an+1, where an stands for the number of steps needed. Of course computing
an for a high n, for example a38, can now be a bit tedious, because we have to first compute
all previous an’s. It would be more convenient if we had a direct formula to compute a38.

Taking another look at the sequence: 1, 3, 7, 15, 31, 63, 127, . . . , one might notice that it
looks very much like the sequence of powers of two: 2, 4, 8, 16, 32, 64, 128, . . . The numbers of
the first sequence seem to always be 1 less than those of the powers of two. But how do we
know this for sure, and know that it isn’t just a coincidence of the first part of the sequences?
Suppose for now that a37 = 237 − 1 would be indeed the case. Then we also have:

a38 = 2 · a37 + 1 = 2 ·
(
237 − 1

)
+ 1 = 238 − 2 + 1 = 238 − 1.

So, if it holds for the 37th element, then also for the 38th, and so on. Of course there
is nothing specific about it being exactly the 37th going on above, so we have the general
truth that if an = 2n − 1, then also an+1 = 2n+1 − 1. Furthermore, we already know that
a1 = 21 − 1 = 1. So then indeed, it holds for a2, and then also for a3, and for a4, and so on,
and in particular also for a38. We have now proved that indeed for all n, we have an = an− 1,
and this is what we call a direct formula for an, because it doesn’t depend on any previous
values.

The method of proof demonstrated above is what we call induction. Induction, as a proof
technique, is very similar to recursion, a way to define recursive formulas.

Definition 5.25
Induction can be used to prove that a certain predicate P (n) holds for all natural numbers
(0, 1, 2, 3, . . .). Such a proof by induction is given by:

1. A proof of P (0). (The base case.)

2. A proof that: if P (k) holds for some k ∈ N, where k is greater than or equal to the base
case, then also P (k + 1). (The induction step.)

Giving these two is then enough to show that P (n) holds for all n. When proving P (k + 1),
(in 2.), the assumption that P (k) holds already is called the induction hypothesis (IH).

To see how, for example, P (37) then follows from such a proof by induction, note first that
P (0) holds, and thus (by 2.) also P (1), and thus (again by 2.) also P (2), etc, until we arrive
at the truth of P (37).

In our example above, the predicate P (n) was the statement that an = 2n − 1.

Remark 5.26
A recurring question is whether one should start with P (0) or with P (1). The answer to
this question depends on the situation. If you want to prove something about all natural
numbers, then you should of course start with P (0). But if you only want to prove something
about all natural numbers greater than, say, 7, then of course you may start with P (8). It
may sometimes even be necessary to prove the first number of cases separately, because the
regularity only arises after that. Your induction step proof might then be for, say, k ≥ 5.

Remark 5.27
In a way, induction can be seen as the opposite of recursion. The emphasis of induction lies
on consecutively proving larger cases, while recursion is used to break a problem down into
smaller cases: the opposite of the first.

58

Example 5.28
How much does 1 + 2 + 3 + · · · + 99 add up to? You could calculate this manually, or use a
calculator, but in both cases you would be sure to be busy for a while. Unless you are smart
of course, and use recursion and induction. Suppose you define s(n) := 1 + 2 + · · · + n, for
n ≥ 1. Then a recursive program for computing s(n) would be s(n+ 1) = s(n) + n+ 1.

After looking at the first number of results s(1), s(2), s(3), . . . , you might start to suspect
that generally s(n) is given by s(n) = (n2 + n)/2. To prove this direct formula for the
value of s(n), we use induction. In this example our predicate P (n) is the statement that
s(n) = (n2 + n)/2.

Base Case Does P (1) hold? Yes, because s(1) = 1 = (12 + 1)/2.

Induction Step Now suppose that we already know that P (k) holds for some k ∈ N with
k ≥ 1, that is, s(k) = (k2 + k)/2 (IH). Then do we have that P (k + 1) holds as well?
Let’s see what we can say about s(k + 1):

s(k + 1) = s(k) + k + 1 (by definition of s(k + 1))

=
k2 + k

2
+ k + 1 (IH)

=
k2 + k + 2k + 2

2
(algebra)

=
(k2 + 2k + 1) + (k + 1)

2
(algebra)

=
(k + 1)2 + (k + 1)

2
(algebra)

So P (k + 1) indeed holds.

So indeed, it follows by induction that s(n) = (n2 + n)/2 holds generally for n ≥ 1.

The mathematician Gauss, by the way, was able to solve this problem in an easy way,
without using induction. See exercise 5.U.

Example 5.29
In how many ways can we order the numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9? It is cumbersome
to write down all possibilities. But luckily, we don’t need to. Let an denote the number of
orderings of n elements. So, the question is what the value of a9 is. At least we know where
to start: a1 is simply 1. Furthermore, an+1 = (n + 1) · an, because we would first choose an
element to put at the front of the list, which is a choice of 1 in n+ 1, and then we order the
remaining n elements, for which there are an possibilities.

So how, then, do we calculate a9? Well, the definition we gave above is exactly that of the
factorial: an = n!. Which means, we can use any standard scientific calculator.

Example 5.30
What is the value of the sum

1 + a+ a2 + a3 + · · ·+ an

given some n ∈ N and an arbitrary a? Let’s first test it out on some small values:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 10 n = 42

a = 0 1 1 1 1 1 1 1

a = 1 1 2 3 4 5 11 43

a = 3 1 4 13 40 121 88573 164128483697268538813

a = 2
3 1 5

3
19
9

65
27

211
81

175099
59049

328256958598444055419
109418989131512359209

a = −1 1 0 1 0 1 1 1

a = −2 1 −1 3 −5 11 683 2932031007403

59

An attentive student might remember the formula for calculating the sum of a geometric
sequence:

1 + a+ a2 + a3 + · · ·+ an =

{
n+ 1 if a = 1
an+1−1
a−1 if a 6= 1

We will prove by induction that the case where a 6= 1 holds. We start off by defining precisely
what our predicate P (n) is:

P (n) := 1 + a+ a2 + a3 + · · ·+ an =
an+1 − 1

a− 1

Base Case We want to prove the statement for all n ∈ N, so we start with the base case of
P (0), which means that we have to prove that:

1 =
a0+1 − 1

a− 1

Indeed this is the case, because a0+1 − 1 = a1 − 1 = a − 1. So the numerator and the
denominator of the fraction are equal, which implies that the fraction is indeed equal to
1. Recall that we have a 6= 1 by assumption, so we don’t have to worry about dividing
by zero.

Induction Step We may assume the induction hypothesis, P (k) for some k ∈ N such that
k ≥ 0, and must now prove that P (k + 1) holds as well, that is:

1 + a+ a2 + a3 + · · ·+ ak + ak+1 =
ak+2 − 1

a− 1

We do this by rewriting the left hand side of the equation until we see how our assumption
P (k) fits into it, then use the induction hypothesis, and then rewrite a bit more until we
have the right hand side of the equation.

1 + a+ a2 + a3 + · · ·+ ak + ak+1

= (1 + a+ a2 + a3 + · · ·+ ak) + ak+1 (reveal left hand side of P (k))

=
ak+1 − 1

a− 1
+ ak+1 (apply IH)

=
ak+1 − 1

a− 1
+ ak+1 · a− 1

a− 1
(making the denominators equal)

=
ak+1 − 1

a− 1
+
ak+2 − ak+1

a− 1
(multiplying of fractions)

=
ak+1 − 1 + ak+2 − ak+1

a− 1
(adding fractions)

=
ak+2 − 1

a− 1
(simplifying)

And now we have ended up with the right hand side of the equation of P (k + 1).

So now it follows by induction that P (n) holds for all n ∈ N and a 6= 1.

Example 5.31
So far we have only concerned ourselves with theorems of which the proofs are based on, and
rely upon skills of, algebra. This example demonstrates that other options are possible as well.
Consider this 8× 8 board, of which one of its squares has been removed. Can the rest of the
board be tiled completely with only tiles of the particular shape pictured next to the board?

60

A bit of puzzling might convince you that this is indeed possible. But the question is pressing,
whether this is coincidental to the particular square removed from the board, or whether it
may be tiled whichever square is removed. The latter turns out to generally be the case, for
which we will now give an inductive proof.

