Type theory and proof assistants
answers

Ar:a—b—c Ay:b. Az:a.xzy

(This term corresponds to the proof

[a—b—c*] [a?]

E—

b—c [bY]

EF—
I[z]—
a—c

)

—a—c
I[z]—

(a—b—c)—>b—a—c

but this proof is not part of the answer.)

I'Fe:a—b—¢c T'Fz:a
F'Fxz:b—c IT'Fy:b
I'F2zy:c

x:a—b—ocy:bk(Az:a.zzy) :a—c
x:a—b—ockAy:bAz:ia.zzy):b—a—c
AM:a—=b—cAy:bAz:azzy):(a—b—c)—>b—oa—c

where we used the abbreviation I':=x:a —-b—c,y: 0, 2z : a.

[A”]
A— A

Iz]—
This corresponds to the reduction

A Ay Ayl —5 Ar: Az

ITA: x.1ist AO

In Coq notation this is

forall A : Set, list A O

5. forall P : tree —-> Prop,
P leaf —>
(forall t1 : tree, P t1 -> forall t2 : tree, P t2 ->
P (node t1 t2)) —>
forall t : tree, P t

6.
Fx: 0 Fx: 0
Fx:0O Fx:0 A:xFA:x A:xFA:x
A:xbE A:x A:xkE A:x A:x,x: AFA:x
A:x,x:AFx: A A:xFA— A:x
ArxkF(Qx:Az):A—-A
7.

Aa k. Az (Ile:x. (a —¢) = ¢).za(Ay : a.y)

a : x. (e :*.(a = ¢) = ¢) = a

(This term corresponds to the proof

[vc(. ;aja)@:acﬂ iy L]a 1~
(Ve.(a—c¢) —c¢) —a I[;C}VH

Va.(Ve. (a —¢) —¢) = a

but this proof is not part of the answer.)

N:=Ha:*.a— (a —a)—a

2:=Xa:*.Az:a.As:a— a.s(sz)

system judgments

A— 1,2, 4
AP 1,2, 4,5
A2 1,2,3,4

10. Inductive even : nat -> Prop :=
| even_0 : even O

| even_SS : forall n : nat, even n -> even (S (S n)).

11.
q)rmeven(X) = {0}) {’Il—|— 2 | n e X}

Dyyen is order-preserving means that Peyen(X) C Peyen(Y) when X C Y.

12. Take for L the lattice from the previous exercise and for ®
P(X)=N\X
H={X|XCN\X}={0)

\VEH=\/{0}=0
L L

13. Type checking: given I, M and A, determine whether I' - M : A is a
derivable judgment.

Type synthesis: given I' and M, determine whether an A exists such that
' M : Ais a derivable judgment, and if so, find one.

Type inhabitation: given I' and A, determine whether an M exists such
that ' - M : A is a derivable judgment, and if so, find one.

The first two are decidable for AP, while the last is not decidable.

14. If the last step of the derivation was a A rule

Iz:B,y:CHN:...
Fx:BFAy:C.N):...

one would like to use the induction hypothesis for the derivation of I, x :
B,y:CF N :...toobtain a derivation

F,y:C[gc::P].l.—'N[x::P]:...
FE(Ay:C.N)z:=P]:...

However, this does not work, because there z is not the last variable in
the context.

The way to solve this problem is to use induction loading and instead
prove

'Ne:B,AFrM:A and THP:B
then I',Alx:= P]F M[z:= P]: Az := P]

The lemma of the exercise is the special case of this where A is the empty
context.

15. There are two cases:

e If A = a, then we know that Mz := N]]3 is strongly normalizing,
and hence M and the terms in P are also strongly normalizing. This
means that there are only finitely many reduction steps possible in
(Ax. M)N P which do not contract the redex. Once we contract the
redex, we get a reduct of M[z := N]P (by applying the reductions
of M, N and P that we already did to M[z := N]P) and we are in a
reduct of a strongly normalizing term. Which cannot have infinitely
many reductions.

e If A= B — C then we know that
VP’ € [B]. M[z := N]PP' € [C]
and need to show that
VP' € [B]. (\z.M) NPP' € [C]

But that immediately follows from the induction hypothesis, because
we are doing induction on the structure of the type.

(Note that we do not need the induction hypothesis for B.)

