Formal Reasoning 2018

Test Blocks 1, 2 and 3: Additional Test
 $(09 / 01 / 19)$

Before you read on, write your name, student number and study on the answer sheet!

The mark for this test is the number of points divided by ten. The first ten points are free. For each (sub)question the maximum score is indicated. Good luck!

1. Does the following hold?

$$
(\exists x \in D(P(x) \rightarrow Q(x))) \vDash((\exists x \in D P(x)) \rightarrow(\exists x \in D Q(x)))
$$

Explain your answer.
2. (a) We define:

$$
L_{a, b}:=\left\{u a v b w \mid u, v, w \in\{a, b\}^{*} \text { and }|u|+|w|=|v|\right\}
$$

For example $a b a b a a b b \in L_{a, b}$, with $u=a b, v=b a a$ and $w=b$. Note that all words in $L_{a, b}$ have even length.
Show that the language $L_{a, b}$ is context-free.
(b) We define:

$$
L_{2}:=\left\{u u \mid u \in\{a, b\}^{*}\right\}
$$

For example $a b b a b b \in L_{2}$, with $u=a b b$. Note that all words in L_{2} have even length.
Show that the language $\overline{L_{2}}$ is context-free.
3. Given a graph $G_{1}=\left\langle V_{1}, E_{1}\right\rangle$ and a graph $G_{2}=\left\langle V_{2}, E_{2}\right\rangle$, we say that G_{1} is a subgraph of G_{2} if and only if $V_{1} \subseteq V_{2}$ and $E_{1} \subseteq E_{2}$. Count the number of subgraphs of the complete graph on five points K_{5}.
If you give an expression for this number in terms of binomial coefficients and arithmetic operations, but do not have time to compute this to an explicit number, you can still get partial points for this exercise.
(20 points)
(20 points)
(20 points)
(20 points)

(20 points)

(30 points)

