Problem [B2 from IMO 1972]
f and g are real-valued functions defined on the real line. For all x and y,

$$
f(x+y)+f(x-y)=2 f(x) g(y)
$$

f is not identically zero and $|f(x)| \leq 1$ for all x. Prove that $|g(x)| \leq 1$ for all x.

Solution

Let k be the least upper bound for $|f(x)|$. Suppose $|g(y)|>1$. Then

$$
2 k \geq|f(x+y)|+|f(x-y)| \geq|f(x+y)+f(x-y)|=2|g(y)||f(x)|
$$

so $|f(x)| \leq k /|g(y)|$. In other words, $k /|g(y)|$ is an upper bound for $|f(x)|$ which is less than k. Contradiction.

