## Formal Reasoning 2018

## Solutions Test Block 1: Propositional and Predicate Logic

(24/09/18)
1.

$$
\neg a \wedge b \vee a \rightarrow b \leftrightarrow a
$$

(a) Write this formula according to the official grammar from the course notes.

$$
((((\neg a \wedge b) \vee a) \rightarrow b) \leftrightarrow a)
$$

or

(b) Give the full truth table of this formula.

| $a$ | $b$ | $\neg a$ | $\neg a \wedge b$ | $(\neg a \wedge b) \vee a$ | $((\neg a \wedge b) \vee a) \rightarrow b$ | $(((\neg a \wedge b) \vee a) \leftarrow b) \leftrightarrow a$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 |

2. I only am happy if I am well rested, because else I am tired.

Formalize this English sentence as a formula of propositional logic using
(20 points) the following dictionary as well as possible:

$$
\begin{array}{ll}
H & \text { I am happy } \\
W & \text { I am well rested } \\
T & \text { I am tired }
\end{array}
$$

What we had in mind was:

$$
(H \rightarrow W) \wedge(\neg W \rightarrow T)
$$

For the translation of 'only if' and 'because' it is evident that they should lead to $(H \rightarrow W) \wedge \ldots$, but the 'else' part is less clear so several other solutions like $(\neg H \rightarrow T)$ or $(\neg(H \rightarrow W) \rightarrow T)$ are accepted as well.
3. The following statement holds:

$$
\text { If } \vDash f \vee g \text { and } f \vDash h \text { and } g \vDash h \text {, then } \vDash h .
$$

Explain what this statement says in terms of truth tables or models. Note that you do not have to show that this statement holds.
If we translate the symbols into natural language we get:
If $f \vee g$ is a tautology, and if $h$ is a logical consequence of $f$, and if $h$ is a logical consequence of $g$, then $h$ is a tautology.

In terms of models this becomes:
If the valuation $v_{1}(f \vee g)=1$ for all models $v_{1}$, and the valuation $v_{2}(h)=1$ for all models $v_{2}$ in which $v_{2}(f)=1$, and the valuation $v_{3}(h)=1$ for all models $v_{3}$ in which $v_{3}(g)=1$, then the valuation $v_{4}(h)=1$ for all models $v_{4}$.

In terms of truth tables this becomes:
If the truth table of $f \vee g$ has a 1 on every row, and on every row where the truth table of $f$ has a 1 , the truth table of $h$ also as a 1 , and on every row where the truth table of $g$ has a 1 , the truth table of $h$ also as a 1, then the truth table of $h$ has a 1 on every row.
4. The prime numbers are the numbers greater than one that are not a product of two numbers greater than one.
Formalize this English sentence as a formula of predicate logic using the following dictionary as well as possible:

$$
\begin{array}{ll}
N & \text { the domain of numbers } \\
u & \text { the number one } \\
\operatorname{Pr}(x) & x \text { is a prime number } \\
\operatorname{Lt}(x, y) & x<y \\
M(x, y, z) & x \times y=z
\end{array}
$$

$$
\forall x \in N\left[\operatorname{Pr}(x) \leftrightarrow L t(u, x) \wedge \neg \exists y_{1}, y_{2} \in N\left[L t\left(u, y_{1}\right) \wedge L t\left(u, y_{2}\right) \wedge M\left(y_{1}, y_{2}, x\right)\right]\right]
$$

5. 

$$
\forall x \in D P(x) \vDash \exists x \in D P(x)
$$

Does this statement hold? Explain your answer.
It does not hold. The statement says that for any model and interpretation it holds that if $\forall x \in D P(x)$ holds, then $\exists x \in D P(x)$ also holds.

This is not true in all models and interpretations. Take model $M_{5}=$ ( $\emptyset$, 'is purple') and interpretation $I_{5}$ such that

$$
\begin{array}{|ll|}
\hline D & \emptyset \\
P(x) & x \text { is purple } \\
\hline
\end{array}
$$

Because there are no elements in $\emptyset$, the statement 'for each element in the empty set it holds that this element is purple' is vacuously true. But the
statement 'there exists an element in the empty set for which it holds that this element is purple' is not true, because there are no elements in the empty set, so in particular no purple ones.
6. Give an interpretation $I_{6}$ in the model $M_{6}=(\mathbb{N},+, 1,=, \leq)$ under which the following formula is true:

$$
\forall x \in D \exists y, z \in D[R(x, y) \wedge R(y, z) \wedge \neg R(x, z)]
$$

Note that you do not need to explain your answer.
For instance, if we define $I_{6}$ to be

| $D$ | $\mathbb{N}$ |
| :--- | :--- |
| $R(x, y)$ | $y=x+1$ |

Because if $R(x, y)$ and $R(y, z)$ hold, then $y=x+1$ and $z=y+1$, and from this naturally follows that $z=(x+1)+1=x+2 \neq x+1$.

