
Formal Reasoning 2018
Solutions Test Blocks 1, 2 and 3: Additional Test

(09/01/19)

1. Does the following hold? (20 points)

(∃x ∈ D (P (x)→ Q(x))) � ((∃x ∈ DP (x))→ (∃x ∈ DQ(x)))

Explain your answer.

No, it doesn’t hold.

It suffices to give a single model M1 and interpretation I1 for which it
doesn’t hold.

Let M1 be the model

Domain(s) N
Predicate(s) is even

is negative
Relation(s) –

And let I1 be the interpretation

D N
P (x) x is even
Q(x) x is negative

Then (∃x ∈ D (P (x) → Q(x))) holds, because we can take x = 1, which
is not even, so P (x) doesn’t hold and automatically P (x) → Q(x) does
hold, independent of Q(x).

However ((∃x ∈ DP (x)) → (∃x ∈ DQ(x))) does not hold, since the first
part ((∃x ∈ DP (x)) does hold because we can take x = 2, but the second
part ∃x ∈ DQ(x)) does not hold, since there are no negative natural
numbers.

2. (a) We define: (20 points)

La,b := {uavbw | u, v, w ∈ {a, b}∗ and |u|+ |w| = |v|}

For example ababaabb ∈ La,b, with u = ab, v = baa and w = b. Note
that all words in La,b have even length.

Show that the language La,b is context-free.

S → AB

A→ a | aAa | aAb | bAa | bAb

B → b | aBa | aBb | bBa | bBb

Non-terminal A builds u, the obliged a and the first part of v; non-
terminal b builds the second part of v, the obliged b and w. Each

1

time u is expanded, v is expanded with the same length. And the
same holds for w. Therefore |u|+ |w| = |v|.
Furthermore, note that A and B together create all words of odd
length.

An equivalent grammar is:

S → AB

A→ a | CAC

B → b | CBC

C → a | b

(b) We define: (20 points)

L2 := {uu | u ∈ {a, b}∗}

For example abbabb ∈ L2, with u = abb. Note that all words in L2

have even length.

Show that the language L2 is context-free.

Note that all words of odd length are in L2.

Now assume that x = x1x2 · · ·xn is a word of length n in L2 and n
is even. Note that every xi represents a single symbol. Then there
must be an i in 1, . . . , n/2 where xi = a and xi+n/2 = b (or vice
versa). The first case implies that we can write x = uavbw with
|u|+ |w| = |v|, hence x ∈ La,b. The second case implies that we can
write x = ubvaw with |u|+ |w| = |v|, hence x ∈ Lb,a.

So this means that L2 can be created with the grammar

S → A | B | AB | BA

A→ a | aAa | aAb | bAa | bAb

B → b | aBa | aBb | bBa | bBb

3. Given a graph G1 = 〈V1, E1〉 and a graph G2 = 〈V2, E2〉, we say that G1 (30 points)

is a subgraph of G2 if and only if V1 ⊆ V2 and E1 ⊆ E2. Count the number
of subgraphs of the complete graph on five points K5.

If you give an expression for this number in terms of binomial coefficients
and arithmetic operations, but do not have time to compute this to an
explicit number, you can still get partial points for this exercise.

We can create a subgraph of G2 in two steps.

Step 1 Choose 0, 1, 2, 3, 4, or 5 vertices out of the set {1, 2, 3, 4, 5}.
Step 2 For each of the possible edges between the chosen vertices, choose

whether it should be included or not.

So we get this:

• Choose 0 vertices. This can be done in
(
5
0

)
= 1 way. And it auto-

matically has 0 edges, so there is one subgraph of this type.

• Choose 1 vertex. This can be done in
(
5
1

)
= 5 ways. Obviously, these

subgraphs have no edges. So there are 5 subgraphs of this type.

2

• Choose 2 vertices. This can be done in
(
5
2

)
= 10 ways. For each

graph there is 1 possible edges, so we get 21 = 2 graphs for each set
of 2 vertices. So there are 10 · 2 = 20 subgraphs of this type.

• Choose 3 vertices. This can be done in
(
5
3

)
= 10 ways. For each

graph there are 3 possible edges, so we get 23 = 8 graphs for each set
of 3 vertices. So there are 10 · 8 = 80 subgraphs of this type.

• Choose 4 vertices. This can be done in
(
5
4

)
= 5 ways. For each graph

there are 6 possible edges, so we get 26 = 64 graphs for each set of 4
vertices. So there are 5 · 64 = 320 subgraphs of this type.

• Choose 5 vertices. This can be done in
(
5
5

)
= 1 way. For each graph

there are 10 possible edges, so we get 210 = 1024 graphs for each set
of 5 vertices. So there are 5 · 64 = 320 subgraphs of this type.

If we add all these values we get

1 + 5 + 20 + 80 + 320 + 1024 = 1450

possible subgraphs.

The numbers above are based upon the fact that we know that a graph of
n vertices has 1

2 · n · (n− 1) edges. So we get basically this formula:

5∑
i=0

(
5

i

)
· 2 1

2 ·i·(i−1)

3

