
logical verification 2008-2009
exercises 2

Exercise 1. This exercise is concerned with dependent types. We use the
following definition in Coq:

Inductive natlist_dep : nat -> Set :=
| nil_dep : natlist_dep 0
| cons_dep : forall n : nat,

nat -> natlist_dep n -> natlist_dep (S n).

a. What is the type of natlist_dep?
What is the type of natlist_dep 2?
Describe the elements of natlist_dep 2.

b. Suppose we want to define a function nth that takes as input a list and
gives back the nth element of that list. How can dependent lists be used
to avoid errors?

Exercise 2. This exercise is concerned with dependent types.

a. Give the type of append_dep, the function that appends two dependent
lists.

b. Give the type of reverse_dep, the function that reverses a dependent list.

c. Consider the following two terms:

reverse_dep (plus n1 n2) (append_dep n1 n2 l1 l2)
append_dep n2 n1 (reverse_dep n2 l2) (reverse_dep n1 l1)

(Here n1 and n2 have type nat, the term l1 has type natlist_dep n1,
the term l2 has type natlist_dep n2.)

What are the types of the above terms?
Are the types convertible?

Exercise 3. This exercise is concerned with λ-calculus with dependent types
(λP ).

a. A typing rule that is characteristic for λP is the following:

Γ ` A : ∗ Γ, x : A ` B : �
Γ ` Πx:A.B : �

Explain how this rule is used to infer that the type of natlist_dep is ok.

1



b. Another typing rule that is characteristic for λP is the conversion rule:

Γ ` A : B Γ ` B′ : s

Γ ` A : B′ with B =β B′

Explain with an example (for instance natlist_dep) how the conversion
rule can be used.

Exercise 4.

a. Give an inhabitant of (Πx:Terms. P x) → (P M).

b. Give an inhabitant of (Πx:Terms. P x → Qx) → (Πx:Terms. P x) → (Πy:Terms. Q x).

Exercise 5. This exercise is concerned with the Curry-Howard-De Bruijn iso-
morphism between first-order predicate logic and λP .

a. Give the encoding of algebraic terms (from predicate logic) in λP .

b. Give the encoding of formulas from predicate logic in λP .

c. How are the introduction rules (for → and ∀) from predicate logic repre-
sented in λP?

d. How are the elimination rules (for → and ∀) from predicate logic repre-
sented in λP?

Exercise 6. First-order propositional logic can be encoded in Coq using de-
pendent types as follows:

(* prop representing the propositions is a Set *)
Variable prop:Set.
(* implication on prop is a binary operator *)
Variable imp: prop -> prop -> prop.
(* T expresses if a proposion in prop is valid

if (T p) is inhabited then p is valid
if (T p) is not inhabited then p is not valid *)

Variable T: prop -> Prop.

Give the types of the variables imp_introduction and imp_elimination
modelling the introduction- and elimination rule of implication.

Exercise 7. This exercise is concerned with polymorphic lambda-calculus and
second-order minimal propositional logic.

a. What is the type of the polymorphic identity?

b. Show how the polymorphic identity is used to get the identity on the type
nat of natural numbers.

2



c. Give the polymorphic version of the following function:
λf :nat → bool → nat. λx:nat. λy:bool. f x y.
(In the polymorphic variant neither nat nor bool occurs.)

d. Explain why the following proof is not correct:

∃a. a → b

[a → bx]
(a → b) → (a → b)

I[x] →

a → b
E∃

Exercise 8. This exercise is concerned with second-order propositional logic
and polymorphic λ-calculus (λ2).

a. Show that ∀a. ((∀b. b) → a) is a tautology.

b. Give the λ2-term corresponding to the formula ∀a. ((∀b. b) → a).

c. Give a λ2-term that is an inhabitant of the answer to 8b.

Exercise 9. This exercise is concerned with second-order minimal proposi-
tionla logic and polymorphic λ-calculus.

a. Show that (∀c. ((a → b → c) → c)) → a is a tautology of second-order
minimal propositional logic.

Exercise 10.

a. What is the impredicative definition of ⊥ in second-order propositional
logic?

b. What is the corresponding term in λ2?

Exercise 11. This exercise is concerned with the encoding of logic and data-
types in polymorphic λ-calculus (λ2).

a. Define the type new or

(new or A B) = Πc: ∗ . (A → c) → (B → c) → c

Assume Γ ` a : A. Give an inhabitant of (new or A B).
(NB: it is not asked to give the type derivation.)

b. Assume new or as in a, and in addition Γ ` f : A → D, and Γ ` g : B → D,
and Γ ` M : (new or A B). Give an inhabitant of D.
(NB: it is not asked to give the type derivation.)

c. We define the booleans B and true (T) and false (F) as follows:
B = Πa: ∗ . a → a → a
T = λa: ∗ . λx:a. λy:a. x
F = λa: ∗ . λx:a. λy:a. y

Give a definition of negation in λ2.

3



Exercise 12. We assume a : ?. Give inhabitants in λ2 of the following types:

a. (Πb : ?. b) → a,

b. a → Πb : ?. (b → a),

c. a → Πb : ?. ((a → b) → b).

4