First, we define our predicate P (n):

P (n) :=
A 2n × 2n board of which a single square has been removed, can always
be tiled (with tiles of the shape pictured above), regardless of which
square was removed.

Now we can make the theorem clear:

Theorem The predicate P (n) holds for all n ≥ 1.

Proof by induction on n.

Base Case The base case is P (1), because the theorem explicitly tells us that n ≥ 1. Which
means, we must prove that a 2 × 2 board can be tiled, if any single square has been
removed. This is of course easily seen to be true. Whichever square is removed doesn’t
matter, because we can simply rotate the tile. The picture below illustrates the base
case tiling.

Induction Step Let k ∈ N and k ≥ 1. We may now assume that P (k) holds (our induction
hypothesis), which means that any 2k × 2k board with one square removed can be tiled
with the special tile. And we now have to prove that P (k + 1) holds, which means that
any 2k+1 × 2k+1 board with one square removed can be tiled. Now let us consider an
arbitrary 2k+1 × 2k+1 board, of which one square has been removed. Note that such a
board can always be subdivided into four 2k × 2k board, of which one of them has a
square removed. By rotating our initial board, we can state without loss of generality,
that the square will have been removed in the lower right sub-board. The leftmost
illustration depicts this situation.

61

Now, crucially, we place the first tile in the center of our board, as depicted in the middle
illustration. Note that now each sub-board can be regarded as having ‘removed’ a single
square, except for the lower right board—but it already had a square removed. Now, we
can simply apply our induction hypothesis to all four sub-boards, thereby immediately
yielding a tiling of the full board as well. And so we have proved that P (k + 1) holds.

So with induction it follows that P (n) holds for all n ≥ 1.

Note that in this proof, we have not only proved that P (n) holds generally, but we have
actually specified a definite method for tiling. The rightmost illustration depicts the
result of this tiling method for a 16× 16 board.

Exercise 5.Q
Consider the sequence an defined by:{

a0 = 0
an+1 = an + 2n+ 1 for n ≥ 0

Prove that for all n ∈ N, an = n2.

Exercise 5.R
The inventor of the chessboard was told by the king of Persia, that he would be rewarded
any object of choice. The inventor chose the following: 1 grain of rice on the first field of the
chessboard, 2 grains of rice on the second, 4 on the third, and so on, doubling the number of
grains for each successive field. The king thought the inventor to be very humble. Now the
question is: how many grains of rice did the inventor’s choice amount to? Let’s formulate it
formally: he asked for

1 + 2 + 22 + 23 + 24 + · · ·+ 263

grains of rice. Can you find a direct formula for the result of this sum for a generalized board
with n fields? And can you then prove this formula by induction? [Hint: This is what you
could do here: Give a recursive definition for sn, the number of rice grains on the first n fields.
Make a table with three columns: one column for n, one for the expression 1 + 2 + · · ·+ 2n−1

and one for sn. Use this table to guess a direct formula f(n) for sn. Prove by induction that
f(n) = s(n) for all n ≥ 1. Use the direct formula to compute s64.]

Exercise 5.S
In exercise 5.C, we proved that for all n ≥ 1 the complete graph Kn has exactly 1

2n(n − 1)
edges. Now, try to prove this by induction on n.

Exercise 5.T
Prove by induction, that for all n ∈ N, 2n ≥ n.

Exercise 5.U
So we have seen the formula for the sum of the following sequence:

1 + 2 + 3 + 4 + 5 + · · ·+ n =
(n+ 1)n

2
.

What is the connection with this picture?

• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

62

Exercise 5.V
How many distinct sequences of length n can we make, filled with the numbers 1 through 5?
This too, can be solved easily with recursion. Let an denote the number of distinct sequences
of length n. The simplest sequence, of length 1, can of course be made in 5 ways, so a1 = 5.
A sequence of length n + 1 can be made by first taking a sequence of length n, and then
appending a new element after it. So, an+1 := 5 · an. Now, recall the definition of raising to a
power. Prove by induction, that for all n ≥ 1, an = 5n.

Exercise 5.W
Prove, by induction, that 1 + 3 + 5 + 7 + · · ·+ (2n− 1) = n2 for n ≥ 1. What is the connection
with the picture below?

◦ • ◦ • ◦
• • ◦ • ◦
◦ ◦ ◦ • ◦
• • • • ◦
◦ ◦ ◦ ◦ ◦

5.9 Pascal’s Triangle

Before we discuss Pascal’s Triangle, we repeat some combinatorics by an example.

Example 5.32
We will be taking a look at the Dutch Lotto1. In this game of chance, there is a ‘vase’, filled
with 45 sequentially numbered balls (1 up to 45). A notary then pulls six balls from this vase,
at random (and without putting them back afterwards). The numbers on these six balls are
then compared to the numbers that the players have chosen beforehand. The more numbers
coincide, the higher the rewards are. But how many distinct outcomes are there to such a
draw? Well, for the first ball to be drawn, there are of course 45 possibilities. And for the
second, 44, and for the third, 43, etc. So that would lead us to the conclusion that there are

45 · 44 · 43 · 42 · 41 · 40 =
45 · 44 · 43 · 42 · 41 · 40 · 39 · 38 · · · · · 1

39 · 38 · · · · · 1
=

45!

39!
=

45!

(45− 6)!

ways to draw six consecutive balls. But note that the ordering of these balls, after they have
been drawn, doesn’t make a difference. So for example, the draw (5, 10, 2, 29, 6) is equal, with
respect to this game, to the draw (10, 2, 5, 29, 6), but these two have both been counted once
in the calculation above. So we have to compensate for all draws that we counted ‘double’.
Each ordering of six of these balls leads to the same outcome. We know that the number of
orderings of six of these balls is 6!, as we have seen earlier, so to counter this problem, we
must divide the result of our calculation above by 6!, giving:

45!

6! (45− 6)!
= 8145060

This is then the actual number of possible draws.

Definition 5.33
Let n and k be natural numbers, with k ≤ n. We then define the binomial

(
n
k

)
as the number

of ways in which k objects can be drawn from a set of n elements (as above).

We now continue by looking at the grid coordinates (n, k) of a grid that is skewed in such
a way that we have (0, 0) at the top:

1Although we will disregard ‘Superzaterdag’ and the ‘Jackpot’ for convenience.

63

(0, 0)
(1, 0) (1, 1)

(2, 0) (2, 1) (2, 2)
(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
· ·

We will now assign values to these coordinates in different ways, and see how these different
assignments relate.

Definition 5.34
Assign ones to the left and right borders of the triangle, and then fill in the rest of the triangle
by consecutively adding up the two values directly above a new one. Put more precisely: all
coordinates (n, 0) and (n, n) get the value 1, and then each (n, k) is given by adding up the
values of (n− 1, k) and (n− 1, k − 1). The first version of Pascal’s Triangle (P41) is thus as
follows2:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Definition 5.35
Assign to each coordinate (n, k), the value

(
n
k

)
. This then gives us the second version of

Pascal’s Triangle (P42).

Exercise 5.X
Prove that all numbers on the outer edge of P42 are 1.

We claim, for k < n, that
(
n+1
k+1

)
=
(
n
k+1

)
+
(
n
k

)
. If we draw a subset A containing k + 1

elements from the set 1, 2, 3, 4, . . . n+ 1, then there are two possibilities: either n + 1 ∈ A,
or n + 1 /∈ A. In the first case, A \ {n + 1} is a subset containing k elements, drawn from
{1, 2, 3, 4, . . . , n}. In the second case, A is a subset containing k + 1 elements, drawn from
{1, 2, 3, 4, . . . , n}. So indeed

(
n+1
k+1

)
=
(
n
k+1

)
+
(
n
k

)
. Or, put differently: P42 also follows the

principle that the value of each coordinate can be found by adding the values of the two
coordinates that lie above it. The result of which is that the two triangles P41 and P42 are
exactly the same.

Definition 5.36
Assign to each coordinate (n, k), the number that denotes the amount of possible roads leading
from (0, 0) to (n, k), where each subsequent step should be one step down, either diagonally
to the left, or to the right. This gives us the third version of Pascal’s Triangle (P43).

One can then observe that:

• The border of P43 is filled with ones.

• The triangle P43 also follows the ‘principle of adding’ described above for the other two
versions of Pascal’s Triangle.

