Final test: Type Theory and Coq 2010

18 january 2011, 10:30-12:30, HG00.308

The mark for this test is the total number of points divided by ten, where
the first 10 points are free.

1. Give a term of the simply typed lambda calculus that corresponds to
the untyped term
Axz.x (Ny. z)

(6 points)

2. (a) Give a proof in minimal first order propositional logic of the
proposition
(a —b) — (a—c—Db)

(6 points)
(b) Give a term of the simply typed lambda calculus that corresponds
with this proof under the Curry-Howard isomorphism.
(6 points)
(¢) Give a type derivation of the type judgment of this term.
(6 points)

3. (a) Give a proof in minimal propositional logic that has a detour for
the implication.
(6 points)

(b) Normalize this proof.
(4 points)

(¢) Give the reduction in the simply typed lambda calculus that cor-
responds with this proof normalization.
(4 points)

4. (a) Give a proof in minimal first order predicate logic of the propo-
sition

(Va. (P(z) = Q(x))) — V. (Q(z) — R(z)) — P(z) — R(z))

(6 points)



(b) Give a term of the dependently typed lambda calculus AP that
corresponds with this proof under the Curry-Howard isomor-
phism. Use the type D for the domain that is being quantified
over.

(6 points)

5. (a) Give a type derivation in the polymorphic lambda calculus A2 of
the type judgment

b:x b (Ila: *. (a — b)) : *

The typing rules of A2 are given on page 4 of this test.
(6 points)
(b) Suppose we have a function of type Ila : *.(a — b). Can we
apply this function to its own type?
(4 points)
(¢) Which of the type systems A\—, AP and A2 are called impredica-
tive?
(4 points)

6. (a) Give Coq definitions of two inductive types, one of cons-lists of
natural numbers and one of snoc-lists of natural numbers. (Note
that we are not talking about views here, we ask for two separate
types. This also means that the nils of the two kinds of lists will
need to have different names.)

(4 points)
(b) Give the induction principle of the type of snoc-lists.
(6 points)
(c) Give a Coq definition of a recursive function that converts snoc-
lists into cons-lists.
You may assume a function append has been defined on cons-
lists.
(6 points)

7. For efficiency we want to use a type of binary natural numbers:
Definition binnat := list bool.

The elements of these lists correspond to the bits of the numbers. Now
suppose we want to have a view of this type as unary numbers, for



example because we would like to define functions on it by primitive
recursion.

For this we first define counterparts of the unary constructors on
binnat:

Definition zero : binnat := cons false nil.
Definition succ : binnat -> binnat := ...

The definition of zero is a list consisting of a single false, representing
a single 0 bit. The definition of the succ function is non-trivial and is
omitted here.

(a) Now to use the method from the view from the left we need to
define an inductive type Unary. This is the counterpart to the
Back type in the example from Section 5 of the paper. Give the
definition of this type.

Both Coq notation or the notation from the the view from the
left paper are allowed.
(6 points)

(b) Furthermore a function unary from binnat to Unary needs to be
defined that shows that every binary natural number has a unary
view. This is the counterpart to the back function in the example
from the paper. Give the type of this function.

The actual definition of this function is again non-trivial and does
not need to be given.
(4 points)



Derivation rules of the Pure Type Systems AP and \2

In these rules the variable s ranges over the set of sorts {*,J}. The product
rule differs between AP and A2.

axriom

Fox O
_ I'FA:s
variable
Ne:AFz: A
' '-A:B 'EC:s
weakening
I'z:CFHA:B
o 'FM:llz: A.B 'FN:A
application
' m MN : B[z := N]
) Ie:AFM:B '-Tz:A.B:s
abstraction

T'FXe:AM:Ilx: A.B

I'F A:x I'xz:AF B:s

product (AP) T s A B s

' A:s I''x:AF B:x

product (A\2) T o A B *

) '+ A:B ' -B':s
conversion where B =g B’
' A:B




