
Type theory and proof assistants

answers

1.
λx : a → b → c. λy : b. λz : a. xzy

(This term corresponds to the proof

[a → b → cx] [az]

b → c
E→

[by]

c
E→

a → c
I[z]→

b → a → c
I[y]→

(a → b → c) → b → a → c
I[x]→

but this proof is not part of the answer.)

2.

Γ ⊢ x : a → b → c Γ ⊢ z : a

Γ ⊢ xz : b → c Γ ⊢ y : b

Γ ⊢ xzy : c

x : a → b → c, y : b ⊢ (λz : a. xzy) : a → c

x : a → b → c ⊢ (λy : b. λz : a. xzy) : b → a → c

(λx : a → b → c. λy : b. λz : a. xzy) : (a → b → c) → b → a → c

where we used the abbreviation Γ := x : a → b → c, y : b, z : a.

3.

[Ay]

A → A
I[y]→

[Ax]

A
E→

A → A
I[x]→

[Ax]

A → A
I[x]→

This corresponds to the reduction

λx : A. (λy : A.y)x →β λx : A. x

4.
ΠA : ∗. list A O

In Coq notation this is
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forall A : Set, list A O

5. forall P : tree -> Prop,

P leaf ->

(forall t1 : tree, P t1 -> forall t2 : tree, P t2 ->

P (node t1 t2)) ->

forall t : tree, P t

6.

⊢ ∗ : �

A : ∗ ⊢ A : ∗

A : ∗, x : A ⊢ x : A

⊢ ∗ : �

A : ∗ ⊢ A : ∗

⊢ ∗ : �

A : ∗ ⊢ A : ∗

⊢ ∗ : �

A : ∗ ⊢ A : ∗

A : ∗, x : A ⊢ A : ∗

A : ∗ ⊢ A → A : ∗

A : ∗ ⊢ (λx : A. x) : A → A

7.
λa : ∗. λx : (Πc : ∗. (a → c) → c). xa (λy : a. y)

:
Πa : ∗. (Πc : ∗. (a → c) → c) → a

(This term corresponds to the proof

[∀c. (a → c) → cx]

(a → a) → a
E∀

[ay]

a → a
I[y]→

a
E→

(∀c. (a → c) → c) → a
I[x]→

∀a. (∀c. (a → c) → c) → a
I∀

but this proof is not part of the answer.)

8.
N := Πa : ∗. a → (a → a) → a

2 := λa : ∗. λz : a. λs : a → a. s (sz)

9.

system judgments

λ→ 1, 2, 4
λP 1, 2, 4, 5
λ2 1, 2, 3, 4

10. Inductive even : nat -> Prop :=

| even_O : even O

| even_SS : forall n : nat, even n -> even (S (S n)).
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11.
Φrmeven(X) := {0} ∪ {n + 2 | n ∈ X}

Φeven is order-preserving means that Φeven(X) ⊆ Φeven(Y ) when X ⊆ Y .

12. Take for L the lattice from the previous exercise and for Φ

Φ(X) = N \ X

H = {X | X ⊆ N \ X} = {∅}
∨

L

H =
∨

L

{∅} = ∅

13. Type checking: given Γ, M and A, determine whether Γ ⊢ M : A is a
derivable judgment.

Type synthesis: given Γ and M , determine whether an A exists such that
Γ ⊢ M : A is a derivable judgment, and if so, find one.

Type inhabitation: given Γ and A, determine whether an M exists such
that Γ ⊢ M : A is a derivable judgment, and if so, find one.

The first two are decidable for λP , while the last is not decidable.

14. If the last step of the derivation was a λ rule

. . .

Γ, x : B, y : C ⊢ N : . . . . . .

Γ, x : B ⊢ (λy : C.N) : . . .

one would like to use the induction hypothesis for the derivation of Γ, x :
B, y : C ⊢ N : . . . to obtain a derivation

. . .

Γ, y : C[x := P ] ⊢ N [x := P ] : . . . . . .

Γ ⊢ (λy : C.N)[x := P ] : . . .

However, this does not work, because there x is not the last variable in
the context.

The way to solve this problem is to use induction loading and instead
prove

Γ, x : B, ∆ ⊢ M : A and Γ ⊢ P : B

then Γ,∆[x := P ] ⊢ M [x := P ] : A[x := P ]

The lemma of the exercise is the special case of this where ∆ is the empty
context.

15. There are two cases:
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• If A = a, then we know that M [x := N ]~P is strongly normalizing,

and hence M and the terms in ~P are also strongly normalizing. This
means that there are only finitely many reduction steps possible in
(λx.M)N ~P which do not contract the redex. Once we contract the

redex, we get a reduct of M [x := N ]~P (by applying the reductions

of M , N and ~P that we already did to M [x := N ]~P ) and we are in a
reduct of a strongly normalizing term. Which cannot have infinitely
many reductions.

• If A = B → C then we know that

∀P ′ ∈ [[B]].M [x := N ]~PP ′ ∈ [[C]]

and need to show that

∀P ′ ∈ [[B]]. (λx.M)N ~PP ′ ∈ [[C]]

But that immediately follows from the induction hypothesis, because
we are doing induction on the structure of the type.

(Note that we do not need the induction hypothesis for B.)
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