2Of course this triangle carries on infinitely, we just abbreviated it to the first eight rows.

64

Result: P43 is yet again exactly the same triangle as P41 and P42.

Definition 5.37
Assign to each coordinate (n, k), the coefficient that xk takes on in the polynomial (1 + x)n.
Example: the coordinate (6, 2) gets the value 15, because (1 + x)6 = 1 + 6x+ 15x2 + 20x3 +
15x4+6x5+x6 and thus we see that the coefficient of x2 is 15. This gives us the fourth version
of Pascal’s Triangle (P44).

Exercise 5.Y
Show that P44, too, is equal to P41.

We have seen that the four ways of presenting Pascal’s Triangle all lead to the same triangle
of numbers. Because we have seen that all versions coincide, we may speak of the Triangle of
Pascal, without having to refer to any one of its specific instantiations.

Exercise 5.Z
Demonstrate how the triangle of Pascal can be used to figure out how many distinct ways there
are, to pick four objects out of a collection of six. What is the notation for the corresponding
binomial?

Definition 5.38
The following equality is known under the name of Newton’s Binomial Theorem.

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Relating this theorem to what we have seen above, it actually simply is the statement: that
P42 is equal to P44. The more general version of the theorem,

(y + z)n =

(
n

0

)
yn +

(
n

1

)
yn−1z +

(
n

2

)
yn−2z2 + · · ·+

(
n

n

)
zn

follows simply from the fact that (y+z)n = yn(1+(zy)n) when y 6= 0. The case in which y = 0
is trivial.

5.10 Counting partitions

The binomial coefficients
(
n
k

)
are used everywhere in mathematics. However, there are other

famous families of numbers. An example of this are the Stirling numbers.
Actually there are two kinds of Stirling numbers: the Stirling numbers of the first kind or

Stirling cycle numbers
[
n
k

]
, and the Stirling numbers of the second kind or Stirling set numbers{

n
k

}
. The second kind are the more useful, and are the main subject of this section. When

we write Stirling numbers in these course notes, we mean the Stirling numbers of the second
kind or Stirling set numbers.

The Stirling numbers share many features with the binomial coefficients. There is also a trian-
gle of numbers produced according to some recurrence relation. There is also an interpretation
of the numbers in terms of counting the number of ways to separate objects in separate piles.
And there is also a formula similar to the Binomial Theorem. Let us start with counting
arrangements of objects.

How many ways are there to put four objects into non-empty boxes? The objects will be
distinct, let us call them {1, 2, 3, 4}, but the boxes will be indistinguishable.

• There is
{
4
1

}
= 1 way to put everything in one box:

{1, 2, 3, 4}

65

• There are
{
4
2

}
= 7 ways to put the objects in two boxes:

{1, 2, 3}, {4}
{1, 2, 4}, {3}
{1, 3, 4}, {2}
{1, 2}, {3, 4}
{1, 3}, {2, 4}
{1, 4}, {2, 3}
{1}, {2, 3, 4}

• There are
{
4
3

}
= 6 ways to put the objects in three boxes:

{1, 2}, {3}, {4}
{1, 3}, {2}, {4}
{1, 4}, {2}, {3}
{1}, {2, 3}, {4}
{1}, {2, 4}, {3}
{1}, {2}, {3, 4}

• There is
{
4
4

}
= 1 way to distribute everything over four boxes:

{1}, {2}, {3}, {4}

These numbers are on the fourth row of the following triangle:

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1
1 31 90 65 15 1

1 63 301 350 140 21 1

This triangle can be computed in a way very similar to Pascal’s triangle. The only difference
is that the number on the right first has to be multiplied by the ‘number of the diagonal’
before being added to the number on the left. For example we have

301 = 31 + 3 · 90

because the 90 is on the third diagonal (where the direction of the diagonal is from the
bottom-left to the top-right). Similarly we have

350 = 90 + 4 · 65

because the 65 is on the fourth diagonal.
This triangle is the triangle of the Stirling numbers of the second kind :{

1
1

}{
2
1

} {
2
2

}{
3
1

} {
3
2

} {
3
3

}{
4
1

} {
4
2

} {
4
3

} {
4
4

}{
5
1

} {
5
2

} {
5
3

} {
5
4

} {
5
5

}{
6
1

} {
6
2

} {
6
3

} {
6
4

} {
6
5

} {
6
6

}{
7
1

} {
7
2

} {
7
3

} {
7
4

} {
7
5

} {
7
6

} {
7
7

}
66

From this triangle you can read that there are
{
7
3

}
= 301 ways to put 7 objects in 3 non-empty

boxes.
An important difference with the binomial coefficients is that these have

(
0
0

)
at the top of

Pascal’s triangle, so binomial coefficients start counting from 0 everywhere. But this triangle
has

{
1
1

}
at the top. So with Stirling numbers one counts from 1 everywhere.

The way of computing the triangle can be written as a recursive definition:

Definition 5.39
The Stirling set numbers

{
n
k

}
for n, k ≥ 1 are defined by:{

n

1

}
= 1{

1

k + 1

}
= 0 if k ≥ 1{

n+ 1

k + 1

}
=

{
n

k

}
+ (k + 1)

{
n

k + 1

}
if n, k ≥ 1

Let us compare the recursive definitions of the three kinds of numbers that we are talking
about here: (

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
[
n+ 1

k + 1

]
=

[
n

k

]
+ n

[
n

k + 1

]
{
n+ 1

k + 1

}
=

{
n

k

}
+ (k + 1)

{
n

k + 1

}
These are the relations for the binomial coefficients, and for the Stirling numbers of the first
and second kind.

If we add all ways to separate four objects into boxes (regardless of the number of boxes),
so we put all four kinds of possible splits that we showed before together, we get that there
are

B4 = 1 + 7 + 6 + 1 = 15

ways to do this. This motivates the following definition:

Definition 5.40
The Bell numbers are defined for n ≥ 1 by:

Bn :=

{
n

1

}
+

{
n

2

}
+ · · ·+

{
n

n

}
Here are the first few Bell numbers:

n Bn

1 1
2 2
3 5
4 15
5 52
6 203
7 877

This is sequence A000110 in the On-Line Encyclopedia of Integer Sequences (OEIS), a huge
database of sequences of numbers on the internet.

67

Definition 5.41
A partition of a set X is a set of nonempty subsets of X such that every element x ∈ X is in
exactly one of these subsets.

If we interpret each nonempty subset as a box, it is not difficult to see that all partitions of
the set {1, 2, 3, 4} are exactly the distributions over boxes that we have seen before, except
that we put extra curly braces around them to make them a set:

{ {1, 2, 3, 4} } { {1, 2, 3}, {4} }
{ {1, 2, 4}, {3} }
{ {1, 3, 4}, {2} }
{ {1, 2}, {3, 4} }
{ {1, 3}, {2, 4} }
{ {1, 4}, {2, 3} }
{ {1}, {2, 3, 4} }

{ {1, 2}, {3}, {4} }
{ {1, 3}, {2}, {4} }
{ {1, 4}, {2}, {3} }
{ {1}, {2, 3}, {4} }
{ {1}, {2, 4}, {3} }
{ {1}, {2}, {3, 4} }

{ {1}, {2}, {3}, {4} }

Remark 5.42
The Bell number Bn represents exactly the number of partitions of a set with n objects.

So there are B4 = 15 partitions of the set {1, 2, 3, 4} as can be checked above.

Exercise 5.AA
Assume we have one bill of each of the following types: $1, $2, $5, $10, $20, $50, and $100.
In how many ways can we divide all these bills over three identical purses if there is at most
one empty purse?

Exercise 5.AB
Assume we have seven marbles. In how many ways can we distribute all these marbles over
three bags (where bags may be empty) if

(i) both the marbles and the bags are distinguishable?
(ii) both the marbles and the bags are indistinguishable?
(iii) the marbles are indistinguishable and the bags are distinguishable? [Hint: What do you

think that ◦ ◦ ◦ ◦◦ ◦◦ represents?]

(iv) the marbles are distinguishable and the bags are indistinguishable?
(v) the marbles are distinguishable and the bags are indistinguishable, but none of the bags

may be empty?

Exercise 5.AC
(i) Explain by using a combinatorial argument that

{
n
2

}
= 2n−1 − 1 for n ≥ 2.

