Formal Reasoning 2019

Solutions Test Block 2: Languages and Automata (06/11/19)

1. The equality
(15 points)

$$
\overline{L \cup L^{\prime}}=\bar{L} \cup \overline{L^{\prime}}
$$

does not hold for all languages L and L^{\prime} over the alphabet $\{a, b\}$. Give languages L and L^{\prime} over this alphabet for which this equality does not hold, and explain why this is the case.

No, it doesn't. Let

$$
\begin{aligned}
L & =\left\{w \in\{a, b\}^{*} \mid w \text { contains an even number of } a ’ s\right\} \\
L^{\prime} & =\left\{w \in\{a, b\}^{*} \mid w \text { contains an odd number of } a \text { 's }\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
L \cup L^{\prime} & =\{a, b\}^{*} \\
\overline{L \cup L^{\prime}} & =\emptyset \\
\bar{L} & =\left\{w \in\{a, b\}^{*} \mid w \text { contains an odd number of } a \text { 's }\right\} \\
\overline{L^{\prime}} & =\left\{w \in\{a, b\}^{*} \mid w \text { contains an even number of } a \text { 's }\right\} \\
\bar{L} \cup \overline{L^{\prime}} & =\{a, b\}^{*}
\end{aligned}
$$

And clearly $a \in\{a, b\}^{*}$, so $\{a, b\}^{*} \neq \emptyset$.
Alternatively, show that there is some $w \in L$ such that $w \notin L^{\prime}$. Then $w \in L \cup L^{\prime}$ and therefore $w \notin \overline{L \cup L^{\prime}}$. However, $w \in \overline{L^{\prime}}$ because $w \notin L$, so $w \in \bar{L} \cup \overline{L^{\prime}}$. For instance, pick $w=a a$.
Common mistakes:

- Students have interpreted \cup as an intersection instead of a union.
- Students assume that language is a set in Σ instead of Σ^{*}, so the complement is often done wrong.
- The given languages L and L^{\prime} is equal, though written in a different order.
- No explanation was given.

2. (a) Give a deterministic finite automaton with alphabet $\{a, b, c\}$ for the language:

$$
L_{2}:=\left\{w \in\{a, b, c\}^{*} \mid \text { adjacent symbols in } w \text { differ }\right\}
$$

We have $a b a c b \in L_{2}$ because in $a b a c b$ all symbols differ from their predecessor, but $a b b a \notin L_{2}$, because there are two b s next to each other in $a b b a$. We also have $\lambda \in L_{2}$, because there are no adjacent symbols in λ at all.
Hint: Let the states of the automaton correspond to the last symbol that has been read thus far.

Common mistakes:

- Either the initial state or addition of outgoing arrows to the sink itself were forgotten.
- Students often had a similar automaton, but instead of going to the state corresponding to the last-read symbol, they return to the initial state. For example, if state q_{0} would transition to q_{1} with a, then q_{1} would go to the sink with a, but back to q_{0} with b and c.
(b) Give the right linear context-free grammar associated with the automaton from the previous sub-exercise. For this exercise it does not matter whether that automaton was correct for the language.

$$
\begin{aligned}
& S \rightarrow a A|b B| c C \mid \lambda \\
& A \rightarrow a D|b B| c C \mid \lambda \\
& B \rightarrow a A|b D| c C \mid \lambda \\
& C \rightarrow a A|b B| c D \mid \lambda \\
& D \rightarrow a D|b D| c D
\end{aligned}
$$

Common mistakes:

Students often forgot to add the sink to the grammar or wrote a correct grammar that wasn't equivalent to their automaton.
3. Give a regular expression for the language:

$$
L_{3}:=\left\{w \in\{a, b, c\}^{*} \mid w \text { does not contain } a b\right\}
$$

Words in L_{3} can be:

- Without any $a:(b \cup c)^{*}$
- Consisting of consecutive blocks starting with a series of b 's and c 's, followed by one or more a 's, followed by one c, and these blocks are followed by a series of b 's and c 's, followed again by zero or more a 's: $\left((b \cup c)^{*} a a^{*} c\right)^{*}(b \cup c)^{*} a^{*}$

