
Formal Reasoning 2018
Solutions Test Block 3: Discrete Mathematics and Modal

Logic
(19/12/18)

1. (a) Give a connected graph G1 with a minimal number of vertices such (10 points)

that it has a Hamiltonian circuit, but does not have an Eulerian
circuit.

G1

1

2

3

4

This graph complies to the requirements:

• It is connected, because it has exactly one component.

• It has a Hamiltonian circuit: 1→ 2→ 3→ 4→ 1.

• It has no Eulerian circuit because vertices 1 and 3 both have
degree 3, which is odd.

• It is minimal with respect to the number of vertices. In order
to have a Hamiltonian circuit, we need to have a circuit, so we
need at least three vertices. In order to prevent the existence of
an Eulerian circuit, we need at least two vertices a and b with
an odd degree. However, if deg(a) = 1, then a cannot be part of
a Hamiltonian circuit. So deg(a) ≥ 3. But if deg(a) = 3, then
there must be at least three neighbors of a, which implies that
we need at least four vertices. And the diagram shows it can be
done with four vertices.

(b) Give a connected graph G′1 with a minimal number of vertices such (10 points)

that it has an Eulerian circuit, but does not have a Hamiltonian
circuit.

G′1

1

2

34

5

or

G′1

1

2

3

4 5

The graph on the left complies to the requirements:

• It is connected, because it has exactly one component.

• It has no Hamiltonian circuit because all four edges {1, 2}, {1, 3},
{1, 4} and {1, 5} must be in the circuit, but this implies that
vertex 1 is visited twice.
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• It has an Eulerian circuit: 1→ 2→ 3→ 1→ 4→ 5→ 1.

• It is minimal with respect to the number of vertices. In order to
have an Eulerian circuit, we need to have a circuit, so we need at
least three vertices. But K3 is the only graph with three vertices
and a cycle. However K3 has a Hamiltonian circuit. Now if we
try to create a graph with an Eulerian cycle with four vertices,
we see that all vertices have to have degree two, which implies
that the graph should contain the cycle graph C4. But this one
has a Hamiltonian circuit. The only edges that we can add to C4

are the two diagonals, but still we have an Hamiltonian circuit
in this case. So it cannot be done with four vertices either. The
diagram shows that it can be done with five vertices.

The graph on the right also complies to the requirements:

• It is connected, because it has exactly one component.

• It has no Hamiltonian circuit because all four edges {1, 2}, {1, 4}
and {1, 5} must be in the circuit, but this implies that vertex 1
is visited twice.

• It has an Eulerian circuit: 1→ 2→ 3→ 1→ 4→ 3→ 5→ 1.

• It is minimal with respect to the number of vertices for the same
reason as above.

You do not need to explain why your graphs have the required properties.

2. The following equality holds: (20 points)

1 · 1! + 2 · 2! + 3 · 3! = 23 = 4!− 1

We want to show that this pattern holds in general. For this we define:

sn := 1 · 1! + · · ·+ (n− 1) · (n− 1)!

For example s4 = 23. This corresponds to the recursion equations:

s2 = 1

sn+1 = sn + n · n! for n ≥ 2

Prove from this with induction that sn = n!− 1.

Proposition: 0

sn = n!− 1 for all n ≥ 2.

Proof by induction on n. 1

We first define our predicate P as:
P (n) := sn = n!− 1 2

Base Case. We show that P (2) holds, i.e. we show that 3

s2 = 2!− 1

This indeed holds, because 4
s2 = 1 = 2− 1 = 2!− 1
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Induction Step. Let k be any natural number such that k ≥ 2. 5

Assume that we already know that P (k) holds, i.e. we assume that 6
sk = k!− 1 (Induction Hypothesis IH)

We now show that P (k + 1) also holds, i.e. we show that 7
sk+1 = (k + 1)!− 1

This indeed holds, because 8

sk+1 = sk + k · k! definition of sn
= k!− 1 + k · k! IH
= k! + k · k!− 1 elementary algebra
= (1 + k) · k!− 1 elementary algebra
= (k + 1) · k!− 1 elementary algebra
= (k + 1)!− 1 elementary algebra

Hence it follows by induction that P (n) holds for all n ≥ 2. 9

3. There are five rhyme schemes for a poem with three lines: AAA, AAB, (20 points)

ABA, ABB and ABC. Give the number of rhyme schemes for a poem with
four lines, and show how this number relates to Bell numbers by giving a
relevant part of an appropriate triangle of numbers.

The Bell number Bn gives the number of ways we can partition a set of
n distinguishable elements. So let’s try to relate the given rhyme schemes
to partitions of {1, 2, 3}. We can interpret the schemes by matching the
line numbers to the positions of the A, B and C in the schemes. So AAA
means that line numbers 1, 2 and 3 are all put in the same set, giving
the partition {{1, 2, 3}}. And ABB means that line number 1 is in a
separate set, and line numbers 2 and 3 are put in the same set, giving the
partition {{1}, {2, 3}}. Likewise for the other possibilities, giving indeed
all partitions of {1, 2, 3}:

AAA 7→ {{1, 2, 3}}
AAB 7→ {{1, 2}, {3}}
ABA 7→ {{1, 3}, {2}}
ABB 7→ {{1}, {2, 3}}
ABC 7→ {{1}, {2}, {3}}

So we see that the five rhyme schemes correspond to B3. So the number
of rhyme schemes for a four line poem, should correspond to B4. And
B4 = 15, as it can be computed by adding the marked values in the
triangle for the Stirling numbers of the second kind:
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4. Suppose I lost my keys, but I am not aware of this, so I still think I know (15 points)

my keys are in my pocket. Then the following sentence will be true:

I do not know that it is not the case that I know my keys are in
my pocket.

Give a formula of epistemic logic without using negation signs, that gives
the meaning of this sentence. Use for a dictionary:

P my keys are in my pocket

Literally translated we would get the formula

¬�¬�P

but this contains negations and is not allowed. However, because ¬�¬f
is equivalent to ♦f for all formulas f , we can rewrite this formula to

♦�P

5. Give an LTL Kripke model M5 such that (15 points)

M5 � (GFa) ∧ (GF¬a) ∧ G(a↔ XXXa)

The first part of the formula says that a will be true infinitely many times.
The second part of the formula says that a will be false infinitely many
times. The third part of the formula says that a is true in a world xi if and
only if a is true in a world xi+3. So we need to have a repeating pattern
of a being true in a world, followed by two worlds where a is false.

This can be done with the LTL Kripke model 〈W,R, V 〉 where

W = {xi | i ∈ N}

and R(xi) is defined for all i ∈ N by

R(xi) = {xj | j ∈ N and j ≥ i}

and V (xi) is defined for all i ∈ N by

V (xi) =

{
{a} if imod 3 = 0

∅ otherwise
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