(ii) Prove by induction that
{
n
2

}
= 2n−1 − 1 for n ≥ 2.

Exercise 5.AD
Explain by using a combinatorial argument that

{
n
n−1
}

=
(
n
2

)
for n ≥ 2.

Exercise 5.AE
Which of the following sets are partitions of the natural numbers? If it is not a partition,
explain why not.

(i) {N}
(ii) {{37} , {42} ,N \ {37, 42}}
(iii) {{x ∈ N | x is prime(x)} , {x ∈ N | x is not prime}}
(iv) {{1} , {2} , {3} , . . .}
(v) {{0, 1} , {1, 2} , {2, 3} , . . .}
(vi) {{x ∈ N | x is a multiple of 2} , {x ∈ N | x is a multiple of 3} ,

{x ∈ N | x is not a multiple of 2 and x is not a multiple of 3}}

68

Exercise 5.AF
(i) The triangle of the Stirling numbers of the first kind has as its top:

1
1 1

2 3 1
6 11 6 1

Calculate two more rows in this triangle.
(ii) Calculate the sum of the numbers in each row of the triangle you just calculated. Can

you guess a formula for these sums?

Exercise 5.AG
Expand the polynomials

(1 + x)(1 + 2x) · · · (1 + nx)

for n ∈ {1, 2, 3, 4}. Do you see a relationship with the triangle from the previous exercise?

Exercise 5.AH
There are nice relations between the Stirling numbers of the first and second kind.

(i) Given numbers a1, a2, a3, a4, we define:

b1 := a1

b2 := a1 + a2

b3 := 2a1 + 3a2 + a3

b4 := 6a1 + 11a2 + 6a3 + a4

so with coefficients from the triangle of Stirling numbers of the first kind. Now from
these numbers bi we define:

c1 := b1

c2 := −b1 + b2

c3 := b1 − 3b2 + b3

c4 := −b1 + 7b2 − 6b3 + b4

with coefficients from the triangle of Stirling numbers of the second kind, but with the
sign alternating between plus and minus.
Express the numbers ci in terms of the ai. What do you find?

(ii) Now we reverse the two kinds of Stirling numbers in this relation. If from the numbers
ci from the previous exercise we go on, and define:

d1 := c1

d2 := c1 + c2

d3 := 2c1 + 3c2 + c3

d4 := 6c1 + 11c2 + 6c3 + c4

and then express di in terms of bi, what do we find then?

69

5.11 Important concepts

Bell numbers, 67
Bn, 67

bijection, 49
binomial, 63(

n
k

)
, 63

coefficient, 65
coloring

chromatic number, 53
vertex coloring, 53

discrete mathematics, 46

Euler
circuit, 50
cycle, 50
path, 50

four color theorem, 54

graph, 46
bipartite, 52
circuit, 47
complete bipartite graph, 52
Km,n, 52

complete graph, 48
Kn, 48

component, 47
connected, 47
cycle, 47
degree, 47

valency, 47
directed, 47
edge, 46

(v, w), 46
hypercube graph, 52
neighbor, 47
node, 46
path, 47
Petersen graph, 48
planar, 47
tree, 47
tuple
〈V,E〉, 46

undirected, 47
vertex, 46

vertices, 46
grid coordinate

(n, k), 63

Hamilton
circuit, 51
cycle, 51
path, 51

induction, 58
base case, 58
hypothesis, 58
induction step, 58
proof by, 58

isomorphic, 49
isomorphism
ϕ, 49

Newton’s Binomial Theorem, 65

parse tree, 49
partition, 68
Pascal’s Triangle, 64, 65

P41, 64
P42, 64
P43, 64
P44, 65

Pascal’sTriangle, 64
predicate, 58
pseudocode, 56

recursion, 54, 58
direct formula, 58
recursive definition, 57
recursive formula, 55
recursive function, 56
recursive procedure, 56
recursive program, 56
recursive recipe, 56

Stirling cycle numbers, 65[
n
k

]
, 65

Stirling numbers of the first kind, 65
Stirling numbers, 65
Stirling set numbers, 67{

n
k

}
, 65

Stirling numbers of the second kind, 65

Towers of Hanoi, 54

70

Chapter 6

Modal logic

Although propositional logic and predicate logic are the most well-known, there are many
other ‘logics’. Different logics vary in their ability to represent nuances of statements. They
differ in which operators are used to write down formulas, and sometimes they differ in the
way interpretations are given to those operators as well.

Some examples are: Floyd-Hoare logic (in which you can describe accurately, the behavior
of programs), intuitionistic logic (which expresses exactly those things that can be computed
by computers), and paraconsistent logic (in which it is possible to retract the truth statements
as new information becomes available).

A special class of logics are the so-called modal logics, which are used to describe to which
extent we should believe certain statements to be true. Modal logics are the subject matter
of this chapter.

Within the class of modal logics, there is the important sub-class of temporal logics. These
logics are able to express at which points in time statements are true. At the end of this
chapter, we present a temporal logic in more detail. For further reading on modal logic, we
recommend the books [2] and [3].

6.1 Necessity and possibility

Traditionally, modal logics express the notion of necessity . Take the following sentence:

It is raining.

This sentence could be true or not true, but it is not necessarily true. It does not always rain,
and even when it does, the reason is not simply that it must be raining: if the weather was
different it may not have rained. The following sentence however, is necessarily true:

If it rains, water falls from the sky.

The necessity of the truth of this sentence follows from the meaning of the word ‘raining’,
which is exactly, that water falls from the sky.

This difference of necessity does not find expression in propositional logic. If we use the
following dictionary:

R it is raining
W water is falling from the sky

then the formalizations of the sentences are:

R

and
R→W

71

in which the necessity is not clearly expressed. To this purpose, modal logic introduces a new
operator �, that should be read as meaning ‘necessarily.’ The sentence:

It is necessarily true that raining implies that water falls from the sky.

is then written formally as:

�(R→W)

You might think the reverse is true as well, that water falling from the sky implies that it
is raining, but this is not true. For instance, turning on a garden hose, or standing under a
waterfall, are situations in which water does fall from the sky, without it raining. Therefore,
we have:

It is not necessarily true that water falling from the sky implies that it is raining.

which, written as a formula in modal logic, is:

¬�(W → R)

Of course it is still possible for
W → R

to hold in certain situations. For example, if it is raining, then the right-hand side of the
implication is true, and hence (as we can see in the truth table for implication) the whole
formula is true.

Besides necessity, modal logic also has a notation for possibility . This is written as: ♦.
The true sentence:

It is possible that it is raining.

is then expressed in modal logic by the formula:

♦R

If you think about it a bit, you will find that the above statement means the same as:

It it not necessary for it not to be raining.

Which is in turn expressed as:
¬�¬R

Exercise 6.A
So we see that the formula ♦R means the same as ¬�¬R. Try to find a formula without the
symbol ‘�’ that means the same as �R. Then, translate both �R and the formula you found
to ordinary English.

Definition 6.1
Any statement U will either be:

• necessary

• impossible

• contingent

A statement is said to be contingent when it is not necessarily true, nor impossibly true. That
is, its truth is somewhere between necessarily true and necessarily false.

72

Exercise 6.B
In modal logic the statement ‘U is necessarily true’ is symbolically represented as �U , and
‘U is impossible’ as �¬U , or alternatively, ¬♦U . Give two different formulas in modal logic
which express the statement that ‘U is contingent.‘

Exercise 6.C
Use the following dictionary

M I have money
B I am buying something

to translate these English sentences to formulas of modal logic:
(i) It is possible for me to buy something without having money.
(ii) It is necessarily true, if I am buying something, for me to have money.
(iii) It is possible that if I buy something I don’t have any money.

Which of these sentences seem true? Explain why.

6.2 Syntax

We will now give a context-free grammar of the formulas of modal logic. (Modal predicate
logic also exists, but we will not treat it here.) This grammar is exactly the same as the
one we have given for propositional logic before (see remark 1.4), except that the two modal
operators are added:

S → a | ¬S | (S ∧ S) | (S ∨ S) | (S → S) | (S ↔ S) | �S | ♦S

Convention 6.2
Just as with propositional logic, we allow ourselves to leave out unnecessary parentheses.
In doing this, we stick to the convention that the modal operators have the same operator
precedence as negation ‘¬’, which means that they bind stronger than the binary operators.