Combined this gives the expression:

$$
(b \cup c)^{*} \cup\left((b \cup c)^{*} a a^{*} c\right)^{*}(b \cup c)^{*} a^{*}
$$

Which is equivalent to:

$$
\left(a^{*} c \cup b\right)^{*} a^{*}
$$

A sequence of a 's either has to be followed by a c, or it has to be at the end of the word. This leads to the regular expression:

$$
\left(a a^{*} c \cup b \cup c\right)^{*} a^{*}
$$

In the union under the Kleene star there are three cases, depending on whether the first symbol of the remainder of the word is an a, b or c. This solution can be simplified to the short solution:

$$
\left(a^{*} c \cup b\right)^{*} a^{*}
$$

The same solution, but 'backwards', is:

$$
b^{*}\left(c b^{*} \cup a\right)^{*}
$$

A nice solution that combines the b^{*} start and a^{*} ending in a symmetric way is:

$$
b^{*}\left(a^{*} c b^{*}\right)^{*} a^{*}
$$

A variant of this solution is:

$$
\left(b^{*} a^{*} c\right)^{*} b^{*} a^{*}
$$

A way to understand these solutions is that the string has to consist of zero or more c 's, with strings that match $b^{*} a^{*}$ in between each of them.

Common mistakes:

- Often in an otherwise correct answer the final a^{*} or initial b^{*} is forgotten.
- Although it is not a mistake, often regular expressions contain redundant parts, like $\left(a^{*} c \cup c \cup \ldots\right)$ or $(a \cup \lambda)^{*}$ and so on.
- Regularly the \cup symbol is written as a capital letter U .
- Occasionally 'regular expressions' contain braces ('\{' and '\}'), commas (','), intersection signs (' \cap ') and complement signs (${ }^{(-)}$), which of course are not allowed in regular expressions.

4. Consider the context-free grammar G_{4} :

$$
\begin{aligned}
& S \rightarrow A \mid b S \\
& A \rightarrow a A|c S| \lambda
\end{aligned}
$$

We want to show that $a b \notin \mathcal{L}\left(G_{4}\right)$ and are considering the predicate

$$
P_{4}(w):=(w \text { does not contain any of: } a b, a S, A b, S b, S S)
$$

but this does not work. Explain why.
Take the word $v=a A S$. Then clearly $P(v)$ holds. However, $v \rightarrow v^{\prime}$ where $v^{\prime}=a S$ and then $P\left(v^{\prime}\right)$ does not hold. So this predicate is not a proper invariant.
5. Explain why each language that can be recognized by a non-deterministic finite automaton, also can be recognized by a non-deterministic finite automaton that has a single final state.
This can be arranged by adding a new final state and connect all original final states by a λ-transition to the new final state. More formally, consider the automaton

$$
M:=\left\langle\Sigma, Q, q_{0}, F, \delta\right\rangle
$$

Then we can define a new automaton

$$
M^{\prime}:=\left\langle\Sigma, Q \cup\left\{q_{f}\right\}, q_{0},\left\{q_{f}\right\}, \delta^{\prime}\right\rangle
$$

where δ^{\prime} is defined as:

$$
\begin{aligned}
\delta^{\prime}\left(q_{i}, x\right) & =\delta\left(q_{i}, x\right) \text { if } q_{i} \in Q \text { and } x \in \Sigma \\
\delta^{\prime}\left(q_{i}, \lambda\right) & =\delta\left(q_{i}, \lambda\right) \cup\left\{q_{f}\right\} \text { if } q_{i} \in F \\
\delta^{\prime}\left(q_{i}, \lambda\right) & =\delta\left(q_{i}, \lambda\right) \text { if } q_{i} \notin F
\end{aligned}
$$

Hence word w is accepted by automaton M if and only if word w is accepted by automaton M^{\prime}.

