
Type Theory and Coq 2013
second first opportunity

21-01-2014

Write your name on each paper that you hand in. Each subexercise is worth 3
points, 10 points are free, and the final mark is the number of points divided
by 10. Write proofs, terms and types in this test according to the conventions
of Femke’s course notes. Good luck!

1. Consider the following formula of first order propositional logic:

((A→ B)→ A)→ (A→ B)→ B

(a) Give a proof in first order propositional logic of this formula.
(Write all names of the proof rules in the proof tree.)

(b) Give the proof term in simply typed λ-calculus à la Church.

(c) Give the type judgment for the term from the previous subexer-
cise.

(d) Give a derivation of the type judgment from the previous subex-
ercise. (You do not need to give names for the typing rules in the
derivation tree, and you may use abbreviations for contexts.)

(e) Is the proof term from subexercise (1b) in normal form? If not,
reduce it to a normal form. If yes, give a term of this type that is
not in normal form.

2. Consider the following formula of first order predicate logic:

(∀x. P (x)→ Q(x))→ (∀x. P (x))→ ∀x.Q(x)

Furthermore we have the following λC context:

Γ2 := D : ∗ , P : D → ∗ , Q : D → ∗

(a) Give a proof in first order predicate logic of this formula. (Write
all names of the proof rules in the proof tree.)
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(b) Which of the rules in this proof has a variable condition, what is
this condition, and why is it satisfied?

(c) Give the type of λC that corresponds to the formula in the context
Γ2. (Use the syntax for dependent products from Femke’s course
notes, i.e., written using Π and with explicit types.)

(d) Give a λC proof term for the type from the previous subexercise.
(See page 5 for the typing rules.)

3. Consider the following term of λC:

and2 := λA,B : ∗.ΠC : ∗. (A→ B → C)→ C

(a) Give the type of and2 in λC. (See page 5 for the typing rules.)

(b) Is and2 also typeable in λ2? Explain your answer.

(c) Give a term of λC that inhabits the following type:

ΠA,B : ∗. A→ B → and2AB

(d) Give a term of λC that inhabits the following type:

ΠA,B : ∗. and2AB → A

4. Consider the λC type ∗ → ∗.

(a) Give the λC typing judgment (without a derivation) that gives
the kind of this type.

(b) Give a derivation in λC of the judgment from the previous subex-
ercise. (See page 5 for the typing rules. You do not need to give
names for the typing rules in the derivation tree.)

(c) Give an inhabitant in λC of this type that is not the identity.

5. Consider the following terms of the untyped λ-calculus:

K∗ := λx.λy.y (1)

Ω := (λx.xx)(λx.xx) (2)

M := K∗Ω (3)
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(a) Which of these terms are confluent? Explain your answer.

(b) Which of these terms are SN (strongly normalizing)? Explain your
answer.

(c) Which of these terms are WN (weakly normalizing)? Explain your
answer.

(d) Which of these terms are typeable in simply typed λ-calculus à
la Curry? For the terms that are typeable, you have to give the
most general type (but you do not need to explain how you have
obtained this type, nor why it is a most general type). For the
terms that are not typeable, you should explain why not.

6. Consider the Coq inductive type for lists:

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

(a) What is the type of list, nil, and cons?

(b) Give a Coq term that represents the list of natural numbers (3 1 4).

(c) Give the type of the dependent recursion principle list_rect for
this inductive type. (You are allowed to use either Coq or PTS
syntax to give this induction principle.)

(d) Write a function map with type

forall A B : Type, (A -> B) -> list A -> list B

that maps a function over the elements of the list using a combi-
nation of Fixpoint and match.

(e) Now also write the map function using the recursion principle from
subexercise (6c).

7. Consider the type for equality in HoTT, written using Coq syntax:

Inductive eq (A : Type) (x : A) : A -> Type :=

| refl : eq A x x.
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We write x =A y or even x = y for (eqAxy). The induction principle
for equality is:

A : Type x : A P : Πz : A. x = z → Type H : Px(reflAx) y : A p : x = y

eq_rectAxP H y p : Pyp

with reduction rule:

eq_rectAxP H x (reflAx)→ι H

(a) To what kind of mathematical objects do types and equality cor-
respond using the homotopy interpretation of type theory?

(b) Write a function transport with type

ΠA : Type.ΠP : A→ Type.Πx, y : A. x = y → Px→ Py

using the induction principle eq_rect. (You are allowed to use
either Coq or PTS syntax.)

(c) Dependent functions are fibrations in the homotopy interpretation
of type theory. That means, there is a function apd with type

ΠA : Type.ΠP : A→ Type.Πf : (Πx : A.Px).

Πx, y : A.Πp : x = y. p∗(fx) = fy,

where p∗ denotes transportAP x y p. Draw a diagram to indicate
why the use of p∗ is necessary.

(d) Give the definition of apd using the induction principle eq_rect.
(You are allowed to use either Coq or PTS syntax.)

(e) HoTT extends type theory with additional features. Name two of
those features and give an example of their use.
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In these rules the variables s, s1 and s2 range over the set of sorts {∗,�}.

axiom

` ∗ : �

variable
Γ ` A : s

Γ, x : A ` x : A

weakening
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B

application
Γ ` M : Πx : A.B Γ ` N : A

Γ ` MN : B[x := N ]

abstraction
Γ, x : A ` M : B Γ ` Πx : A.B : s

Γ ` λx : A.M : Πx : A.B

product
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s2

conversion
Γ ` A : B Γ ` B′ : s

Γ ` A : B′
where B =β B

′
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