This means that the formula
♦a ∧ b→ ♦(�a ∨ ¬c)

should be read as
(((♦a) ∧ b)→ (♦((�a) ∨ (¬c))))

Because the grammar does not add parentheses to the unary operators, the following formula
is the ‘official’ form of the ones above:

((♦a ∧ b)→ ♦(�a ∨ ¬c))

The first two should be seen as different (and possibly clearer) ways to represent this 17-
symbol-long formula.

We can also draw the structure of the formula in a tree:

→

ww ((∧

�� ��

♦

��
♦

��

b ∨

�� ��
a �

��

¬

��
a c

In the tree, the atomic propositions are the leaves, and the logical operators the nodes.

73

Exercise 6.D
For each of the formulas below, give the ‘official’ form according to the grammar of modal
logic, and also draw a tree according to its structure.

(i) �(�a)
(ii) �a→ a
(iii) (�a)→ a
(iv) �(a→ a)
(v) ¬a→ ¬�a
(vi) ♦a→ �♦a

(vii) �a→ ♦a
(viii) ♦a ∧ b→ ♦�a ∨ ¬c

6.3 Modalities

Up until now the operator � has had the fixed meaning of ‘necessity‘ and the operator ♦
that of ‘possibility’. This is the traditional reading, but only one of a variety of possible
interpretations of these symbols. Depending on what we interpret the symbols to mean, we
get different modal logics:

logic modality �f ♦f
modal logic necessity f is necessarily true f is possibly true
epistemic logic knowledge I know that f f doesn’t contradict my knowledge
doxastic logic belief I believe that f f doesn’t contradict my beliefs
temporal logic time f is always true f is sometimes true
deontic logic obligation f ought to be f is permissible
program-logic after any execution, f holds after some execution, f holds

If not specified otherwise, ‘modal logic’ often refers to the traditional reading of ‘necessity’.
At the same time, it is also used to refer to the whole class of modal logics.

Exercise 6.E
Use the following dictionary:

R I am ready
H I am going home

For each of the logics listed in the table above (except program-logic), give an English trans-
lation of the formula:

¬R→ ¬♦H

Each of the logics enumerated in the table, have yet again their own variations. For
instance, just as there are a whole set of modal logics, so too, are there many different temporal
logics. The meaning ‘true at all times’ can be changed to ‘always true from this point on’ or
maybe ‘always true after this point in time.’ Or else, it could take into account that it is not
yet clear what is going to happen. (This is called ‘branching time’.)

6.4 Axioms

Depending on what the modal operators are meant to describe, you might want them to have
different properties. For instance, whether the formula

�f → f

should always be true. (Note: this should be read as ‘(�f) → f ’ and not as ‘�(f → f)‘,
because the � binds stronger than the →.) In the traditional interpretation of modal logic
this indeed always holds, because it translates to:

74

If f is necessarily true, then f holds.

And of course, necessary truth implies truth. But you wouldn’t want it to hold in doxastic
logic, because then it would be an encoding of the following English sentence:

If I believe f to be true, then f holds.

Although we all know that belief does not imply truth, because a belief may be mistaken. If
we turn to the logic of knowledge, epistemic logic, we want it to be true again:

If I know that f holds, then f holds.

Because knowing something to be true implies in particular that it must indeed be true (in
addition to the fact that it is known). Hence, we see that the truth of a particular property
depends on the chosen interpretation of �.

In modal logic, there are many such principles (properties), called axiom schemes of modal
logic. Some of the most important ones are listed below:

name axiom scheme property

K �(f → g)→ (�f → �g) distributive
T �f → f reflexive
B f → �♦f symmetric
4 �f → ��f transitive
5 ♦f → �♦f Euclidean
D �f → ♦f serial

The first column presents the letter or number usually used to denote the axiom scheme, and
the third column the property that is associated with the axiom scheme.

Exercise 6.F
Construct a matrix that indicates which axiom schemes holds in which logic. Let the rows
denote the logics listed on page 74, and the columns the axiom schemes. The matrix will then
have a total of 36 cells. Then write a ‘+‘ or ‘−‘ in each cell, according to whether you think
the axiom scheme is always true in the logic, or you think that it need not always hold.

It is ultimately the choice of axiom schemes to be included that distinct a particular modal
logic. Regardless of which interpretation is given to the operators � and ♦, the choice of
axiom schemes determines how the symbols may be reasoned with (which, in turn, determines
whether a particular interpretation is sensible.)

In this perspective, the most important axiomatic systems of modal logic are:

axiomatic system axioms included

K K
D K + D
T K + D + T
S4 K + D + T + 4
S5 K + D + T + 4 + 5 + B

As you can see, the K-axiom is included in all of these logics. The scheme forms a basis on
which all others are built, and therefore the modal logic K is the weakest of the modal logics.
In literature the list of axioms included for a specific axiom system is usually shorter than the
list we presented above. System S4 is typically characterized by the axioms K, T and 4. And
system S5 is typically characterized by the axioms K, T , 4 and 5. This is due to the fact
that some axioms are automatically included if a certain set of other axioms is included. For
instance, if axiom T (reflexive) is included, automatically axiom D (serial) holds as well. And
if axiom 5 (Euclidian) is included, automatically axiom B (symmetry) holds as well.

75

6.5 Possible worlds and Kripke semantics

In Section 6.1 we decided whether certain statements were true or not, by intuition. Now, we
will formalize this. When we say that ‘it is raining’ is not necessarily true, we do so because
we can imagine a world in which it is not raining. Such a world is called a possible world. If
in all possible worlds, it is raining, then we must conclude that it is necessarily true for it to
rain. This way of deciding the truth of formulas of modal logic, is called the possible world
semantics. (In logic, syntax defines the rules by which well-formed formulas are constructed,
while semantics describe the meaning of formulas. Thus, syntax is about shape, and semantics
about meaning and truth.)

You may think that in the possible world semantics, the formula �f describes the situation
that the formula f holds in all worlds, and the formula ♦f the situation that the formula f
holds in at least one world. But this has undesired consequences. For instance, the formula

�f → f

would then always be true (because if it holds in all worlds, it also holds in our current actual
world), whereas we saw in the previous section that this formula is not supposed to hold in
general (remember the modal logic of beliefs). So, we have to construct something a bit more
complicated.

The necessary additional ingredient, is that we should specify which worlds are ‘visible’
from within any given world. This means that for every world, we will specify a set of accessible
worlds, which are ‘visible from its vantage point.’ The meaning of �f will then be that it is
true in a world x, exactly in the case that f is true in all accessible worlds of x. Similarly,
♦f is true in a world x if and only if there is at least one world, accessible to x, in which f is
true. This is formalized in definition 6.6, later on.

To understand why this notion of accessibility is actually quite reasonable, it is useful
to consider the case of temporal logic. In a possible world semantics for temporal logic, the
worlds accessible to a certain world x would be that world x itself, in addition to all subsequent
worlds (in time). Which means that the definition given above of �f translates to: ‘f is true
from this point on.’

A collection of worlds, together with a relation of accessibility, is called a Kripke model ,
named after the American philosopher and logician Saul Kripke. We will now give a clean
mathematical definition of these models.

Definition 6.3
A Kripke model M = 〈W,R, V 〉 consists of:

• a non-empty set W of worlds

• a function R such that for each world x ∈ W , the set R(x) ⊆ W is the set of accessible
worlds of x. The set R(x) is also called the successor of world x. The function R can
also be seen as a relation, which is then called the accessibility relation.

• a function V such that for each world x ∈W , the set V (x) is the set of atomic propositions
that are true in world x.

We will draw Kripke models as directed graphs, where nodes denote worlds, and arrows
between worlds denote accessibility. In the nodes, we write which atomic propositions hold in
the corresponding world.

Example 6.4
Here is an example of a Kripke model, which we will name M1:

76

M1 : x1 a b c
++
a x2mm
rr

x3

OO

a c x4

In this model there are four worlds W = {x1, x2, x3, x4}. The accessibility relation of this
Kripke model is given by:

R(x1) = {x2}
R(x2) = {x1, x2}
R(x3) = {x1}
R(x4) = ∅

and the worlds make the following atomic propositions true:

V (x1) = {a, b, c}
V (x2) = {a}
V (x3) = ∅
V (x4) = {a, c}

E.g., the propositions a, b, and c are true in world x1, but the proposition d is not true in
world x1.

We now formalize when formulas are to be held true in a given model M and world x.
First, some notation:

Definition 6.5
The statement “the formula f of modal logic is true in a world x of a Kripke model M” is
denoted by

M, x f

When the model is clear from the context, this is sometimes shortened to:

x f

And when x f does not hold, we write x 6 f , with struck out.

The truth of a formula is usually tied to a specific world, in which case it corresponds
exactly to the truth definition of propositional logic as we have seen before. The only formulas
in which more than one world is taken into consideration are those formed with the modal
operators. This observation naturally leads to the following definition of the truth of a given
formula f :

Definition 6.6
Consider a Kripke model M = 〈W,R, V 〉. Let x ∈ W , p be a propositional atom, and f and
g formulas of modal logic. Then we define:

x p iff p ∈ V (x)

x ¬f iff x 6 f

x f ∧ g iff x f and x g

x f ∨ g iff x f or x g

x f → g iff if x f then x g

x f ↔ g iff (x f iff x g)

x �f iff for all y ∈ R(x), it holds that y f

x ♦f iff at least one y ∈ R(x) exists, for which y f

77

Remark 6.7
The modal character of course lies in the last two lines of this definition. The rest are exactly
the same as for propositional logic.

Let us now check whether �a → ♦b is true in world x1 of the Kripke model M1 we defined
above. This formula has the structure:

→

}}
�

��

♦

��
a b

Hence, we first ask ourselves whether �a and ♦b are true in x1. For the first, we have to check
all successors of x1, which in this case is just x2. And indeed, a is true in x2, that is, x2 a,
and so �a is true in x1, or, x1 �a. For ♦b to be true in x1, we must find a successor of x1
in which b is true. But x2 is the only successor of x1, and in fact x2 6 b, so that x1 6 ♦b.

Now we turn to the truth table of implication. We know that �a is true in x1, and ♦b is
not true in x1. And thus, �a→ ♦b is not true in x1. That is:

x1 6 �a→ ♦b

Check for yourself in which worlds of M1 the formula �a holds. If you do this correctly, you
will find that the formula in fact holds in all worlds of M1. We denote this by M1 |= �a

Definition 6.8
A formula f is said to be true in a Kripke model M if for all worlds x ofM we haveM, x f .
This is denoted by:

M |= f

Note the distinct meanings of � and !

Remark 6.9
Note that in our example, in the world x3, the formula a is not true, that is, x3 6 a. At the
same time, we have seen the truth of M1 �a. Hence we see how in a Kripke model, the
truth of �f does not imply that f is true in all worlds!

Exercise 6.G
For each formula f listed below, check in which worlds x of our Kripke model in example 6.4
it holds, that is, for which x we have x f . In addition, check whether f holds in the model,
that is, check whether M1 |= f .

(i) a
(ii) �a

(iii) ♦a
(iv) �a→ a

(v) �a→ ��a
(vi) a→ �♦a

Exercise 6.H
(i) Can you find a Kripke model M2 for which M2 |= a and at the same time M2 6|= �a?

If so, provide such a model; otherwise, explain why such a model cannot exist.
(ii) Provide a Kripke model M3 for which M3 |= a although M3 6|= ♦a. Or, if no such

model can exist, explain why.

You might want to place restrictions on the structure of Kripke models. A number of such
restrictions correspond to the axiom schemes we saw in the previous section. For instance,
you might want to impose every world x to have an arrow from and to itself, that is, x ∈ R(x).
A Kripke model that obeys this restriction is called reflexive. And the set of reflexive Kripke
models indeed corresponds with the axiom scheme T , that is, �f → f . Or, you might want to

78

impose that every world has at least one outgoing arrow. This is then called a serial Kripke
model, and these models correspond to the scheme D, that is, �f → ♦f . Note how our model
M1 is neither reflexive nor serial. (Why?)

Of the presented axiom schemes, one is always true in any Kripke model. This is the axiom
scheme K:

�(f → g)→ (�f → �g)

Exercise 6.I
(i) Does a Kripke modelM4 exist that is serial but not reflexive? If so, provide an example,

and otherwise, explain why this is not possible.
(ii) Does a Kripke modelM5 exist that is reflexive but not serial? If yes, provide an example,

and otherwise, explain why this is not possible.

6.6 Temporal logic

We will now take a more detailed look at a specific temporal logic: LTL, which stands for
Linear Time Logic. This is the logic that the SPIN model checker uses.1 A model checker is
a computer program that analyzes pieces of software. In order to use a model checker, one
first has to provide a finite automaton that describes the behavior of the software in question.
Then, that automaton is fed into the checker, together with a formula of the temporal logic
employed by the checker that expresses the property one wants to check of the software. The
model checker then analyzes the automaton and verifies whether the property expressed by
the formula holds or not.

An example of a property one may want to give to a model checker would be:

The automaton always eventually returns back to the state q42.

(A property of this form is called a ‘liveness’ property, because it describes how the automaton
always remains ‘active’ enough to be able to return back to a certain state.) A temporal logic
formula that expresses this property would be:

�♦q42

This should be read as:

From now on it will always hold that, there will be a point in time at which, we are back in
state q42.

You might be tempted to think the model checker’s task is not very complex, and thus actually
quite simple. The complication however, is that, even with automata of a relatively small
number of states, the number of situations (worlds) that need to be checked grows very (very)
fast. This, then, is the key task of a model checker: controlling what is called state space
explosion.

Definition 6.10
In LTL, we don’t denote the modal operators by � and ♦, but by the capitals G and F . So
we have:

modal LTL shorthand meaning

�f G f Globally from now on (including now) f will always hold
♦f F f Future eventually f will hold (or it holds already)

In fact, LTL has even more operators:

1SPIN stands for ‘Simple Promela INterpreter’ and Promela in turn stands for ‘PRocess MEta LAnguage’,
which allows the description of finite automata. SPIN is one of the most well-known model checkers, and was
developed by the Dutch Gerard Holzmann at Bell Laboratories in America.

79

LTL shorthand meaning

X f neX t after exactly one step, f will hold
f U g Until f holds until g holds, and indeed eventually g will hold
f W g Weak until f holds until g holds, or else f will hold forever
f R g Release g holds until f holds, at which point g is still the case,

or else g will hold forever

As you can see, LTL has binary modal operators as well. The operator Xf is sometimes
also denoted with a small circle: ◦f .

Exercise 6.J
Express the following sentences in LTL. You may use all operators of LTL in your answers.

(i) There exists a moment after which the formula a will always be true.
(ii) The statements a and b are alternatingly true.
(iii) Every time a holds, b holds after a while as well.

Some of the operators of LTL can in fact be expressed in terms of the others. For instance,
we have:

f U g is equivalent to (f W g) ∧ F g
f W g is equivalent to (f U g) ∨ G f
f R g is equivalent to ¬(¬f U ¬g)

Exercise 6.K
Define the operator U in terms of R.

Exercise 6.L
Define the operators G and F in terms of U and R. You may use the propositions > and ⊥,
the are always true, respectively always false.

Exercise 6.M
Show that all LTL operators (except X) can be defined in terms of the W operator. Again,
you may use the propositions > and ⊥.

The worlds in Kripke models of LTL corresponds to the ticking of a clock. Another way
to putting it, is that each world can be uniquely identified with a natural number. So, the set
of worlds is:

W = {xi | i ∈ N}

Furthermore, the worlds accessible to a given world xi are exactly all subsequent worlds xj ,
for which i ≤ j. The only difference then, between different Kripke models of LTL, is which
atomic propositions hold in its worlds. Here is a picture illustrating what a Kripke model of
LTL looks like:

x0 //
;; << << << <<

��
x1 //

;; << << <<

��
x2 //

;; ;; ;;

��
x3 //

99 ::

��
x4 //

88

��
.

This formulation of worlds in terms of the ticking of a clock allows us to describe the
meaning of the operators of LTL of definition 6.10 in an even more mathematically precise
way:

80

Definition 6.11
Given a Kripke model 〈W,R, V 〉 with W and R as described above. Then:

xi Gf for all j ≥ i we have xj f
xi Ff there is a j ≥ i such that xj f
xi Xf xi+1 f
xi f U g there is a j ≥ i such that xj g and for all k ∈ {i, i+ 1, . . . , j − 1}

we have xk f
xi f W g either there is a j ≥ i such that xj g and for all k ∈ {i, i+ 1, . . . , j − 1}

we have xk f , or for all l ≥ i we have xl f
xi f R g either there is a j ≥ i such that xj f and for all k ∈ {i, i+ 1, . . . , j − 1, j}

we have xk g, or for all l ≥ i we have xl g

With this formalization, we could prove the above-mentioned equivalences between LTL op-
erators.

Exercise 6.N
Consider the LTL Kripke model M6 = 〈W,R, V 〉. So we know that W = {xi | i ∈ N} and
xj ∈ R(xi) if i ≤ j. Now define V as follows:

a ∈ V (xi) iff i is a multiple of two

b ∈ V (xi) iff i is a multiple of three

Check whether the following properties hold:
(i) x1 F(a ∧ b)
(ii) x6 G(a ∨ b)
(iii) M6 � GF(a U b)

Exercise 6.O
Which of the axiom schemes in the table on page 75 hold in LTL?

81

6.7 Important concepts

accessibility relation, 76
atomic proposition, 73, 76
axiom scheme

distributive, 75
Euclidean, 75
reflexive, 75
serial, 75
symmetric, 75
transitive, 75

deontic logic, 74
is permissible, 74
♦, 74

obligation, 74
ought to be, 74

�, 74
doxastic logic, 74

belief, 74

�, 74
not contradictory with beliefs, 74
♦, 74

epistemic logic, 74
knowledge, 74
known, 74

�, 74
not contradictory with knowledge, 74
♦, 74

false
always false
⊥, 80

Floyd-Hoare logic, 71

intuitionistic logic, 71

Kripke model, 76

liveness, 79
LTL, 79

future

F f , 79
globally

G f , 79
Linear Time Logic, 79
next

X f , 80
release
f R g, 80
f W g, 80

until
f U g, 80

modal logic, 72
contingent, 72
impossible, 72
necessarily, 71

�, 72
necessity, 74
possible, 72
♦, 72

model checker, 79

necessity, 71

paraconsistent logic, 71
program-logic, 74

holds after any execution, 74

�, 74
holds after some execution, 74
♦, 74

property, 74

temporal logic, 74
always true, 74

�, 74
sometimes true, 74
♦, 74

time, 74
true

always true
>, 80

true in a Kripke model, 78
M |= f , 78

true in a world, 77
x f , 77
M, x f , 77

world
possible world, 76

82

Bibliography

[1] W. Gielen. Discrete wiskunde voor informatici. Katholieke Universiteit Nijmegen - Sub-
faculteit Wiskunde 2002.

[2] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press, 2004.
ISBN 0-521-54310-X.

[3] J.F.A.K. van Benthem, H.P. van Ditmarsch, J.S. Lodder, J. Ketting, and W.P.M. Meyer-
Viol. Logica voor informatici. Pearson Addison-Wesley, Nederland, 2003. ISBN 90-430-
0722-6 (dit boek wordt ook gebruikt in het college Beweren en Bewijzen).

[4] R.J. Wilson. Introduction to Graph Theory. Pearson Education Limited, fifth edition,
2010. ISBN 978-0-273-72889.

83

Index

(M, I) |= f , 18
(n, k), 63
(v, w), 46
0, 6
1, 6
=, 20
Kn, 48
Km,n, 52
LL′, 25
L ∩ L′, 24
L ∪ L′, 24
L(M), 37, 43
L ⊂ L′, 24
L ⊆ L′, 24
L∗, 25
LR, 25
S, 27
N, 17
Q, 17
Σ, 23
|w|, 24
Bn, 67
⊥, 80
L(∅), 26
∪, 5, 11
P41, 64
P42, 64
P43, 64
P44, 65
∅, 25, 26
∃, 11
∀, 11
〈V,E〉, 46
∈, 11
λ, 23, 25
〈W,R, V 〉, 76
〈Σ, Q, q0, F, δ〉, 36, 43
〈Σ, V,R〉, 28
♦, 72, 74

F f , 79

G f , 79

X f , 80
|= f , 7, 19

¬f , 4
L, 24

�, 72, 74{
n
k

}
, 65[

n
k

]
, 65

>, 80
ϕ, 49
an, 24
f ≡ g, 8
f ∧ g, 4
f ↔ g, 4
f ∨ g, 4
f R g, 80
f U g, 80
f W g, 80
f → g, 4
f |= g, 9, 19
r∗, 25
r1 ∪ r2, 25
r1 r2, 25
wR, 24
wv, 25
x f , 77
M |= f , 78
M, x f , 77
L(G), 28
L(r), 25(
n
k

)
, 63

base case, 58

accepting, 42
accepts, 38
accepts a word, 36, 42
accessibility relation, 76, 77
accessible, 76, 80
accessible world, 76
algorithm, 18
alphabet, 5, 23–25, 28, 36, 42

Σ, 23
atomic actions, 36, 42

always true, 74
and

f ∧ g, 4

84

arity, 13
arrow, 35
assignment, 7

finite assignment, 7
associativity, 5

right associative, 5, 8
at least

at least two, 20
at least two, 20
at most

at most three, 20
at most three, 20
atom, 13
atom proposition, 7
atomic actions, 36, 42
atomic formula, 13
atomic proposition, 4–7, 73, 76, 77
automata

accepts a word, 36
rejects a word, 36
sink, 39

automaton, 35, 37
DFA, 36
final state, 36, 39, 42
finite, 35, 36, 38, 40, 79
finite automaton, 24
initial state, 35, 36, 39, 42
language of, 37, 43
L(M), 37, 43

quintuple
〈Σ, Q, q0, F, δ〉, 36, 43

sink, 39
state, 36, 39, 42
transition function, 36, 43

axiom scheme, 75, 79
distributive, 75
Euclidean, 75
reflexive, 75, 78
serial, 75
symmetric, 75
transitive, 75

belief, 74
Bell numbers, 67

Bn, 67
bijection, 49
binomial, 63(

n
k

)
, 63

bipartite, 52
bracket, 11

chromatic number, 53, 54

circuit, 47, 50, 51
coefficient, 65
coloring

chromatic number, 53, 54
vertex coloring, 53

complement, 24
complete bipartite graph, 52
complete graph, 48
component, 47
computation, 36

accepting, 42
successful, 42

concatenation, 25
connected, 47
connective, 4–6
constant, 12, 13, 20
context, 30
context-free, 5, 28, 30, 31, 73
context-free language, 28, 31
contingent, 72
Coq, 8
country graph, 47
cycle, 47, 50, 51

De Morgan, 8
deadlock, 42
degree, 47, 50, 51
deontic logic, 74

is permissible, 74
♦, 74

obligation, 74
ought to be, 74

�, 74
describe, 27
DFA, 36
dictionary, 3, 11, 19
different, 20
direct formula, 58
directed, 35, 47, 76
discrete mathematics, 46
distributive, 75
domain, 12, 13, 15
doxastic logic, 74, 75

belief, 74

�, 74
not contradictory with beliefs, 74
♦, 74

edge, 46, 48
element of
∈, 11

empty language, 26

85

empty word, 23, 40
epistemic logic, 74, 75

knowledge, 74
known, 74

�, 74
not contradictory with knowledge, 74
♦, 74

equality relation, 20
equals

=, 20
Euclidean, 75
Euler

circuit, 50, 51
cycle, 50
path, 50, 51

exactly
exactly one, 20

exactly one, 20
exists
∃, 11

false, 6
0, 6
always false
⊥, 80

final state, 36, 39, 42
finite, 35, 36, 38, 40, 79
finite assignment, 7
finite automaton, 24
Floyd-Hoare logic, 71
follows from

f |= g, 19
for all
∀, 11

formula, 13
four color theorem, 54
fractions

Q, 17

generate, 27, 38
generates, 38
grammar, 14, 24, 27–29, 38

context, 30
context-free, 5, 28, 30, 31, 73
nonterminal, 27, 28, 39, 40
right linear, 31, 38–40
start symbol, 27, 28
S, 27

triple, 28
〈Σ, V,R〉, 28

graph, 35, 46
bipartite, 52

circuit, 47
complete bipartite graph, 52
Km,n, 52

complete graph, 48
Kn, 48

component, 47
connected, 47
country graph, 47
cycle, 47
degree, 47, 51

valency, 47
directed, 35, 47, 76
edge, 46, 48

(v, w), 46
hypercube graph, 52
neighbor, 47
node, 46
path, 47
Petersen graph, 48
planar, 47, 48
tree, 47, 48
tuple
〈V,E〉, 46

undirected, 47
vertex, 46, 48, 51

vertices, 46
grid coordinate

(n, k), 63

Hamilton
circuit, 51
cycle, 51
path, 51

holds after any execution, 74
holds after some execution, 74
hypercube graph, 52
hypothesis, 58

if and only if
f ↔ g, 4
iff, 4

if, then
f → g, 4

iff, 4
impossible, 72
individual constant

constant, 20
induction, 58

base case, 58
hypothesis, 58
induction step, 58
proof by, 58

86

induction step, 58
initial state, 35, 36, 39, 42
interpretation, 11, 15, 16, 19, 75
interpretation function, 16
intersection, 24
intuitionistic logic, 71
invariant, 29
is equal to, 20
is permissible, 74
isomorphic, 49

isomorphism, 49
ϕ, 49

isomorphism, 49

Kleene closure, 25
knowledge, 74
known, 74
Kripke model, 76, 77
〈W,R, V 〉, 76

label, 35
language, 23, 26

complement, 24
L, 24

concatenation
LL′, 25

context-free language, 28, 31
L(G), 28

describe, 27
empty language, 26
L(∅), 26
∅, 26

generate, 27, 38
intersection, 24
L ∩ L′, 24

Kleene closure, 25
L∗, 25

produce, 27
regular language, 25, 26, 31, 38
L(r), 25

reverse
LR, 25

strict subset, 24
L ⊂ L′, 24

subset, 24
L ⊆ L′, 24

union, 24
L ∪ L′, 24

language of, 37, 43
language recognizer, 37
length, 24
Linear Time Logic, 79

liveness, 79
logical consequence, 9

f |= g, 9
logical entailment, 9
logically equivalent, 8

f ≡ g, 8
logically true, 7, 19
|= f , 7
tautology, 7

logically valid, 7, 19
valid, 7

LTL, 79, 80
future

F f , 79
globally

G f , 79
Linear Time Logic, 79
next

X f , 80
release
f R g, 80
f W g, 80

until
f U g, 80

machine, 35
machine model, 35
modal logic, 71, 72, 74

contingent, 72
impossible, 72
interpretation, 75
necessarily, 71, 72

�, 72
necessary, 72
necessity, 74
possibility, 74
possible, 72
♦, 72

model, 6, 7, 15
model checker, 79

state space explosion, 79

natural numbers
N, 17

necessarily, 71, 72
necessary, 72
necessity, 71, 74
neighbor, 47
Newton’s Binomial Theorem, 65
NFA, 41
node, 35, 46
non-determinism, 42

87

non-deterministic finite automaton, 41, 42
accepts a word, 42
NFA, 41

nonterminal, 27, 28, 30, 31, 39, 40
not
¬f , 4

not contradictory with beliefs, 74
not contradictory with knowledge, 74

obligation, 74
operator, 72, 73
or

f ∨ g, 4
ought to be, 74

paraconsistent logic, 71
parenthesis, 5
parse tree, 49
parser, 25

parsing, 25
parsing, 25
partition, 68
Pascal’s Triangle, 64, 65

P41, 64
P42, 64
P43, 64
P44, 65

Pascal’sTriangle, 64
path, 47, 50, 51

degree, 50
Petersen graph, 48
planar, 47, 48
possibility, 74
possible, 72
possible world, 76
predicate, 12, 15, 58
predicate logic, 13, 14, 19, 20, 71

predicate logic with equality, 20
predicate logic with equality, 20
priority, 5
produce, 27
production, 27
production rule, 27–29, 31
program-logic, 74

holds after any execution, 74

�, 74
holds after some execution, 74
♦, 74

proof by, 58
property, 29, 74
proposition, 5, 7–9
propositional calculus, 3

propositional letter, 4
propositional logic, 3, 4, 7, 13, 14, 71, 77
propositional variable, 4
pseudocode, 56

quality, 12
quantifier, 13

rational numbers
Q, 17

recipe, 18
recursion, 54, 58

direct formula, 58
recursive definition, 57
recursive formula, 55
recursive function, 56, 57
recursive procedure, 56
recursive program, 56
recursive recipe, 56

recursive definition, 57
recursive formula, 55
recursive function, 56, 57
recursive procedure, 56
recursive program, 56
recursive recipe, 56
reflexive, 75, 78
regular expression, 24, 25
∅, 25
λ, 25
concatenation
r∗, 25
r1 r2, 25

union
r1 ∪ r2, 25

regular expressions, 25
regular language, 25, 26, 31, 38
rejects a word, 36
relation, 12, 15

relation symbol, 13
relation symbol, 13
reverse, 24, 25
right associative, 5, 8
right linear, 31, 38–40

semantics, 76
serial, 75
set, 23, 24

empty set
∅, 25

set operation, 24
sink, 39
sometimes true, 74
square parenthesis, 11

88

start symbol, 27, 28
state, 35, 36, 39, 42
state space explosion, 79
Stirling cycle numbers, 65[

n
k

]
, 65

Stirling numbers of the first kind, 65
Stirling numbers, 65
Stirling numbers of the first kind, 65
Stirling numbers of the second kind, 65
Stirling set numbers, 65, 67{

n
k

}
, 65

Stirling numbers of the second kind, 65
strict subset, 24
subject, 12
subset, 24
successful, 42
successor, 76
symbol, 23

concatenation
an, 24

symmetric, 75
syntax, 76
syntax diagram, 31

tautology, 7
temporal logic, 71, 74, 76, 79

always true, 74

�, 74
sometimes true, 74
♦, 74

time, 74
terminals, 28
time, 74
Towers of Hanoi, 54
transition function, 36, 43
transitive, 75
tree, 47, 48
triple, 28
true, 6, 15, 19

1, 6
always true
>, 80

logically true, 19
|= f , 19

true in a Kripke model, 78
M |= f , 78

true in a model, 7
true in a model under a given interpre-

tation, 16
true in a world, 77
x f , 77
M, x f , 77

true in a Kripke model, 78
true in a model, 7
true in a model under a given interpreta-

tion, 16
true in a world, 77
truth, 7

true in a model under an interpretation
(M, I) |= f , 18

truth table, 6, 7
truth tables, 8

undirected, 47
union, 5, 24
∪, 5, 11

valency, 47
valid, 7, 19

logically valid, 19
valuation, 7
variable, 13, 20
vertex, 46, 48, 51
vertex coloring, 53
vertices, 46

word, 5, 23, 36
concatenation
wv, 25

empty word, 23, 40
λ, 23

length, 24
|w|, 24

reverse, 24, 25
wR, 24

world, 76
accessible, 76, 80
accessible world, 76
possible world, 76
successor, 76

89

	Table of contents
	Propositional logic
	Formal languages and natural languages
	Dictionary
	Connectives
	Meaning and truth tables
	Models and truth
	Logical equivalence
	Logical consequence
	Important concepts

	Predicate logic
	Predicates, relations and constants
	The language of predicate logic
	Truth determination
	The language of predicate logic with equality
	Important concepts

	Languages
	Alphabet, word, language
	Regular languages
	Context-free grammars
	Right linear grammars
	Important concepts

	Automata
	Automata
	Languages and automata
	Non-deterministic automata
	Important concepts

	Discrete mathematics
	Graphs
	Isomorphic graphs
	Euler and Hamilton
	Colorings
	Towers of Hanoi
	Programming by recursion
	Binary trees
	Induction
	Pascal's Triangle
	Counting partitions
	Important concepts

	Modal logic
	Necessity and possibility
	Syntax
	Modalities
	Axioms
	Possible worlds and Kripke semantics
	Temporal logic
	Important concepts

	Bibliography
	Index

